<- center

KITP Sept. 04

N. DOREY
UW SWANSEA

S-Duality, Confinement

and

Large-N String Theory

Near N=4 SUSY Yang-Mills

hep-th/0310117

hep-th/0406104

+ work to appear with T.J. Hollowood (Swansea) confinement in pure Yang-Mills
Two ideas:

G=SU(N)

I) Non-abelian dual Meissner effect

ezternal "chromoelectric charges flux tube"

Electric flux/charge: ZN < SU(N)

T) Lorge-N

Yang-Hills N->00 closed string

G=SU(N)

G=SU(N)

G=V/N²

Overview



New confining phases
 spontaneously broken conformal symmetry
 G=U(N) ----> U(1)

$$G = U(N) \longrightarrow U(M) \longrightarrow U(I)^{M}$$

- Semi classical description
 of Confinement via EM duality
 BPS fluz tubes
 - · Ads duals M NSS branes wrapped on T2C 55

• Interesting relation to a

Six-dimensional theory

Deconstruction of Little string Theory

<u>claim</u> It Hooft limit in phase

where $G = U(N) \xrightarrow{confined} U(M) = U(N) = U($

· Application:

Deconstruction of Double-Scaled LST $G = U(N) \longrightarrow U(I)^M M/N$ Exact string theory description
of part of large-N spectrum

The Hodel

N=1 superfields:

Yang-Mills
$$G=U(N)$$
Vector

Vector

adjoint chiral
$$i=1,2,3$$

Superpotential:

$$W = Tr_{N} \left(\vec{\Phi}_{1} \left[\vec{\Phi}_{2}, \vec{\Phi}_{3} \right]_{B} \right)$$

$$[\vec{\Phi}_{i}, \vec{\Phi}_{j}]_{B} = e^{+i\beta/2} \vec{\Phi}_{i} \vec{\Phi}_{j} - e^{-i\beta/2} \vec{\Phi}_{j} \vec{\Phi}_{i}$$
deformed commutator

- . B=0 > N=4 SUSY Yang-Mills
- $\beta \neq 0 \Rightarrow N=1$ SUSY certral U(i) photon decouples but $a_i = Tr_N(\Phi_i)$ do not

Classical Vacua satisfy

$$\begin{bmatrix}
\Phi_{1}, \Phi_{2} \\
 \end{bmatrix}_{\beta} = 0 + \text{cyclic}$$
F-flatness

• Generic $\beta \neq 0$
 $\langle \Phi_{1} \rangle = \text{diag}(\lambda_{1}, \lambda_{2}, ..., \lambda_{N}), \langle \Phi_{2} \rangle = \langle \Phi_{3} \rangle = 0$
 $\lambda_{i} \neq \lambda_{j} \forall i, j \Rightarrow G = U(N) \xrightarrow{\text{Higgs}} U(I)^{N}$
 $\Rightarrow \text{Coulomb Branch}$

• Special $\beta \in 2\pi$ Q eg $\beta = \frac{2\pi}{N}$
 $\langle \Phi_{1} \rangle = \alpha_{1} U_{(N)}, \langle \Phi_{2} \rangle = \alpha_{2} V_{(N)}, \text{shift}^{n}$
 $\alpha_{1}, \alpha_{2} \in C$
 $\alpha_{1}, \alpha_{3} \in C$
 $\alpha_{1}, \alpha_{3} \in C$
 $\alpha_{2}, \alpha_{3} \in C$
 $\alpha_{3}, \alpha_{4} \in C$
 $\alpha_{4}, \alpha_{5} \in C$
 $\alpha_{5}, \alpha_{6} \in C$
 $\alpha_{1}, \alpha_{2} \in C$
 $\alpha_{1}, \alpha_{2} \in C$
 $\alpha_{2}, \alpha_{3} \in C$
 $\alpha_{3}, \alpha_{4} \in C$
 $\alpha_{4}, \alpha_{5} \in C$
 $\alpha_{5}, \alpha_{6} \in C$
 $\alpha_{1}, \alpha_{5} \in C$
 $\alpha_{2}, \alpha_{3} \in C$
 $\alpha_{3}, \alpha_{5} \in C$
 $\alpha_{1}, \alpha_{5} \in C$
 $\alpha_{2}, \alpha_{5} \in C$

Effective Theory on Higgs Branch

 $\langle \Phi_i \rangle = \alpha_i \ U_{(N)} \ , \ \langle \Phi_i \rangle = \alpha_2 \ V_{(N)}$

Classical Spectrum:

$$M_{e_1,e_2}^2 = 4|\alpha_1|^2 \sin^2(\frac{e_1\pi}{N}) + 4|\alpha_2|^2 \sin^2(\frac{e_2\pi}{N})$$

$$e_{11}e_{2}=1,2,...,N$$

> 2 kaluja - klein bowers at large-N

<u>Deconstruction</u> Adams + Fabinger classical equivalence:

B-deformed theory G=U(N) on IR3,1

$$\cong N = (1,1)$$
 SUSY Yang-Mills $\hat{G} = U(1)$

on IR3,1 X & ~ NXN lattice

Non-commutative lattice gauge theory

Square torus $|R| = |R_2| = |R|$ Lattice spacing $R = \frac{N}{2\pi |R|}$ $R = \frac{N}{2\pi |R|}$

- Length scales (N > 71)E | R | N | D=4 | G=U(N) | N=1 |

 B | AR | D=6 | G=U(1) | N=(N1) |

 R | N | D=4 | G=U(1) | N=4 |
 - Weak coupling g²N << 1
 ⇒ G6 << E
 Lattice theory far from continuum

Higgs Branch vacuum: $\langle \overline{\Phi}_i \rangle = \alpha_i V_{(N)}$ $\langle \overline{\Phi}_i \rangle = \alpha_i V_{(N)}$

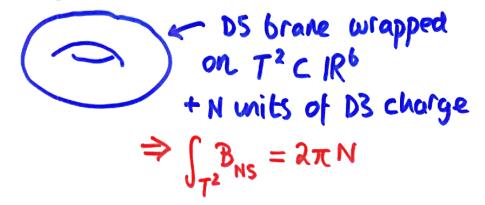
D3 brane positions = scalar eigenvalues

D3 branes distributed on a torus

$$T^2 \subset \mathbb{R}^6$$
 radic: $\Gamma_1 = |q_1|(2\pi\alpha^{1})$

 $[\Phi_1, \Phi_2] \neq 0 \Rightarrow DS$ brane charge density

(arge - N description Myers



- Energetically stable for $B = \frac{2\pi}{N}$ due to D5 coupling to F(3)
- World volume theory seiterg + Witten N = (1,1) SUSY Yang-Mills G = U(1) on $IR^{311} \times \hat{T}_{6}^{2}$ and $IR^{311} \times \hat{T}_{6}^{2}$ and $IR^{311} \times \hat{T}_{6}^{2}$ analysis

On Higgs branch:

$$G = U(N) \cong \frac{U(1) \times SU(N)}{\mathbb{Z}_N} \xrightarrow{\text{Higgs}} U(1)$$

expect magnetic flux tubes

classified by $\pi_1(SU(N)/\mathbb{Z}_N) \cong \mathbb{Z}_N$

.... these show up as BPS strings in low-energy theory

 $\cong \widehat{G} = U(1)$ Non-commutative Yang-Mills instantons on $IR^2 \times T_0^2$

D-strings bound to DS brane

Tension: $T = \frac{8\pi^2}{G_0^2} = \frac{8\pi^2 |\alpha|^2}{g^2 N}$

Core-size: $e \sim NG = \frac{NN}{|\alpha|} >> 16$

More Higgs Branches
$$G = U(N)$$
 $\beta = \frac{2\pi}{N}$, $N = MN$
 $\langle \tilde{\Phi}_{i} \rangle = \Lambda^{(i)} \otimes U_{(n)}$, $\langle \tilde{\Phi}_{x} \rangle = \Lambda^{(2)} \otimes V_{(n)}$
 $\Lambda^{(i)} = \operatorname{diag}(\mu_{i,\dots,\mu_{M}}^{(i)})$, $i = 1,2$
 $G = U(N)$
 $\Lambda^{(i)} = U(M)$
 $\Lambda^{(i)} = U(M)$

• BPS flux tubes
$$T = \frac{8\pi^2}{G_c^2}$$
 $\equiv \text{Non-commutative } \hat{G} = \text{U(m)}$
 $\text{Vang-Mills instantons on } IR^2 \times T_0^2$
 $\hat{G} = \text{U(m)} \Rightarrow \text{Variable core-size } e \gg \sqrt{6}$
 $\hat{G} = \text{U(1)}^m \Rightarrow \text{fixed-core size } e \sim \sqrt{6}$

• Deconstruction $\hat{G} = \text{U(m)} = \text{N=mn}$
 $A^{(1)} = A^{(2)} = \times \mathbb{I}_{m \times m}$
 $E = \frac{1}{|\alpha|}$, $R = \frac{\Lambda}{2\pi |\alpha|^2}$
 $G_0^2 = \frac{9^2 \text{n}}{|\alpha|^2}$, $O = \frac{\Lambda}{2\pi |\alpha|^2}$
 $T = \frac{8\pi^2 |\alpha|^2}{9^2 \text{n}}$
• Continuum limit?

• Light String

Limit?

Quantum Theory
$$G=U(N)$$

complexified $T=4\pi i+\beta$
 $g^2+2\pi$
 $B=0 \Rightarrow N=4$ SUSY Yang-Mills

• Exact conformal invariance

 T is marginal

• Exact $SL(2,7k)$ duality

 $T \to at+b$ a, b, c, $d \in 7k$
 $ct+d$ ad- $bc=1$

• Large-N string theory:

IB string on $AdS_s \times S^5$
 $g_s = g^2$
 $R^4/A^2 = \lambda = g^2N$

string aupling

IB SUGRA valid for $\lambda > 1$

IBI<<1 > X= X_{N=4}+ Bô + h.c.

chiral primary

- N=4 superconformal algebra
- > dim[ô] =4
- ⇒ Bis marginal YZ
 - · Ads/CFT dictionary

⇒ ô transforms with modular weight (+1,0) under SL(2,7k)

...hence restore SL(2,7L) duality by assigning B weight (-1,0)

B-> B/(ct+d), T -> at+b

B + 0 beyond linear order

- B and t are exactly marginal
 ⇒ 2 parameter family of N=1 SCFTs
 Leigh+Strussler
- holomorphic observables from planar limit of Matrix model
 Dijkgeaf + rafa

$$W_{cl} = Tr(\Phi_{1}[\Phi_{2}, \Phi_{3}]_{\beta})$$

- · Exact superpotential (deformed theory)

 ND+Hollowood+kumar
- "Seiberg-Witten" curve of
 Coulomb branch

 Spectral curve of Z_{DV}
 ND + Hollowood

Coulomb Branch
$$\langle \Phi_i \rangle = \operatorname{diag}(\lambda_1,...,\lambda_N)$$
 $\langle \Phi_z \rangle = \langle \Phi_s \rangle = 0$
 $\lambda_i \neq \lambda_j \Rightarrow G = U(N) \xrightarrow{Higgs} V(I)^N$
massless $N = 1$ chiral superfields:

N photons $\subset W_{\alpha}^{\alpha} = \alpha = 1,2,...,N$
N scalars $\subset U_n = \operatorname{Tr}_N \left[\Phi_1^N \right] = 1,2,...,N$
 F -term effective action:

 $L_F = \bigvee_{g \neq i} \sum_{g \neq i}$

conditions satisfied if, seiberg+Witten Tab = Period matrix of eff Riemann surface Z 3 genus N U(2) cose no + Hollowood scale + u(1) > <urve depends on a single dimensionless modulus U = 14/1/24; -1/2 x 1/sin(13/2) DV proceedure yields curve: $\sum_{i=1}^{2} \lambda^{2} - u \lambda + \mathcal{O}(i\beta) - \mathcal{O}(2) = 0$ Weierstrass function = Double-cover of torus genus? => expected SL(2,71) action on B, C, U a B, C, U

$$\frac{G = U(N)}{G} = 0$$

$$\beta = \frac{2\pi}{N} \Rightarrow Higgs branch$$

$$G = U(N) \xrightarrow{Higgs} U(1)$$

$$S' \quad Moduli: K_1 < T_N \overline{\Phi}_1^N > = \alpha_1^N$$

$$K_1 < T_N \overline{\Phi}_2^N > = \alpha_2^N$$

$$\beta = \frac{8\pi^2 i}{\widehat{g}^2 N} \Rightarrow Confining branch$$

$$G = U(N) \xrightarrow{Confined} U(1)$$

$$Moduli: K_1 < T_N \overline{\Phi}_1^N > = \widetilde{\alpha}_1^N$$

$$K_1 < T_N \overline{\Phi}_2^N > = \widetilde{\alpha}_2^N$$

$$K_1 < T_N \overline{\Phi}_2^N > = \widetilde{\alpha}_1^N$$

$$K_1 < T_N \overline{\Phi}_1^N > = \widetilde{\alpha}_1^N$$

$$K_2 < T_N \overline{\Phi}_1^N > = \widetilde{\alpha}_1^N$$

$$K_1 < T_N \overline{\Phi}_1^N > = \widetilde{\alpha}_1^N$$

$$K_2 < T_N \overline{\Phi}_1^N > = \widetilde{\alpha}_1^N$$

$$K_1 < T_N \overline{\Phi}_1^N > = \widetilde{\alpha}_1^N$$

$$K_2 < T_N \overline{\Phi}_1^N > = \widetilde{\alpha}_1^N$$

$$K_1 < T_N \overline{\Phi}_1^N > = \widetilde{\alpha}_1^N$$

$$K_2 < T_N \overline{\Phi}_1^N > = \widetilde{\alpha}_1^N$$

$$K_1 < T_N \overline{\Phi}_1^N > = \widetilde{\alpha}_1^N$$

$$K_2 < T_N \overline{\Phi}_1^N > = \widetilde{\alpha}_1^N$$

$$K_1 < T_N \overline{\Phi}_1^N > = \widetilde{\alpha}_1^N$$

$$K_2 < T_N \overline{\Phi}_1^N > = \widetilde{\alpha}_1^N$$

$$K_1 < T_N \subset \mathbb{R}^N$$

$$K_2 < T_N \subset \mathbb{R}^N$$

$$K_1 < T_N \subset \mathbb{R}^N$$

$$K_2 < T_N \subset \mathbb{R}^N$$

$$K_1 < T_N \subset \mathbb{R}^N$$

$$K_2 < T_N \subset \mathbb{R}^N$$

$$K_1 < T_N \subset \mathbb{R}^N$$

$$K_2 < T_N \subset \mathbb{R}$$

Higgs Confinement

Magnetic
$$S'$$
 electric

flux tubes

 $T_1(\frac{SU(N)}{72N}) \cong \mathbb{Z}_N$
 $T_1(\frac{SU(N)}{72N}) \cong \mathbb{Z}_N$
 $T_1(\frac{SU(N)}{72N}) \cong \mathbb{Z}_N$
 $T_1(\frac{SU(N)}{72N}) \cong \mathbb{Z}_N$
 $T_1(\frac{SU(N)}{72N}) \cong \mathbb{Z}_N$

- Semiclassical description of confining phase for $g^2 >> N$ via S' -duality to Higgs phase N >> 1 BPS flux tubes in low energy theory
- Confinement + spontaneously
 broken conformal invariance
 ⇒ massless composite dilaton
- New branch occurs for $\beta = \frac{8\pi^2}{g^2N}$ eilk \Rightarrow invisible in classical theory
- · IBI<<1 in SUGRA regime g2N>>1

Higgs Branch:
$$\langle \vec{\Phi}_i \rangle = \alpha \text{ If } \otimes \text{ U}_{(n)}$$
 $\langle \vec{\Phi}_z \rangle = \alpha \text{ If } \otimes \text{ U}_{(n)}$
 $\langle \vec{\Phi}_z \rangle = \alpha \text{ If } \otimes \text{ U}_{(n)}$
 $\alpha \neq 0 \Rightarrow G = \text{U(N)} \xrightarrow{\text{Higgs}} \text{U(M)}$

God Theory. $\hat{G} = \text{U(M)}$ on $\text{IR}^{3_1} \times \text{ Y}$

Lattice spacing $R = \frac{\text{IM}}{2\pi |\alpha|}$
 $\alpha \in \mathbb{R}^2 = \frac{2^2 n}{|\alpha|^2}$, $R = \frac{mn}{2\pi |\alpha|^2}$
 $\alpha \in \mathbb{R}^2 = \frac{2^2 n}{|\alpha|^2}$, $R = \frac{n}{2\pi |\alpha|^2}$

So continuum Limit??? $R = mn \to \infty$
 $|\alpha| \sim n$
 $|\alpha| \sim n$

Now apply
$$S$$
-duality:
 $g^2 \rightarrow \tilde{g}^2 = \frac{4\pi}{g^2}$, $|\alpha| \rightarrow |\tilde{\alpha}| = \frac{\tilde{g}^2}{\tilde{g}^2}n$
 $B = \frac{2\pi}{n} \longrightarrow \tilde{\beta} = \frac{8\pi^2i}{\tilde{g}^2n}$
Higgs Confinement
limit becomes: $N = mn \rightarrow \infty$
 m fixed
 $\tilde{g}^2 \sim 1_n = \frac{m}{N}$ $|\tilde{\alpha}| \sim n^0$
 \Rightarrow 'thooft limit
• chaose $\tilde{g}^2 \approx n > 1$
then $\tilde{g}^2 \approx n > 1$
 $\tilde{g}^2 \approx n > 1$

Partial Confinement G=U(N) N=mn New branches occur at $\beta = \frac{8\pi^2i}{g^2n}$ Moduli: $\langle Tr_N \overline{\Phi}_1^A \rangle = \alpha_1^A$ $\alpha_1, \alpha_2 \in C$ <Trμ•5,^> = α,^ $\alpha_{1/}\alpha_{2} \neq 0 \Rightarrow G = U(N) \xrightarrow{\text{"confined"}} U(M)$ 't Hooft limit N=mn→∞ $\lambda = g^2 N$, M, α_1 , α_2 held fixed Expect: · U(m) neutral states obey standard large-N Scaling interactions suppressed by INZ · U(m) charged states need not eg. IR U(m) gauge coupling ~ g2n = 1/m

Ads-dual a la Polchinski - Strassler

m NSS brunes wropped on T²CS⁵
at fixed radial distance F~Ia;I at

Ads

S

T=10

X

T=10

- <u>Probe analysis</u> DBI action

 NSS branes stabilized by bandary socrae

 for H(3)

 NS
- · Patched solution interpolates between
- A) Ads + 5 + source for from branes
- B) near horizon geometry of M NSS blands

Spectrum

- · bulk states neutral under U(m)
- NSS brane States charged under U(M) M² gluons instanton strings

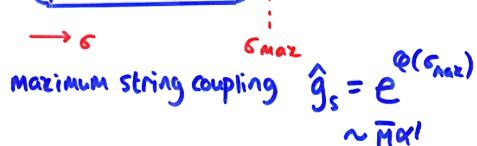
"t Hooft limit $g^2 \sim 1 \rightarrow 0$ $\Rightarrow g_s \rightarrow 0$

As in flat space these two sectors decouple in this limit

String Tension = $8\pi^2 |\alpha_1| |\alpha_2|$ $g^2 n$

m coincident NSS branes gs->0 Near horizon geometry: IR SILX IR X S ~ SU(2) WEW linear dilaton Q = 2/1/10 m seperated NSS branes Giveon+ Kutasov Double-scaling limit 950,500 $\overline{M} = g_s/r_o$ held fixed Near horizon geometry: $\mathbb{R}^{5,1} \times \left(\frac{SL(2)}{U(1)} \times \frac{SU(2)}{U(1)} \right) / \mathbb{Z}_{m}$ semi-infinite cigar

SL(2)/U(1) WZW at level m = semi-infinite cigar



- · tree-level string theory ok for Hx'<<1
- Exact world-sheet CFT Giveon
 ⇒ Spectrum
 + Kutasov
 + Kutasov
 + Regedorn density
 S-matrix
 Regge behaviour

Deconstruction of Double-scaled LST G=U(N) N=Mη B=8π²i/g²n moduli: <Tr = x <Tr = N = HN $\langle Tr \underline{\Phi}, \rangle = \alpha,^{\wedge}$ d, d2, h +0 > $G = U(N) \xrightarrow{confined} U(I)^{m}$ Ads-dual in seperated NSS brokes wrapped on Tics i=1,...,m seperation to ~ mol 'tHooft limit N→∞ \= 92N, m, a, a, m, pN fixed > IR 31 × T2 × (SL(2) × SU(2))/ZM