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From Strings to One-Flavor QCD
• Summary: SUSY gluodynamics at large N is 

equivalent to nonsupersymmetric orientifold 
daughter which at N=3 => one-flavor QCD!
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Tools:

Orientifolding;

Large N (planar) limit;

Supersymmetry.
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SUSY gluodynamics Orientifold daughter

L =− 1
4g2 Ga

µn Gµna +
i

g2 l̄ a
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At N=3, orienti A =
one-flavor QCD

l−→ N2−1 do f
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SUSY gluodynamics Orientifold daughter

U  N vacua labeled by 
<λλ>=-6NΛ3 exp(2#ik/N)
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in the standard manner (i.e. in accordance with Ref. [26]) in terms of the
ultraviolet parameters,

Λ3 =
2

3
M3

UV
8π2

Ng2
0

exp

(
− 8π2

Ng2
0

)
=

2

3
M3

UV
1

λ0
exp

(
− 1

λ0

)
, (3.9)

where MUV is the ultraviolet (UV) regulator mass, while g2
0 and λ0 are the

bare coupling constants.
Note that since Λ is expressible in terms of the ’t Hooft coupling, it is

explicitly N -independent. Equation (3.9) is exact [27] in supersymmetric
gluodynamics. If θ "= 0, the exponent in Eq. (3.8) is replaced by

exp

(
2πik

N
+

i θ

N

)
.
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Figure 1. The gluino condensate 〈λλ〉 is the order parameter labeling distinct vacua in super-

symmetric gluodynamics. For the SU(N) gauge group there are N discrete degenerate vacua.

All hadronic states are arranged in supermultiplets. The simplest is
the so-called chiral supermultiplet, which includes two (massive) spin-zero
mesons (with opposite parities), and a Majorana fermion with a Majorana
mass (alternatively, one can treat it as a Weyl fermion). The interpolating
operators producing the corresponding hadrons from the vacuum are G2,
GG̃ and Gλ. The vector supermultiplet consists of a spin-1 massive vector
particle, a 0+ scalar and a Dirac fermion. All the particles from one super-
multiplet have degenerate masses. Two-point functions are degenerate too
(modulo obvious kinematical spin factors). For instance,

〈G2(x) , G2(0)〉 = 〈GG̃(x) , GG̃(0)〉 = 〈Gλ(x) , Gλ(0)〉 . (3.10)

U  N-2 vacua labeled by 
<ΨR ΨL>=-6(N-2)Λ3 e2πik/(N-2)+...

U Both theories confine; only composite color-singet 
hadrons in the spectra.

UU Orientifold daughter is NOT supersymmetric: 
mB(parent)=O(N 0) while mB(daughter)=O(N 1).

Common Sector: SUSY‹fiOrienti ôGlueballs+bifermions+...

At N=3 the vacuum 
is unique (at q=0)
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Perturbative Planar Equivalence
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We will compare the bosonic sectors of the parent and daughter theo-
ries. Note that the part of the daughter theory’s bosonic sector probed by
operators of the type (6.1), which have no analogs in the parent theory, is
inaccessible. Such a sector of the theory does not belong to the common
sector.

6.1. Perturbative equivalence

Let us start from perturbative considerations. The Feynman rules of the
planar theory are shown in Fig. 4.

The difference between the orientifold theory and N = 1 gluodynamics
is that the arrows on the fermionic lines point in the same direction, since
the fermion is in the antisymmetric representation, in contrast to the super-
symmetric theory where the gaugino is in the adjoint representation and the
arrows point in opposite directions. This difference between the two theories
does not affect planar graphs, provided that each gaugino line is replaced by
the sum of η[..] and ξ[..].

+−

a b c

Figure 4. (a) The fermion propagator and the fermion-fermion-gluon vertex. (b) N = 1 SYM

theory. (c) Orientifold daughter.

There is a one-to-one correspondence between the planar graphs of the
two theories. Diagrammatically this works as follows (see, for example,
Fig. 5). Consider any planar diagram of the daughter theory: by defini-
tion of planarity, it can be drawn on a sphere. The fermionic propagators
form closed, non-intersecting loops that divide the sphere into regions. Each
time we cross a fermionic line the orientation of color-index loops (each one

in the antisymmetric and symmetric versions, respectively.

parent
daugter
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producing a factor N) changes from clock to counter-clockwise, and vice-
versa, as is graphically demonstrated in Fig. 5c. Thus, the fermionic loops
allow one to attribute to each of the above regions a binary label (say ±1),
according to whether the color loops go clock or counter-clockwise in the
given region. Imagine now that one cuts out all the regions with a −1 label
and glues them again on the sphere after having flipped them upside down.
We will get a planar diagram of the SYM theory in which all color loops go,
by convention, clockwise. The number associated with both diagrams will
be the same since the diagrams inside each region always contain an even
number of powers of g, so that the relative minus signs of Fig. 4 do not
matter.

In fact, in the above argument, we cut corners, so that the careful reader
might get somewhat puzzled. For instance, in the parent theory gluinos are
Weyl (Majorana) fermions, while fermions in the daughter theory are Dirac
fermions. Therefore, we hasten to add a few explanatory remarks, which
will, hopefully, leave the careful reader fully satisfied.

First, let us replace the Weyl (Majorana) gluino of N =1 gluodynamics
by a Dirac spinor Ψi

j. Each fermion loop in the original theory is then
obtained from the Dirac loop by multiplying the latter by 1/2. Let us keep
this factor 1/2 in mind.

On the daughter theory side, instead of considering the antisymmetric
spinor Ψ[ij] or the symmetric one, Ψ{ij}, we will consider a Dirac spinor in
the reducible two-index representation Ψij, without imposing any conditions
on i, j. Thus, this reducible two-index representation is a sum of + .
It is rather obvious that at N → ∞ any loop of Ψ[ij] yields the same result
as the very same loop with Ψ{ij}, which implies, in turn, that in order to get
the fermion loop in, say, an antisymmetric orientifold daughter, one can take
the Dirac fermion loop in the above reducible representation, and multiply
it by 1/2.

Given the same factor 1/2 on the side of the parent and daughter theories,
what remains to be done is to prove that the Dirac fermion loops for Ψi

j and
Ψij are identical at N → ∞. We will therefore focus on the color factors.

Let the generator of SU(N) in the fundamental representation be T a,
while that in the antifundamental one will be T̄ a,

T a = T a , T̄ a = T a . (6.2)

Then the generator in the adjoint representation is

T a
Adj ∼ T a

×
= T a ⊗ 1 + 1 ⊗ T a ≡ T a ⊗ 1 + 1 ⊗ T̄ a , (6.3)
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where we used the large-N limit to neglect the singlet. Moreover, in the
daughter theory the generator of the reducible ⊗ representation can be
written as

T a
two−index = T a ⊗ 1 + 1 ⊗ T a ≡ T a ⊗ 1 + 1 ⊗ T a

or T̄ a ⊗ 1 + 1 ⊗ T̄ a . (6.4)

One more thing which we will need to know is the fact that

T̄ = −T̃ = −T ∗ , (6.5)

where the tilde denotes the transposed matrix.
Let us examine the color structure of a generic planar diagram for a

gauge-invariant quantity. For example, Fig. 5a exhibits a four-loop planar
graph for the vacuum energy. The color decomposition (6.3) and (6.4) is
equivalent to using the ’t Hooft double-line notation, see Figs. 5b,c. In the
parent theory each fermion–gluon vertex contains T a

Adj; in passing to the
daughter theory we replace T a

Adj → T a
two−index.

Upon substitution of Eqs. (6.3) and (6.4) the graph at hand splits into
two (disconnected!) parts; the inner one (inside the dotted ellipse in Fig. 5c),
and the outer one (outside the dotted ellipse in Fig. 5c). These two parts
do not “talk to each other,” because of planarity (large-N limit). The outer
parts are the same in Figs. 5b,c. They are proportional to the trace of the
product of two T ’s in the two cases

Tr (T̄ aT̄ a) .

This is the first factor. The second one comes from the inner part of
Figs. 5b,c. In the parent theory the inner factor is built out of 6 T ’s —
one in each fermion–gluon vertex, and three T ’s in the three-gluon vertex
Tr ([AµAν ] ∂µAν), where Aµ ≡ Aa

µT a. In the daughter theory the inner
factor is obtained from that in the parent one by replacing all T ’s by T̄ ’s.
According to Eq. (6.5), T̄ = −T̃ (remember that a tilde denotes the trans-
posed matrix). This fact implies that the only difference between the inner
blocks in Figs. 5b,c is the reversal of the direction of the color flow on each
of the ’t Hooft lines. Since the inner part is a color-singlet by itself, the
above reversal has no impact on the color factor — they are identical in the
parent and daughter theories.

It is, perhaps, instructive to illustrate how this works using a more con-
ventional notation. For the inner part of the graph in Fig. 5b we have
the color factor Tr (T aT bT c) fabc, while in the daughter theory we have

July 29, 2004 13:51 WSPC/Trim Size: 9.75in x 6.5in for Proceedings armoni

From Super-Yang-Mills Theory to QCD 25

where we used the large-N limit to neglect the singlet. Moreover, in the
daughter theory the generator of the reducible ⊗ representation can be
written as

T a
two−index = T a ⊗ 1 + 1 ⊗ T a ≡ T a ⊗ 1 + 1 ⊗ T a

or T̄ a ⊗ 1 + 1 ⊗ T̄ a . (6.4)

One more thing which we will need to know is the fact that

T̄ = −T̃ = −T ∗ , (6.5)

where the tilde denotes the transposed matrix.
Let us examine the color structure of a generic planar diagram for a

gauge-invariant quantity. For example, Fig. 5a exhibits a four-loop planar
graph for the vacuum energy. The color decomposition (6.3) and (6.4) is
equivalent to using the ’t Hooft double-line notation, see Figs. 5b,c. In the
parent theory each fermion–gluon vertex contains T a

Adj; in passing to the
daughter theory we replace T a

Adj → T a
two−index.

Upon substitution of Eqs. (6.3) and (6.4) the graph at hand splits into
two (disconnected!) parts; the inner one (inside the dotted ellipse in Fig. 5c),
and the outer one (outside the dotted ellipse in Fig. 5c). These two parts
do not “talk to each other,” because of planarity (large-N limit). The outer
parts are the same in Figs. 5b,c. They are proportional to the trace of the
product of two T ’s in the two cases

Tr (T̄ aT̄ a) .

This is the first factor. The second one comes from the inner part of
Figs. 5b,c. In the parent theory the inner factor is built out of 6 T ’s —
one in each fermion–gluon vertex, and three T ’s in the three-gluon vertex
Tr ([AµAν ] ∂µAν), where Aµ ≡ Aa

µT a. In the daughter theory the inner
factor is obtained from that in the parent one by replacing all T ’s by T̄ ’s.
According to Eq. (6.5), T̄ = −T̃ (remember that a tilde denotes the trans-
posed matrix). This fact implies that the only difference between the inner
blocks in Figs. 5b,c is the reversal of the direction of the color flow on each
of the ’t Hooft lines. Since the inner part is a color-singlet by itself, the
above reversal has no impact on the color factor — they are identical in the
parent and daughter theories.

It is, perhaps, instructive to illustrate how this works using a more con-
ventional notation. For the inner part of the graph in Fig. 5b we have
the color factor Tr (T aT bT c) fabc, while in the daughter theory we have

July 29, 2004 13:51 WSPC/Trim Size: 9.75in x 6.5in for Proceedings armoni

From Super-Yang-Mills Theory to QCD 25

where we used the large-N limit to neglect the singlet. Moreover, in the
daughter theory the generator of the reducible ⊗ representation can be
written as

T a
two−index = T a ⊗ 1 + 1 ⊗ T a ≡ T a ⊗ 1 + 1 ⊗ T a

or T̄ a ⊗ 1 + 1 ⊗ T̄ a . (6.4)

One more thing which we will need to know is the fact that

T̄ = −T̃ = −T ∗ , (6.5)

where the tilde denotes the transposed matrix.
Let us examine the color structure of a generic planar diagram for a

gauge-invariant quantity. For example, Fig. 5a exhibits a four-loop planar
graph for the vacuum energy. The color decomposition (6.3) and (6.4) is
equivalent to using the ’t Hooft double-line notation, see Figs. 5b,c. In the
parent theory each fermion–gluon vertex contains T a

Adj; in passing to the
daughter theory we replace T a

Adj → T a
two−index.

Upon substitution of Eqs. (6.3) and (6.4) the graph at hand splits into
two (disconnected!) parts; the inner one (inside the dotted ellipse in Fig. 5c),
and the outer one (outside the dotted ellipse in Fig. 5c). These two parts
do not “talk to each other,” because of planarity (large-N limit). The outer
parts are the same in Figs. 5b,c. They are proportional to the trace of the
product of two T ’s in the two cases

Tr (T̄ aT̄ a) .

This is the first factor. The second one comes from the inner part of
Figs. 5b,c. In the parent theory the inner factor is built out of 6 T ’s —
one in each fermion–gluon vertex, and three T ’s in the three-gluon vertex
Tr ([AµAν ] ∂µAν), where Aµ ≡ Aa

µT a. In the daughter theory the inner
factor is obtained from that in the parent one by replacing all T ’s by T̄ ’s.
According to Eq. (6.5), T̄ = −T̃ (remember that a tilde denotes the trans-
posed matrix). This fact implies that the only difference between the inner
blocks in Figs. 5b,c is the reversal of the direction of the color flow on each
of the ’t Hooft lines. Since the inner part is a color-singlet by itself, the
above reversal has no impact on the color factor — they are identical in the
parent and daughter theories.

It is, perhaps, instructive to illustrate how this works using a more con-
ventional notation. For the inner part of the graph in Fig. 5b we have
the color factor Tr (T aT bT c) fabc, while in the daughter theory we have

July 29, 2004 13:51 WSPC/Trim Size: 9.75in x 6.5in for Proceedings armoni

26 A. Armoni, M. Shifman, and G. Veneziano

Tr (T̄ aT̄ bT̄ c) fabc. Using the fact that

[T aT b] = ifabcT c and [T̄ aT̄ b] = ifabcT̄ c ,

we immediately come to the conclusion that the above two expressions co-
incide.

a)

b)

c)

Figure 5. (a) A typical planar contribution to the vacuum energy. (b and c) The same in the ’t

Hooft notation for (b) N =1 SYM theory; (c) orientifold daughter.

Thus, all perturbative results that we are aware of in N =1 SYM theory
apply in the orientifold model as well. For example, the β function of the
orientifold field theory is

β = − 1

2π

3Nα2

1 − (Nα)/(2π)

{
1 + O

(
1

N

)}
. (6.6)

In the large-N limit it coincides with the N =1 SYM theory result [27]. Note
that the corrections are 1/N rather than 1/N2. For instance, the exact first
coefficient of the β function is −3N − 4/3 versus −3N in the parent theory.

6.2. Non-perturbative equivalence proof

Now we will argue that the perturbative argument can be elevated to the
non-perturbative level in the case at hand. A heuristic argument in favor of
the non-perturbative equivalence is that the coincidence of all planar graphs
of the two theories implies that the relevant Casimir operators of the two
representations are equivalent in the large-N limit. The partition functions

”
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NONperturbative Planar Equivalence

parent daughter

fermion loop

Gauge field background is the same!
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which must be the case in the confining regime.
Since the theory, being vector-like, is anomaly free, the determinant in

Eq. (6.8) is a gauge-invariant object and, thus, can be expanded in Wilson-
loops operators

WC [AAdj] = Tr P exp

(
i

∫
C
Aa

µT a
Adj dxµ

)
. (6.9)

For other representations, the Wilson-loop operator is defined in a similar
manner. Thus, one can write

D ≡ det
(
i "∂+ "AaT a

Adj − m
)

=
∑
C

αC WC [AAdj] . (6.10)

Equation (6.3) then implies that

D =
∑
C

αC TrP exp

(
i

∫
C
Aa

µ (T a ⊗ 1 + 1 ⊗ T̄ a) dxµ

)
. (6.11)

Moreover, since the commutator is such that

[(T a ⊗ 1), (1 ⊗ T̄ a)] = 0 ,

the determinant (6.11) can be rewritten as

D =
∑
C

αC Tr P exp

(
i

∫
C

Aa
µT a dxµ

)
Tr P exp

(
i

∫
C
Aa

µT̄ a dxµ

)
. (6.12)

As a result, the partition function takes the form

Z0 =
∑
C

αC 〈WC [A ] W∗
C [A ] 〉 . (6.13)

One of the two most crucial points of the proof is the applicability of factor-
ization in the large-N limit,

Z0 =
∑
C

αC 〈WC(A ) 〉 〈W∗
C(A ) 〉 =

∑
C

αC 〈WC(A ) 〉2 . (6.14)

In the second equality in Eq. (6.14) we used the second most crucial point,
the reality of the Wilson loop,

〈WC 〉 = 〈W∗
C 〉 . (6.15)

The partition function (6.14) is exactly the same as that obtained in the
(extended) orientifold theory upon exploiting Eq. (6.4), factorization,

Zorientifold =
∑
C

αC 〈WC(A ) 〉 〈WC(A ) 〉 , (6.16)
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Here comes Planarity

Infinite number of degeneracies: e.g. 0+ & 0- ô1- & 0+ ô...;

“BPS” domain walls;

Lighness of s;  ms
2=mh’

2 (1+O(1/N));

Exact β function; calculable quark condensate.

Consequences for orienti A at N = ∞:
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which must be the case in the confining regime.
Since the theory, being vector-like, is anomaly free, the determinant in

Eq. (6.8) is a gauge-invariant object and, thus, can be expanded in Wilson-
loops operators

WC [AAdj] = Tr P exp

(
i

∫
C
Aa

µT a
Adj dxµ

)
. (6.9)

For other representations, the Wilson-loop operator is defined in a similar
manner. Thus, one can write

D ≡ det
(
i "∂+ "AaT a

Adj − m
)

=
∑
C

αC WC [AAdj] . (6.10)

Equation (6.3) then implies that

D =
∑
C

αC TrP exp

(
i

∫
C
Aa

µ (T a ⊗ 1 + 1 ⊗ T̄ a) dxµ

)
. (6.11)

Moreover, since the commutator is such that

[(T a ⊗ 1), (1 ⊗ T̄ a)] = 0 ,

the determinant (6.11) can be rewritten as

D =
∑
C

αC Tr P exp

(
i

∫
C

Aa
µT a dxµ

)
Tr P exp

(
i

∫
C
Aa

µT̄ a dxµ

)
. (6.12)

As a result, the partition function takes the form

Z0 =
∑
C

αC 〈WC [A ] W∗
C [A ] 〉 . (6.13)

One of the two most crucial points of the proof is the applicability of factor-
ization in the large-N limit,

Z0 =
∑
C

αC 〈WC(A ) 〉 〈W∗
C(A ) 〉 =

∑
C

αC 〈WC(A ) 〉2 . (6.14)

In the second equality in Eq. (6.14) we used the second most crucial point,
the reality of the Wilson loop,

〈WC 〉 = 〈W∗
C 〉 . (6.15)

The partition function (6.14) is exactly the same as that obtained in the
(extended) orientifold theory upon exploiting Eq. (6.4), factorization,

Zorientifold =
∑
C

αC 〈WC(A ) 〉 〈WC(A ) 〉 , (6.16)
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det !iDmgm)susy =det !iDmgm)orienti at N=∞
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Quark condensate at N=3 (1-flavor QCD)

<ΨR ΨL>=-6(N-2)Λ3 e2πik/(N-2) (1+O(1/N))

=> -6Λ3 (1±(1/3)) => -(0.6 to 1.1)Λ3
MS

estimate

“Experimental” => -(0.4 to 0.9)Λ3
MS

lattice or extrapolation to nf=1

Vacuum energy density (cosmological constant)

Usually in non-SUSY εvac ~ N 2; 

in orienti  εvac ~ N 2           εvac ~ N 1
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More generally:
U Parent: k  “flavors” of adjoint Majoranas

U Daughter: k flavors of Ψ[ij] ’s

A new “orientifold” large N expansion

‘t H
oof

t: f
und

am
ent

al 
Dir

ac 
qua

rks
 at

 al
l N

orineti: Dirac Ψ [ij] 
at all N 

The same at N=3!

Ggl/Gqu~N -1                                      Ggl/Gqu~N 0                                             



M. Shifman, August 2004

N=3

N ∞

SUSY  YM

pure  YM

one-flavor QCD

fi
¾

¾

or
ien

ti

‘t HooftO(1/3)

fi
¾ ?

Remnants of SUSY in pure Yang-Mills?
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SUSY in pure Yang-Mills (with ∼30% accuracy):

〈
Ga

µn Gµna + iGa
µn G̃µna〉

vac = µ4 exp
{
− 1

N

(
8p2

g2 + iq
)}

4 · 8p2

(11/3)N g2 −→ 4 · 8p2

(12/3)N g2

NSVZ, ‘80’s

Accuracy 1/11 — not so bad!

Holomorphic coupling
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Conclusions:
SUSY gluodynamcs is planar equivalent to non-SUSY orienti;

At N=3 we get one-flavor QCD;

Analytic predictions: spectral degeneracies, condensates,...   

εvac ~ N 1;

Orientifold large-N expansion; Remnants of SUSY in pure 
Yang-Mills;

Problems: Major => calculating 1/N corrections

??? [Det (iDµγµ-m)A×Det (iDµγµ-m)S]½ ∼1 + 1/N 2 ??? 


