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Quantum Control

• Control is intervening in the world

to (try to) optimize something, under

given constraints.

• Quantum control is when working

out how to do that requires some

knowledge of quantum physics.

• e.g. Maximizing the creation

of some molecular product, subject

to a bound on laser intensity and

modulation bandwidth.

• e.g. Minimizing the uncertainty

in the estimate of a unitary-gate

parameter, subject to a bound on the

number of applications of the gate.
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Part I — Phase Estimation

• The Rules of the Game

• The Standard Quantum Limit

• The Heisenberg Limit

• The Quantum Phase Estimation Algorithm

• Our 1st algorithm: Generalized QPEA [Nature 450, 393-6 (2007)]

• Our new algorithm: Non-Adaptive Multi-Pass [arXiv:0809.3308v2]

• Experiment [Nature 450, 393-6 (2007) and arXiv:0809.3308v2]

• Conclusion
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The Rules of the Game

1. We have a gate that performs the unitary operation U = exp(iφ |1〉 〈1|)
on a specific sort of qubit, and an auxilliary gate R(θ) ≡ exp(iθ |0〉 〈0|).

e.g. (as in our experiment) the qubit could be a photon-polarization qubit, and an

equivalent gate implemented by passing the photon through a HWP at angle φ/4.

2. We have an indefinite supply of these qubits.

3. The parameter φ is initially completely unknown.

4. We are allowed at most N applications of the gate U .

5. We aim to minimize the variance in our best estimate φest of φ.

Technically, we use a cyclic variance measure, VHolevo = 〈exp[i(φ− φest)]〉−2 − 1.

We do not impose temporal or “spatial” (number of qubits) constraints.
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The Standard Quantum Limit

N qubits, independently prepared in the state |+〉 = (|0〉+ |1〉) /
√

2,

independently measured in the X basis (|±〉), and with exp(iφ |1〉 〈1|)
applied once on each. φest is inferred from the results of the measurement.

For even sampling, θinit is random, and θ is incremented by π/N between

one qubit and the next. Here N = 4:

|+〉 R(θ + 3π
4 ) U1 JMKLX

|+〉 R(θ + π
2) U1 JMKLX

|+〉 R(θ + π
4) U1 JMKLX

|+〉 R(θ) U1 JMKLX

SQL = V [φest] ∼ 1/N for N � 1.
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The Heisenberg Limit (i)

Theoretically, the ultimate limit allowed by QM 1 is much better:

HL = V [φest] ∼ π2/N2 for N � 1.

This requires creating the optimal entangled state [Berry & HMW, PRL

(2000)] and a measurement in the phase basis. Here N = 3:

|0〉
Ent. State Prep.

U1

Ent. Meas.|0〉 U1

|0〉 U1

This requires “spatial” resources O(N) but only constant time.
1This is called the Heisenberg Limit because the scaling can be derived from the H.U.P.

V [φ]V [n̂] ≥ 1/2, where 0 ≤ n̂ ≤ N is the operator such that the full unitary Utotal = exp(iφn̂).
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The Heisenberg Limit (ii)

Alternatively, we can use binary encoding where U acts on the kth qubit

(k = 0, 1, · · · ,K) P = 2k times, which we represent by UP .

Here N = 2K+1 − 1 = 4 + 2 + 1 = 7:

|0〉
Ent. State Prep.

U1

QFT−1

JMKLZ [φest/π]0
|0〉 U2 JMKLZ [φest/π]1
|0〉 U4 JMKLZ [φest/π]2

The QFT−1 [Shor, 1994] takes the phase basis to the number (logical)

basis so that φest is read-out from Z measurements (r = [r]0.[r]1[r]2 . . .).

This uses only O(logN) spatial resources, but a time O(N).
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The Quantum Phase Estimation Algorithm (i)

As shown by Griffiths and Niu (PRL, 1996), the QFT−1 can be achieved

by local (single-qubit) measurement and feedback:

|0〉

Ent. State Prep.

R(π4) R(π2) U1 JMKLX

|0〉 R(π2) U2 JMKLX • φest

|0〉 U4 JMKLX •


Entangling operation on many qubits is hard. So we can try replacing the

entangled state by independent qubits as in the SQL, yielding the QPEA:

|+〉 R(θ) R(π4) R(π2) U1 JMKLX

|+〉 R(2θ) R(π2) U2 JMKLX • φest − θ

|+〉 R(4θ) U4 JMKLX •


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The Quantum Phase Estimation Algorithm (ii)

Since the QPEA gives K + 1 bits of φest/π, and N ∼ 2K+1 we would

expect

QPEA V [φest] ∝ (π/2K+1)2 ∝ π2/N2 = HL.

But an exact calculation gives

QPEA V [φest] ∼ 2/N ∝ SQL.

What went wrong?

Outliers.The distribution P (φest) is sharply peaked around at φ, with

QPEA (HWHM)2 ' 2.812/N2 ∝ HL.

But it has high wings, giving SQL scaling for the variance.
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Our 1st algorithm: Generalized QPEA

QPEA: the kth qubit (k = 0, 1, · · ·K) passes the phase gate 2k times.

We generalize this by having, for each k, M independent qubits which

pass the gate 2k times, so that the total number of passes through the

phase gate is

N = M × (2K+1 − 1).
We use the algorithm of Berry and HMW (PRL 2000) to make the locally

optimal adaptive measurement.

• For M = 1, this exactly reproduces the optimal QFT−1 of the QPEA.

• Numerically we find [Nature 450, 393-6 (2007)] M = 5 is best:

M = 5 GQPEA V [φest] ' (4.8/N)2 ∝ (π/N)2 = HL.
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Our new algorithm: Non-Adaptive Multi-Pass

Previous work [Giovannetti, Lloyd, and Maccone, PRL ’06] has claimed

one can more simply attain the Heisenberg Limit by using non-adaptive
measurements and “large” M .

Actually this is impossible even if M is chosen depending on K.

Can we get to the HL with no feedback with a more general algorithm,

with a function M(K, k) that assigns more qubits to smaller k-values

(which use exponentially fewer resources)?

Yes, for some functions of the form M(K, k) = MK + µ(K − k).

Numerically we find the best results are for MK = 2 and µ = 3
[arXiv:0809.3308v2]

NAMP V [φest] ' (6.4/N)2 ∝ (π/N)2 = HL.
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The Experimental Apparatus
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Experiment [Nature (2007), arXiv:0809.3308v2]
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Conclusions (Part I)

• The absolute quantum limit to estimating the phase φ of a qubit gate

exp(i |1〉 〈1|φ), with N gate applications, is

V [φest] ∼ (π/N)2 = HL,

To attain this exactly, while not using exponential “space”, requires

– preparing an entangled state of O(logN) qubits.

– multiple passes through the gate of any given qubit.

– control of individual qubits based on prior results.

• We have shown analytically, numerically, and experimentally that

HL-scaling can be attained with only

– multiple passes through the gate of any given qubit.

• Future directions: not using exponential time.
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Part II — State Discrimination

• The Rules of the Game (and a Primer)

• Potential Strategies, including SQL and Helstrom Limit

• Pure State Case: Theory (Aćın et al.) and Experiment (us)

• Mixed State Case: Theory and Experiment (us)

• Conclusion
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The Rules of the Game (and a Primer)

1. We are given N qubits either in state ρ⊗N+ or in state ρ⊗N− , where

ρ± = 1
2 (I + r cos θ σ̂x ± r sin θ σ̂z) ,

with prior probabilities ℘0 and 1− ℘0 (we always assume ℘0 = 0.5).

2. We have to decide which state it is, and the cost function (to be

minimized) is the probability of error C(N).

For the case N = 1, the optimal strategy is to make

the Helstrom measurement (1976) by measuring

Ĥ(1, ℘0) ≡ ℘0ρ+ − (1− ℘0)ρ−

and depending on whether the outcome is positive or

negative, declare + or −.
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Potential Strategies

1. Majority Vote (SQL): Measure Ĥ(1, 12) on each qubit and declare ±
depending on which outcome occurs more often.

2. Globally Optimal Meast. (Helstrom L.): Measure Ĥ(N, 12) ∝ ρ
⊗N
+ −ρ⊗N−

and declare on the basis of the sign of the outcome.

3. Globally Optimal Local Meast.: Use Dynamic Programming to determine

the optimal observable Ôn(N) for the nth qubit, based on prior results.

4. Locally Optimal Local Meast.: Measure Ĥ(1, 12) on the first qubit,

update prior to ℘1 using Bayes’ theorem, then measure Ĥ(1, ℘1) on

the second qubit, update prior to ℘2 and so on ....

5. Fully Biased Meast.: Measure Ĥ(1, 1) [Ĥ(1, 0)] on every qubit, and

update the prior using Bayes’ theorem. For the pure state case (r = 1)

this means a “+” [“−”] is declared if and only if the ‘vote’ is unanimous.
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Pure State Case (Theory)

If ρ±→ |φ±〉, we have a simple problem. Theory by Aćın et al., 2005:

• Majority Vote (SQL): C(N) = cN , where c ≡ cos 2θ = |〈φ+|φ−〉|.

• Globally Opt. = Glob. Opt. Local = Locally Opt. Loc.: C(N) = c2N .

• Fully Biased (Unanimity Vote): C(1) > c, but limN→∞C(N) ∝ c2N .
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Pure State Case (Experiment)

Higgins, Booth, Doherty, Bartlett, HMW, Pryde (unpub.).

Parameters: θ = 15◦, r > 0.9999.
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Mixed State Case (Theory & Experiment)

For systems with non-zero noise (= 1 − r), the problem is much more

complicated — analytical results possible only for MV and GO.

All schemes are now different, and FB and LOL can be worse than SQL.

Theory for 10% noise: Experiment:
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Mixed State Case — Asymptotic Theory

Look at L = limN→∞(∂/∂N) logC(N). In practice N ∼ 200 is sufficient.

To calculate accurately with DP, we need small grid spacing S for {℘}.
We fit the data to L(S) = a−b| logS|−1.22, then extrapolate to L(0) = a.
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Conclusions (Part II)

1. For mixed states, the optimal local (single qubit) state discrimination

scheme can only be achieved by applying dynamic programming, a

technique from optimal stochastic control theory.

2. In N � 1 limit, the different schemes behave very differently in different

regimes of purity:

How Pure are the States?

Measurement Scheme 100% Pure Almost (& 99.9%) Not Very (. 99%)

Majority Vote Meas
t. SQL SQL SQL

Fully Biased Meas
t. ∼ Helstrom Limit Bad! Bad!

Locally Optimal Local Meas
t. Helstrom Limit sub-SQL Bad!

Globally Optimal Local Meas
t. Helstrom Limit more sub-SQL ≈ SQL

Optimal Global Meas
t. Helstrom Limit Helstrom Limit Helstrom Limit
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Conclusions (Global)

Adaptive local measurements always give better performance than non-

adaptive local measurements.

However, in terms of asymptotic (N � 1) scaling of the performance:

1. in phase estimation and pure state discrimination,

• adaptation is sufficient to achieve the Heisenberg/Helstrom Limit.

• adaptation is not necessary for the Heisenberg/Helstrom Limit.

2. in almost-pure state discrimination

• adaptation is not sufficient to achieve the Helstrom Limit.

• adaptation is sufficient (and perhaps necessary) to beat the SQL.
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Numerical Results: Variances for all M
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Our adaptive scheme acheives HL scaling for M ≥ 4 ...
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Numerical Results: Selected Variances
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... with an overhead as small as ≈ 2.3 for M = 5.
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