Integrability in high-energy QCD

Gregory Korchemsky
LPT, Orsav

in collaboration with:

Andrei Belitsky (Arizona State U.), Vladimir Braun (Regensburg U.), Sergey Derkachov (St.Petersburg U.), Alexander Gorsky (ITEP, Moscow), Alexander Manashov (Regensburg U.), Dieter Müller (Regensburg U.)

For references see review hep-th/0407232

Hidden symmetry of QCD

- ✓ Integrable models = QM systems with a *finite* number of degrees of freedom and the same number of conserved charges.
- ✓ Gauge theories in four dimensions = complex systems with *infinite* number of degrees of freedom which are not integrable *per se*.
- ✓ Integrability emerges as a hidden symmetry of effective Yang-Mills dynamics in two different limits:
 - High-energy (Regge) behaviour of scattering amplitudes in QCD

$$\mathcal{A}_{\mathrm{BFKL}}(s,t) \sim s^{\mathbf{E}}, \qquad E = \frac{g^2 N_c}{8\pi^2} \mathrm{Re}[\psi(J) - \psi(1)]$$

Scale dependence of composite (Wilson) operators in QCD

$$\mathcal{O}_N(0) = \bar{q}^{\uparrow} \gamma_{\mu_1} D_{\mu_2} \dots D_{\mu_N} q^{\uparrow} \sim \Lambda_{\text{UV}}^{-\gamma_N} , \qquad \gamma_N = \frac{g^2 N_c}{8\pi^2} [\psi(N+2) - \psi(1)]$$

- ✓ "Landau paradigm": $\psi(x) = d \ln \Gamma(x)/dx$ is not just a function ... but indication of hidden integrability (= Heisenberg spin chains)
- Integrability is not tied to QCD and is a general feature of (super) YM dynamics in four dimensions

Heisenberg spin chains

One-dimensional chain of atoms with exchange interaction

Heisenberg'26

$$\mathbb{H}_{s=1/2} = -\sum_{n=1}^{L} \left(\mathbf{S}_n \cdot \mathbf{S}_{n+1} - \frac{1}{4} \right)$$

The model is completely integrable and can be solved exactly

Bethe'31

 \checkmark It can be generalized to arbitrary SU(2) and SL(2) spins while preserving integrability

Kulish, Reshetikhin, Sklyanin'81; Faddeev, Tarasov, Takhtajan'83

$$\mathbb{H}_s = \sum_{n=1}^L H(J_{n,n+1}), \qquad J_{n,n+1}(J_{n,n+1}+1) = (\mathbf{S}_n + \mathbf{S}_{n+1})^2.$$

- $J_{n,n+1}$ = the sum of two neighboring spins, $\mathbf{S}_n^2 = s(s+1)$
- $lacktriangledown H(x) = \sum_{l=x}^{2s-1} \frac{1}{l+1} = \psi(2s+1) \psi(x+1) = \text{the Euler } \psi\text{-function, harmonic sum}$
- Integrable structures in high-energy QCD:
 - lacktriangle QCD in the Regge limit $\Longrightarrow SL(2,\mathbb{C})$ spin chain

Lipatov'93; Faddeev, GK'94

• QCD on the light-cone $\Longrightarrow SL(2,\mathbb{R})$ spin chain

Braun, Derkachov, Manashov'98; Belitsky; GK'99

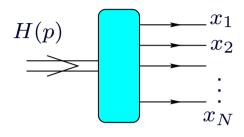
 $\ \ \, \ \ \, \ \ \,$ 'Accidental' symmetries $\Longrightarrow SU(2)$ spin chains XXX and XXZ of the dilatation operator

Ferretti, Heise, Zarembo'04;
Di Vecchia, Tanzini'04

 \checkmark 'Evolution time' = $\log(\text{relevant energy scale})$ ['time' = $\ln s, \ln \Lambda_{\text{UV}}$]

Multi-particle operators in QCD on the light-cone

 \checkmark Parton model: hadrons in the infinite momentum frame \approx system of quasi-free partons



$$0 \le x_k \le 1, \quad \sum_k x_k = 1$$
momentum fractions

✓ Distribution (baryon) amplitude:

Brodsky, Lepage'79

$$\langle 0|q(z_1n)q(z_2n)q(z_3n)|H(p)\rangle \stackrel{n^2=0}{=} \int_0^1 dx_1 dx_2 dx_3 \,\delta(\sum x_k - 1) \,e^{-i(pn)\sum_k x_k z_k} \varphi_B(x_i, \mu^2)$$

- ✓ Nonlocal light-cone correlator = sum of plane waves
- ✓ Moments of distribution amplitudes ←⇒ local operators:

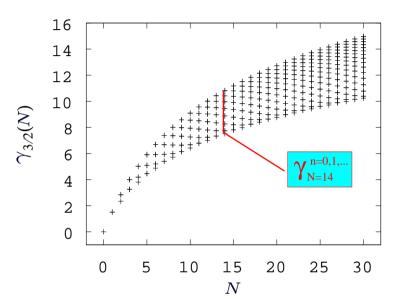
$$\varphi_B(x_i) \to \varphi_B(\mathbf{k_i}) = \int \mathcal{D}x_k \, x_1^{\mathbf{k_1}} x_2^{\mathbf{k_2}} x_3^{\mathbf{k_3}} \, \varphi_B(x_i, \mu^2) = \langle 0 | (D_+^{\mathbf{k_1}} q) \, (D_+^{\mathbf{k_2}} q) \, (D_+^{\mathbf{k_3}} q) | H(p) \rangle$$

Scale dependence of the distribution amplitudes

$$\mu \frac{d}{d\mu} \varphi_B(\mathbf{k_i}) = \sum_{m_j} \underbrace{V(k_i|m_j)}_{\text{mixing matrix}} \varphi_B(\mathbf{m_j})$$

Conformal symmetry on the light-cone

- Conventional QCD strategy: diagonalize the mixing matrix and find the anomalous dimensions
- ✓ Rich spectrum of anomalous dimensions:



Where does this structure come from? Conformal symmetry + Integrability!

- \checkmark QCD Lagrangian is invariant under the SO(4,2) transformations
- ✓ SO(4,2) reduces on the light-cone $x_{\mu}=zn_{\mu}$ ($n^2=0$) to the SL(2) subgroup:

$$z \to z' = \frac{az+b}{cz+d}$$
, $q(z) \to q'(z) = q\left(\frac{az+b}{cz+d}\right) \cdot (cz+d)^{-2jq}$

- lacklose The SL(2) 'spin' generators: $L_- = -\frac{d}{dz}$, $L_+ = \left(z^2 \frac{d}{dz} + 2z j_q\right)$, $L_0 = \left(z \frac{d}{dz} + j_q\right)$
- $j_q = 1$ is the **conformal** spin of the quark field

Integrability on the light-cone

✓ Callan-Symanzik equation (helicity $-\frac{3}{2}$ baryon operator $B \equiv q^{\uparrow}(z_1 n) q^{\uparrow}(z_2 n) q^{\uparrow}(z_3 n)$)

$$\mu \frac{d}{d\mu} B(z_1, z_2, z_3) = [\mathbb{H} \cdot B](z_1, z_2, z_3),$$

One-loop dilatation operator:

✓ Two-particle structure: $\mathbb{H} = \frac{g_s^2 N_c}{8\pi^2} \left[\mathcal{H}_{12} + \mathcal{H}_{23} + \mathcal{H}_{13} \right]$

$$\mathcal{H}_{12}B(z_1, z_2, z_3) = \int_0^1 \frac{d\alpha}{\alpha} (1 - \alpha) \left[2B(z_1, z_2, z_3) - B(z_1 - \alpha z_{12}, z_2, z_3) - B(z_1, z_2 + \alpha z_{12}, z_3) \right]$$

- quark fields are displaced along the light-cone
- one-loop dilatation operator is conformal invariant

$$[\mathbb{H}, \vec{L}_1 + \vec{L}_2 + \vec{L}_3] = 0 \Longleftrightarrow \mathcal{H}_{jk} = H(J_{jk})$$

Integrability on the light-cone (II)

QCD anomalous dimensions are eigenvalues of the dilatation operator

$$\mathbb{H}\,\Psi_N=\gamma_N\,\Psi_N$$

 \checkmark SL(2) invariant form of the dilatation operator

$$\mathbb{H} = \frac{g_s^2 N_c}{8\pi^2} \left[\mathcal{H}_{12} + \mathcal{H}_{23} + \mathcal{H}_{13} \right], \qquad \mathcal{H}_{jk} = 2 \left[\psi(J_{jk}) - \psi(1) \right]$$

Two-particle conformal spin $\mathbf{J}_{jk}^2 = J_{jk}(J_{jk}-1) \equiv (\vec{L}_j + \vec{L}_k)^2$

- ✓ 1-loop dilatation operator \equiv Hamiltonian of the $SL(2,\mathbb{R})$ Heisenberg spin chain
 - Number of sites = number of quark operators
 - Spin operators = Generators of the $SL(2,\mathbb{R})$ 'collinear' group
- ✓ The spectrum of anomalous dimensions can be found exactly using the Bethe Ansatz

 GK'95

$$\gamma_N = -i \frac{Q'(ij_q)}{Q(ij_q)} + i \frac{Q'(-ij_q)}{Q(-ij_q)}, \qquad Q(u) = \prod_k (u - \lambda_k)$$

Baxter equation

$$(u+ij_q)^3 Q(u+ij_q) + (u-ij_q)^3 Q(u-ij_q) = (2u^3 + q_2u + q_3)Q(u)$$

 q_2 , q_3 – conserved charges; $j_q = 1$ conformal spin of quark

Braun, Derkachov, Manashov'98

Integrable "zoo" in multi-color QCD

- Interaction between partons with the *aligned* helicities (quarks q^{\uparrow} , gluons G^{\uparrow}) is integrable 1-loop dilatation operator $\mathbb{H} = \text{Hamiltonian of a noncompact } SL(2,\mathbb{R})$ Heisenberg magnet:

 Braun, Derkachov, Manashov; Belitsky; GK'99
 - lacktriangle Three-quark $[q^\uparrow q^\uparrow q^\uparrow] \Longrightarrow \emph{closed} \ \mathrm{spin} \ j_q = 1 \ \mathrm{chain}$
 - Multi-gluon $[G^{\uparrow}G^{\uparrow}...G^{\uparrow}] \Longrightarrow \textit{closed} \text{ spin } j_g = 3/2 \text{ chain } j_g = 3/2 \text{$
 - Antiquark-Glue-Quark $[\bar{q} G^{\uparrow}...G^{\uparrow}q] \Longrightarrow open inhomogeneous$ spin chain
- ✓ Integrability is broken in the 'mixed' helicity sectors
 - Symmetry breaking terms generate a mass gap in the spectrum of $\gamma(N)$
 - lacktriangle ... but they do not affect large N asymptotics

$$\gamma(N) \sim \lambda \ln N + N^0 \times \text{(nonintegrable terms)}$$

- ightharpoonup Does the $SL(2,\mathbb{R})$ integrability hold beyond one-loop in which case the conformal symmetry is broken? Yes, it does! Integrability is not tied to conformal symmetry Belitsky, GK, Müller'04
- For large N, in (super-)Yang-Mills theories $\gamma(N)$ has universal asymptotics in all sectors to all loops

 Belitsky, Gorsky, GK'03

$$2 \cdot \Gamma_{\text{cusp}}(\lambda) \ln N \leq \gamma(N) \leq \underline{L} \cdot \Gamma_{\text{cusp}}(\lambda) \ln N$$

 $\Gamma_{\text{cusp}}(\lambda) = \text{cusp anomaly of Wilson loop}; \quad L = \text{\# of 'good' fields}$

Scattering in QCD at high-energy (Regge asymptotics)

✓ Regge phenomena in strong interactions (since 60's):

$$\sigma_{
m AB}(s) = \int_{
m Regge}^{
m Regge} = \sum_{j} eta_A^j(t) eta_B^j(t) s^{lpha_j(t)-1}$$

Scattering amplitudes grow at high energy s as a power $\sim s^{\alpha_j(t)}$

✓ Dual model:

$$\sum_{j} = \sum_{j} ---- = \frac{x \times x}{x \times x}$$

Regge trajectories + duality condition = Hadronic string (?)

✓ High-energy asymptotics in QCD: interaction induces large corrections which need to be resummed to all order of perturbation theory
Balitsky-Fadin-Kuraev-Lipatov '78:

$$\sigma_{AB}(s) = \sum_{n=0,1,\dots} w_n \left(g_s^2 \ln s\right)^n \sim s^{\alpha_{\mathbb{P}}-1}$$

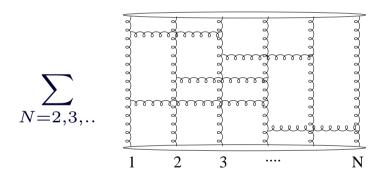
BFKL Pomeron + Unitarity

• Leading contribution: BFKL Pomeron ($\lambda = g_s^2 N_c/(4\pi^2)$)

$$\sigma_{
m LO} = \sum_{
m rungs}$$

$$\sim \lambda^2 \, \frac{\exp(4 \ln 2 \cdot \lambda \ln s)}{\sqrt{\lambda \ln s}} \sim \underbrace{s^{4 \ln 2 \cdot \lambda}}_{\text{violates unitarity}}$$

BFKL Pomeron + Unitarity ⇒ generalized ladder diagrams



- Multi-Regge kinematics: $\int d^4k = \int dk_+ dk_- \int d^2k_\perp$
- strong ordering in the longitudinal momenta $y=\ln\frac{k_+}{k_-}$

$$y_1 \gg y_2 \gg y_3 \gg \dots =$$
 "evolution time" in the t – channel

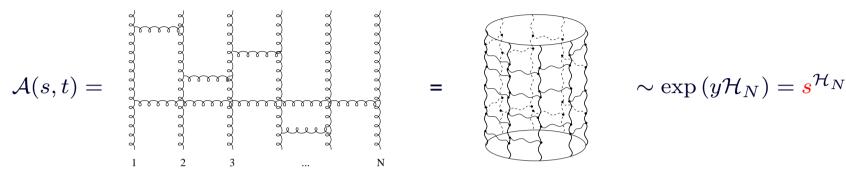
- "random walk" in the transverse momenta

$$k_{1,\perp} \sim k_{2,\perp} \sim k_{3,\perp} \sim ...$$

- brack Elastic pair-wise interaction of N=2,3,... particles "living" on the two-dimensional k_{\perp} -plane and propagating in the "time" $y=\ln s$.
- Nontrivial QCD dynamics occurs on the two-dimensional transverse space

Color-singlet compound gluonic states

 \red{P} The effective QCD Hamiltonian \mathcal{H}_N has remarkable properties in the multi-color limit:



 \hookrightarrow Elastic scattering of N reggeized gluons

✓ The Bartels-Kwiecinski-Praszalowicz equation
≡ 2-dim Schrödinger equation

$$\mathcal{H}_N \Psi(\vec{z}_1, \vec{z}_2, ..., \vec{z}_N) = E_N \Psi(\vec{z}_1, \vec{z}_2, ..., \vec{z}_N)$$
2-dim coordinates

- ullet $\Psi(\vec{z}_1,\vec{z}_2,...,\vec{z}_N)=$ colour-singlet compound states built from N reggeized gluons
- High-energy asymptotics of the scattering amplitudes is governed by the contribution of these states

$$\mathcal{A}(s,t) \sim -is \sum_{\substack{N-\text{gluon} \\ \text{states}}} (i\lambda)^N \underbrace{s^{\lambda E_N}}_{\text{Regge behaviour}} \beta_N(t)$$

✓ Intercept = maximal energy E_N

Integrability

✓ Interaction occurs only between nearest neighbours

$$\mathcal{H}_N = \sum_{k=1}^N \underbrace{H(\vec{z}_k, \vec{z}_{k+1})}_{ ext{BFKL kernel}} + \mathcal{O}(1/N_c^2) = N - body \ ext{QM} \ ext{system with periodic boundary conditions}$$

✓ The system possesses a "hidden" set of the integrals of motion

Lipatov; Faddeev, GK'94

$$[q_k, \mathcal{H}_N] = [q_k, q_n] = 0, \qquad (k, n = 2, 3, \dots, N)$$

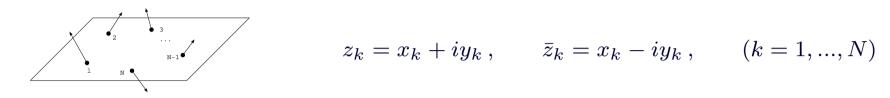
Their number is large enough (= N) for the Schrödinger equation to be *completely integrable!*

- \checkmark The system of N reggeized gluons \equiv completely integrable quantum-mechanical model
 - $\mathcal{X} \ \mathcal{H}_N \stackrel{N_c \to \infty}{=\!\!\!=} \ SL(2,\mathbb{C})$ Heisenberg spin chain
 - Number of sites = number of reggeized gluons
 - \nearrow Spin operators = generators of (infinite-dimensional) irreps of the $SL(2,\mathbb{C})$ group
- ✓ The Schrödinger equation can be solved exactly by the Quantum Inverse Scattering Method
 - $\begin{cases} \begin{cases} \begin{cases}$

$$E_2=4\ln 2$$
 [BFKL'78], $E_3=\begin{cases} -.24717 \text{ [Janik, Wosiek'97]} \\ 0 \text{ [Bartels, Lipatov, Vacca'00]} \end{cases}$, $E_{N>3}=$?

The $SL(2,\mathbb{C})$ Heisenberg spin chain

- ✓ Quantum mechanical system of N interacting particles (reggeized gluons) on a two-dimensional (x,y)-plane (= transverse gluonic degrees of freedom)
- ✓ The position of the particles on the plane is defined by complex (anti)holomoprhic coordinates.



 \checkmark Each particle carries the spin $S_{\alpha}^{(k)}$ (and similar for the antiholomorphic \bar{S}_0 , \bar{S}_- and \bar{S}_+)

$$S_0^{(k)} = z_k \partial_{z_k}, \quad S_- = -\partial_{z_k}, \quad S_+^{(k)} = z_k^2 \partial_{z_k},$$

✓ The spin operators associated with each particle are the $SL(2,\mathbb{C})$ generators of the small conformal transformations

$$z \to (az+b)/(cz+d), \qquad \bar{z} \to (\bar{a}\bar{z}+\bar{b})/(\bar{c}\bar{z}+\bar{d})$$

✓ The effective QCD Hamiltonian, \mathcal{H}_N , describes the interaction between noncompact $SL(2,\mathbb{C})$ spins attached to N particles

$$\mathcal{H}_N \stackrel{N_c \to \infty}{=} \sum_{k=1}^N H(J_{k,k+1}) + H(\bar{J}_{k,k+1})$$

 $J_{k,k+1}$ and $\bar{J}_{k,k+1}$ define the sum of two spins.

The $SL(2,\mathbb{C})$ Heisenberg spin chain (II)

 \checkmark The R-matrix for *infinite-dim*. irreps of the $SL(2,\mathbb{C})$ (principal series) Derkachov, GK, Manashov'01

$$R_{12}(u,\bar{u}) = \frac{\Gamma(i\bar{u})\Gamma(1+i\bar{u})}{\Gamma(-iu)\Gamma(1-iu)} \times \frac{\Gamma(1-\bar{J}_{12}-i\bar{u})\Gamma(\bar{J}_{12}-i\bar{u})}{\Gamma(1-J_{12}+iu)\Gamma(J_{12}+iu)}.$$

ightharpoonup The two-particle Hamiltonian of the $SL(2,\mathbb{C})$ magnet = effective Hamiltonian in multi-color QCD!

$$H_{12} = -i\frac{d}{du} \ln R_{12}(u, u) \Big|_{u=0} = H(J_{12}) + H(\bar{J}_{12})$$

$$H(J_{12}) = \psi(J_{12}) + \psi(1 - J_{12}) - 2\psi(1), \quad J_{12} = \frac{1+n}{2} + i\nu$$

Integrals of motion

$$q_L = \sum_{1 < j_1 < \dots < j_L < N} i^L (z_{j_1} - z_{j_2}) (z_{j_1} - z_{j_2}) \dots (z_{j_{L-1}} - z_{j_1}) \partial_{z_{j_1}} \dots \partial_{z_{j_L}}$$

- \checkmark Can the spectrum of the QCD Hamiltonian \mathcal{H}_N be found exactly?
 - ◆ The $SL(2,\mathbb{C})$ magnet does not contain a pseudovacuum state (= highest weight)
 - ◆ ... the "conventional" Bethe Ansatz is not applicable
 - ◆ The way out: Baxter Q-operator + Sklyanin's SoV approach

Derkachov, GK, Manashov'01 de Vega, Lipatov'01

Exact solution

✓ Solve the Baxter equation

$$(u+i)^N Q(u+i) + (u-i)^N Q(u-i) = (2u^N + q_2u + \dots + q_N)Q(u)$$

The same(!) as for the $SL(2,\mathbb{R})$ except that Q(u) is meromorphic in u

 \checkmark Calculate the energy from Q(u)

$$E_N = E_N(q_2, q_3, ..., q_N) =$$
 a complicated function of the integrals of motion

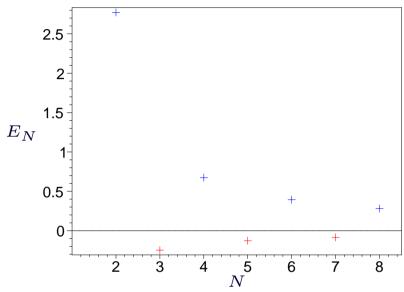
- \checkmark The eigenvalues of the integrals of motion $q_2,...,q_N$ are quantized
- ✓ Quantum numbers, $q_2, ..., q_N$, and the energy, E_N , of the N-reggeon states in multi-color QCD:

 **Derkachov, GK, Kotanski, Manashov' 01*

N	q_2	iq_3	q_4	iq_5	q_6	E_N
2	.25					2.77259
3	.25	.20526				24717
4	.25	0	.15359			.67416
5	.25	.26768	.03945	.06024		12751
6	.25	0	.28182	0	.07049	.39458

Spectrum

 \checkmark The compound states of N-reggeized gluons in the Pomeron sector:

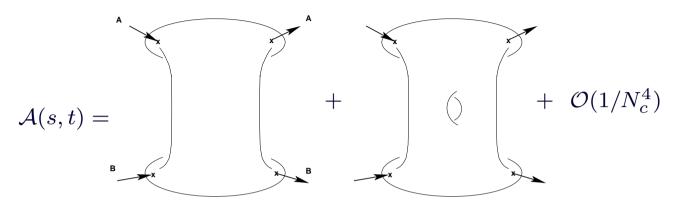


- ✓ Thermodynamical limit $E_N \to 0$ as $N \to \infty$ need to be understood...
- $\sim \alpha_{\mathbb{P}} 1 \sim E_N \to 0$

'QCD String' interpretation

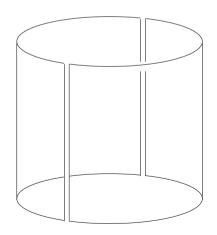
Stringy bootstrap

Veneziano '74



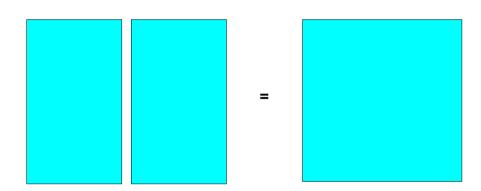
Planar limit

Cylinder = two sheets glued together



$$1/s \times (s^{\alpha_{\mathbb{R}}})^2 = s^{2\alpha_{\mathbb{R}}-1} \equiv s^{\alpha_{\mathbb{P}}};$$

Sheet + Sheet = Sheet



$$1/s \times (s^{\alpha_{\mathbb{R}}})^2 = s^{2\alpha_{\mathbb{R}}-1} \equiv s^{\alpha_{\mathbb{P}}}; \qquad s^{2\alpha_{\mathbb{R}}-1} = s^{\alpha_{\mathbb{R}}} \Longrightarrow \alpha_{\mathbb{R}} = 1 \Longrightarrow \alpha_{\mathbb{P}} = 1$$

Conclusions

- ✓ High-energy QCD possesses a hidden symmetry in two different limits:
 - ▶ The Callan-Symanzik equation on the light-cone (\equiv dilatation operator) is completely integrable (large conformal spins, all loops)
 - The Schrödinger equation for partial waves of the scattering amplitudes is completely integrable in the Regge limit
- ✓ In both cases one encounters the same integrable structure ≡ XXX Heisenberg noncompact spin chain
- ✓ The symmetry is powerful enough to calculate exactly the spectrum of anomalous dimensions/
 intercepts of the compound states in multi-color QCD using the Bethe Ansatz
- ✓ Where does integrability of high-energy QCD come from?