Ultrafast charge migration following ionization

driven by electron correlation and relaxation

Lorenz Cederbaum Theoretical Chemistry University of Heidelberg

Motivation

- Understanding of charge transport in Nature, like in photosynthesis
- Role of electron correlation and relaxation

Charge transfer in Peptides

Fragmentation after ionization of the benzene ring

Alanin – alanin – alanin - tyrosin

R. Weinkauf et al., J. Phys. Chem. 1996, 100, 18567

Question:

What is the mechanism of the charge transport?

First *ab initio* calculations indicate that a purely electronic *ultrafast* charge transport caused by electron correlation and relaxation is possible

- charge transport on a femtosecond timescale
- no nuclear dynamics

L. S. Cederbaum et al Chem. Phys. Lett. 1999, 307, 205

	Charge transfer	Charge migration
caused by	nuclear dynamics	electron dynamics
timescale	~ ps	~ fs

Further experiments with femtosecondlasers

- PENNA (2-Phenylethyl-*N*,*N*-dimethylamine)
- Related to the amino acid phenylalanin
- Fragmentation after ionization of benzene ring
- Reported timescale of fragmentation: 80 ± 28 fs

L. Lehr et al J. Phys. Chem. A 2005, 109, 8074

Theoretical Methods for the calculation of the hole density

$$\begin{split} Q(\vec{r},t) &:= \langle \Psi_0 | \hat{\rho}(\vec{r},t) | \Psi_0 \rangle - \langle \Phi_i | \hat{\rho}(\vec{r},t) | \Phi_i \rangle = \rho_0(\vec{r}) - \rho_i(\vec{r},t) \\ & \text{electron density} \\ & \text{of the ground state} \end{split}$$

(time independent)

electron density of the produced cation (time dependent)

$$Q(\vec{r},t) = \underbrace{\langle \Psi_0 | \hat{\rho}(\vec{r},t) | \Psi_0 \rangle}_{\rho_0(\vec{r})} - \underbrace{\langle \Phi_i | \hat{\rho}(\vec{r},t) | \Phi_i \rangle}_{\rho_i(\vec{r},t)},$$

 $\hat{\rho}$ density operator

 $|\Phi_i\rangle$ initial nonstationary cationic state

In an one-particle (orbial) basis $\{\varphi_p\}$

$$\label{eq:Q} \left| Q(\vec{r},t) = \sum_{p,q} \varphi_p^*(\vec{r}) \varphi_q(\vec{r}) N_{pq}(t) \right|$$

 $\mathbf{N}(t)$ hole density matrix with elements $N_{pq}(t)$ diagonlization of $\mathbf{N}(t)$ leads to

$$Q(\vec{r},t) = \sum_p |\tilde{\varphi}_p(\vec{r},t)|^2 \tilde{n}_p(t)$$

 $\tilde{\varphi}_p(\vec{r},t)$ natural charge orbitals $\tilde{n}_p(t)$ hole occupation numbers

How to calculate Q?

N is computed using *ab initio* many-body Green's functions (GF)

Two ways:

- Diagonalization of GF ADC matrices as long as the matrices are small [1,2]
- 2. Propagation of the initial cationic state by multielectron wavepacket dynamics [3]

Visualization using graphical standard tools, i.e. gnuplot, Molden

- [1] J. Breidbach et al J. Chem. Phys. 2003, 118, 3983
- [2] J. Breidbach et al J. Chem. Phys. 2007, 126, 34101
- [3] A. I. Kuleff et al J. Chem. Phys. 2005, 123, 044111

On the basic mechanisms

of charge migration

A typical ionization spectrum

Case of hole mixing

k: partner orbital

Case of correlation satellite

a: virtual orbital

Case of relaxation satellite

Case of breakdown of MO-picture

Typically, the initially created hole is distributed in time over the whole system

Ionization in the

inner-valence

regime

The example of a peptide bond (N-methyl Acetamide)

H. Hennig et al J. Phys. Chem. A 2005, 109, 409

Other interesting cases

$$H - C \equiv C - CH_2$$
 OH

2-propyn-1-ol: Hole mixing [1]

 $N \equiv C - C \equiv C - F$

Glycine: Dom. satellite and hole mixing [2]

 $N \equiv C - C \equiv C - C \equiv C - F$ 5-fluoro-2,4-pentadiynenitril: Breakdown of MO [1]

[1] J. Breidbach et al J. Chem. Phys. 2003, 118, 3983

[2] A. I. Kuleff et al J. Chem. Phys. 2005, 123, 044111

Ionization of

outer-valence

electrons

The ionization spectrum of PENNA

- 2-Phenylethyl-*N*,*N*-dimethylamine
- 2.6 eV gap to the inner valence
- failure of Koopmans' Theorem
- Mixing of one hole (1h) states

S. Lünnemann et al Chem. Phys. Lett. 2008, 450, 232

The charge migration

- a) ground state geometry
 - some charge from ring to N

- b) elongated C_1 - C_2 -bond: 20 pm
 - substantial charge from ring to N

Ionization spectra of PENNA

Ground state geometry

Elongated C₁-C₂ bond

9

9.5

9.5

10

9

10

Charge distribution at 4 fs after ionization at different geometries

The charge migration with the C_1 - C_2 -bond elongated by 20 pm

Suggestion for a mechanism of charge migration and bond breaking

- 1. Step: Ionization of the benzene ring
- 2. Step: Some charge oscillates from the ring to N
- **3**. Step: Elongation of the C₁-C₂-bond
- 4. Step: Migration of hole charge intensifies
- 5. Step: The bond breaks and the hole charge is trapped at the energetically favourable N-site

Is the molecule PENNA special or is the scheme chromophore – C₂-Bridge – Nitrogen general for charge migration?

Many related systems computed (also different conformers). Two examples:

3-Methylen-4-penten-N,N-dimethylamine

3-Buten-*N,N*-dimethylamine

The ionization spectra

BUNNA

MePeNNA

The charge migration

MePeNNA:

nearly the complete hole charge migrates from the chromophore to the Nitrogen

BUNNA:

no charge migration at all

S. Lünnemann et al J. Chem. Phys. 2008, 129, 104305

The role of 2h1p-configurations

Analysis of the charge migration mechanism: The exact effective Hamiltonian (EEH)-Method

PENNABUNNAMePeNNA $\begin{pmatrix} 8.00 & 0.15 \\ \dots & 8.44 \end{pmatrix}$ $\begin{pmatrix} 7.91 & 0.32 \\ \dots & 9.32 \end{pmatrix}$ $\begin{pmatrix} 8.13 & 0.30 \\ \dots & 8.20 \end{pmatrix}$

A first step on the way to polypeptides: reduced dipeptide Glycin-Phenylalanin (Gly-Phe; carboxylgroup of Phe removed)

Does this molecule show charge migration after ionization of the chromophore?

The ionization spectrum and HF-Orbitals

The charge migration following ionization

0 fs: charge on chromophore

4 fs: charge on amid (peptidebond)

The role of satellite states

Relaxation satellite:

The nitroso molecule

The charge migration following ionization of the HOMO (29a' orbital)

1.4 fs

0.7 fs

0 fs

Correlation satellite:

A molecule related to Chlorophyll:

Mg-Porphyrin (Active site in Photosythesis)

The ionization spectrum

The charge migration following ionization of the $3b_{2g}$ orbital

time = 0 fs

Interatomic Coulombic Decay

- ICD is a general phenomenon
 - ➤ van der Waals clusters Ne_n, Ne_nAr_m, MgNe, CaNe, …
 - > hydrogen bonded clusters $(H2O)_n$, $(HF)_n$, ...
 - \geq endohedral fullerens Ne@C₆₀, Ar@C₆₀
- Ultrafast process fs time domain
- Source of LEE \rightarrow biological relevance

L. S. Cederbaum et al Phys. Rev. Lett 1997, 79, 4778

Tracing ultrafast interatomic electronic decay processes in real time and space

- Femto-second spectroscopy. Using lasers with femto-second pulses to "see" the nuclear motion. Standard techniques nowadays.
- Atto-second spectroscopy. 1 as = 10⁻¹⁸ seconds. Using lasers with attosecond (sub-femto-second) pulses to "see" the electronic motion.
 Future techniques. First important steps already done.
- The observation of the ICD process is an appealing project for attosecond spectroscopy.

ICD in NeAr

A. I. Kuleff et al Phys. Rev. Lett 2007, 98, 083201

ICD in NeAr

A. I. Kuleff et al Phys. Rev. Lett 2007, 98, 083201

ICD in NeAr

A. I. Kuleff et al Phys. Rev. Lett 2007, 98, 083201

Universal Attosecond response to the removal of an electron

The hole occupation on a 200 as time scale for different systems

[1] J.

J. Breidbach et al Phys. Rev. Lett 2005, 94, 033

The ionization spectrum of CO₂

lines in black correspond to the eigenstates contributing to the nonstationary state prepared

[1] J. Breidbach et al *Phys. Rev. Lett* **2005**, *94*, 033

Attosecond response

[1] J. Breidbach et al *Phys. Rev. Lett* **2005**, *94*, 033

Many thanks to:

Jörg Breidbach Holger Hennig Siegfried Lünnemann Alexander Kuleff