From Strings to One-Flavor QCD

- Summary: SUSY gluodynamics at large N is equivalent to nonsupersymmetric orientifold daughter which at $N=3=$ one-flavor QCD!

Genesis of the idea:
S. Kachru \& E. Silverstein, 4-D CONFORMAL THEORIES AND STRINGS ON ORBIFOLDS, 1998

R6 orbifolds + AdS/CFT; started from $\mathcal{N}=4 \Rightarrow$ distinct (perturbatively) conformal daughters with $\mathcal{N}<4$
A.Lawrence, N.Nekrasov \& C.Vafa, ON CONFORMAL FIELD THEORIES IN FOUR-DIMENSIONS, 1998
M.Bershadsky, Z.Kakushadze, Vafa, STRING EXPANSION AS LARGE N EXP. OF GAUGE THEORIES, ‘98
M.Bershadsky, a. Johansen, LARGE N LIMIT OF ORBIFOLD FIELD THEORIES, 1998
M.Schmaltz, DUALITY OF NONSUPERSYMMETRIC LARGE N GAUGE THEORIES, 1998
M.Strassler, ON METHODS FOR EXTRACTING EXACT NONPERTURBATIVE RESULTS IN NONSUPERSYMMETRIC GAUGE THEORIES, 2001

Tools:

Orientifolding;

W Large N (planar) limit;
is Supersymmetry.

SUSY gluodynamics

Orientifold daughter

$\mathcal{L}=-\frac{1}{4 g^{2}} G_{\mu \square}^{a}$		$\frac{i}{b^{2}} \bar{\square}_{\square}^{a} D$ $\rightarrow \square_{j}^{i}$	$\xrightarrow{\text { Neyl }}$	$\mathcal{L}=$		$+\frac{1}{g^{2}}$ or	Dirac ${ }_{[i j]}(i)$ 3, orienti favor $Q C$	$\square^{[i j]}$
		$\mathrm{SU}(N)$	$\mathrm{U}_{V}(1)$	$\mathrm{U}_{A}(1)$		SU($($)	$\mathrm{U}_{V}(1)$	U_{4}
$\begin{aligned} & \square \longrightarrow N^{2}-1 \text { dof } \\ & \quad N^{2}-N . \end{aligned}$	$\eta_{\{i t\}}$	\square	1	1	$\eta_{[t]}$	日	1	1
$\square^{[i j]} \rightarrow \frac{N-N}{2}$ dof	$\xi^{\{t j\}}$	$\bar{\square}$	${ }^{-1}$		$\xi^{[t]}$	$\bar{\square}$	-1	1
$\square_{[i j} \rightarrow \frac{N^{2}-N}{2}$ dof	A_{μ}			0	A_{μ}	Adj		

SUSY gluodynamics
] N vacua labeled by $\langle\lambda \lambda\rangle=-6 N \Lambda^{3} \exp (2 \mathrm{ik} / \mathrm{N})$

Orientifold daughter

$$
\begin{gathered}
\square \quad N-2 \text { vacua labeled by } \\
\left\langle\bar{\Psi}_{R} \Psi_{L}>=-6(N-2) \wedge^{3} e^{2 \pi i k(N-2)+\ldots}\right.
\end{gathered}
$$

At $N=3$ the vacuum is unique (at $\theta=0$)
] Both theories confine; only composite color-singet hadrons in the spectra.
QU Orientifold daughter is NOT supersymmetric: m_{B} (parent) $=O\left(N^{0}\right)$ while m_{B} (daughter) $=O\left(N^{1}\right)$.

Common Sector: SUSY \longleftrightarrow Orienti | Glueballs+bifermions+...

Perturbative Planar Equivalence

NONperturbative Planar Equivalence

parent

dauchiner

fermion loop

Gauge field background is the same!

$$
\begin{aligned}
& D \equiv \operatorname{det}\left(i \not \partial+\not A^{a} T_{\mathrm{Adj}}^{a}-m\right)=\sum_{\mathcal{C}} \alpha_{\mathcal{C}} \mathcal{W}_{\mathcal{C}}\left[A_{\mathrm{Adj}}\right] \\
& \mathcal{W}_{\mathcal{C}}\left[A_{\mathrm{Adj}}\right]=\operatorname{Tr} P \exp \left(i \int_{\mathcal{C}} A_{\mu}^{a} T_{\mathrm{Adj}}^{a} d x^{\mu}\right) \\
& =\sum_{\mathcal{C}} \alpha_{\mathcal{C}} \operatorname{Tr} P \exp \left(i \int_{\mathcal{C}} A_{\mu}^{a} T^{a} d x^{\mu}\right) \operatorname{Tr} P \exp \left(i \int_{\mathcal{C}} A_{\mu}^{a} \bar{T}^{a} d x^{\mu}\right)
\end{aligned}
$$

Here comes Planarity

$$
\begin{aligned}
& \sum_{\mathcal{C}} \alpha_{\mathcal{C}}\left\langle\mathcal{W}_{\mathcal{C}}\left[A_{\square}\right] \mathcal{W}_{\mathcal{C}}^{*}\left[A_{\square}\right]\right\} \\
&=\sum_{\mathcal{C}} \alpha_{\mathcal{C}}\left\langle\mathcal{W}_{\mathcal{C}}\left(A_{\square}\right)\right\rangle\left\langle\mathcal{W}_{\mathcal{C}}^{*}\left(A_{\square}\right)\right\rangle=\sum_{\mathcal{C}} \alpha_{\mathcal{C}}\left\langle\mathcal{W}_{\mathcal{C}}\left(A_{\square}\right)\right\rangle^{2}
\end{aligned}
$$

$\left.\left.\operatorname{det} i D_{\mu} \gamma^{\mu}\right)_{\text {susy }}=\operatorname{det} i D_{\mu} \gamma^{\mu}\right)_{\text {orienti }}$ at $N=\infty$
Consequences for orienti A at $N=\infty$:
Infinite number of degeneracies: e.g. $0^{+} \& 0^{-}\left|1^{-} \& 0^{+}\right| \ldots$;
"BPS" domain walls;
Lighness of $\sigma ; \mathrm{m}_{\sigma}{ }^{2}=\mathrm{m}_{\eta},{ }^{2}(1+\mathrm{O}(1 / \mathrm{N})$;
Exact β function; calculable quark condensate.

Quark condensate at $N=3$ (1-flavor QCD)

$$
\begin{gathered}
\left\langle\bar{\Psi}_{R} \Psi_{L}>=-6(N-2) \Lambda^{3} \mathrm{e}^{2 \pi i k(N-2)}(1+O(1 / M))\right. \\
\Rightarrow-6 \Lambda^{3}(1 \pm(1 / 3)) \Rightarrow-(0.6 \text { to } 1.1) \Lambda^{3}{ }_{\text {MS }}
\end{gathered}
$$

"Experimental" $\Rightarrow \quad-(0.4$ to 0.9$) \wedge^{3}$ MS
lattice or extrapolation to $n_{f}=1$
Vacuum energy density (cosmological constant)

Usually in non-SUSY $\epsilon_{\text {vac }} \sim N^{2}$; in orient $\epsilon_{\text {vac }}<N^{2}$

$$
\epsilon_{\mathrm{vac}} \sim N^{1}
$$

(Parent: k "flavors" of adjoint Majoranas
\square Daughter: k flavors of $\psi[i j]$'s
A new "orientifold" large N expansion

SUSY YM

one-flavor QCD

Remnants of SUSY in pure Yang-Mills?

SUSY in pure Yang-Mills (with ~30\% accuracy):

$$
\left\langle G_{\mu \square}^{a} G^{\mu \square a}+i G_{\mu \square}^{a} \tilde{G}^{\mu \square a}\right\rangle_{\mathrm{vac}}=\mu^{4} \exp \left\{-\frac{1}{N}\left(\frac{8 \square^{2}}{g^{2}}+i \square\right)\right\}
$$

Accuracy $1 / 11$ - not so bad!

Conclusions:

SUSY gluodynamcs is planar equivalent to non-SUSY orienti;
At $N=3$ we get one-flavor QCD;
Analytic predictions: spectral degeneracies, condensates,... $\epsilon_{\text {vac }} \sim N^{1}$;

Orientifold large- N expansion; Remnants of SUSY in pure Yang-Mills;

Problems: Major \Rightarrow calculating $1 / N$ corrections
??? [Let (iD $\gamma-m$) $A \times \operatorname{Det}(i D \quad \gamma-m) S^{1 / 2} \sim 1+1 / N^{2}$???

