## **Complex Dissociation of Simple Molecules**

### Strong field photodissociation of $H_2^+$



Vaibhav S. Prabhudesai, Adi Natan, Uri Lev, Barry Bruner, Adi Diner, Oded Heber, Daniel Strasser, Dirk Schwalm, Itzik Ben-Itzhak, J. J. Hua, B. Esry Daniel Zajfman and Yaron Silberberg



\/////~~

## Simple control...



natrix<sup>28</sup>. Carbonaceous chondrites t of observed meteorite falls<sup>29</sup>, but onent of the asteroid belt, as most of have characteristics typical of CM

ossible Cretaceous/Tertiary boundary impact crater on

## Coherent quantum control of two-photon transitions by a femtosecond laser pulse

#### Doron Meshulach & Yaron Silberberg

Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

Coherent quantum control<sup>1-3</sup> has attracted interest as a means to influence the outcome of a quantum-mechanical interaction. In principle, the quantum system can be steered towards a desired state by its interaction with light. For example, in photoinduced transitions between atomic energy levels, quantum interference effects can lead to enhancement or cancellation of the total transition probability. The interference depends on the spectral

www.nature.com

l, H. V. Extraterrestrial cause for the Cretaceous-Tertiary

## Experimental setup



## Motivation: why photodissociation of $H_2^+$ ?

- H<sub>2</sub><sup>+</sup> is the simplest molecular system, still it reveals complex dynamical characteristics in strong fields.
- How pulse shaping affects photodissociation?
- K. Sändig, H. Figger, and T.W. Hänsch Physical Review Letters, **85**, 4876-4879 (2000)
- D. Pavicic, A. Kiess, T. W. Hänsch, and H. Figger Physical Review Letters, **94**, 163002 (2005)
- P. Q. Wang, A. M. Sayler, K. D. Carnes, J. F. Xia, M. A. Smith, B. D. Esry, I. Ben-Itzhak Phys. Rev. A **74**, 43411 (2006)

## Photodissociation of $H_2^+$







## **Typical Experimental Data**





## Previous studies...



WANG et al. Phys Rev A 74, 043411 (2006)



Bond Hardening (BH)

Transform limited pulses

Pulse length: 35fs

#### Peak Power: 10<sup>14</sup> W/cm<sup>2</sup>



10

#### Peak power: 3x10<sup>12</sup> W/cm<sup>2</sup> Pulse length: 120fs (transform limited)





#### Peak power: ~10<sup>10</sup> W/cm<sup>2</sup>

We sum over all the contributions for all the frequencies sequentially for each (v,j) state with the constraint of a finite population.

$$R_{measured}(\lambda_{i}, v, j) = N_{photons/pulse}(\lambda) \cdot \sigma(v, j) \cdot \rho \cdot L \cdot P(v, j) \left[ 1 - \frac{\sum_{\lambda < \lambda_{i}} R(\lambda, v, j)}{\rho \cdot V_{int} \cdot P(v, j)} \right]$$

The calculation parameters are as close to the experimental parameters as possible.

#### Intermediate-field KER spectrum



#### Peak power: 3x10<sup>12</sup> W/cm<sup>2</sup>

## Angular distributions



## The effect of chirp – 120 fs pulses



**Negative Chirp** 

#### No Chirp (Narrow band)

**Positive Chirp** 

## Negative v/s positive chirp





17









#### 260fs vs 120fs chirp



## Angular distribution in 1-photon region



### 1D TDSE calculation confirms shift mechanism













## Angular distribution analysis



## Angular distribution analysis



## Negative chirp dumps better



Internuclear Separation

- One photon events are barely affected
- For multiphoton events, positive chirp is always more efficient



- The simplest strong field experiment on molecular photodissociation has still some elaborate physics
- The frequency content of the pulse, given by the chirp rate, has a significant role in the overall dissociation mechanism, it affects:
  - Dissociation probability.
  - Angular distribution.
  - KER peak positions (levels shift).

# Thank you