Adaptive versus non-adaptive quantum measurements for estimation and discrimination

H. Wiseman*, D. Berry*, S. Bartlett, A. Doherty, B. Booth, B. Higgins and G. Pryde

Centre for Quantum Dynamics, Griffith University, Brisbane QISC, Macquarie University, Sydney → QIC, Waterloo, Canada School of Physics, University of Sydney School of Mathematics and Physics, University of Queensland *Centre for Quantum Computer Technology, Australia

H. M. Wiseman, Concepts and Methods in Quantum Control, KITP May 2009

Griffith: Centre for Quantum Dynamics

- Theory: Quantum information, measurement, control and foundations (HMW, David Pegg, Joan Vaccaro).
- Ion trap quantum computer laboratory (Dave Kielpinski)
- Quantum optical information laboratory (Geoff Pryde)
- Laser cooling and trapping of atoms (Robert Sang & DK)
- The Australian Attosecond Science Facility (DK & RS & Igor Litvinyuk)

Milburn and Wiseman Quantum Measurement and Control Quantum Measurement and Control Howard M. Wiseman and Gerard J. Milburn • Control is intervening in the world to (try to) optimize something, under given constraints.

Quantum Control

• Quantum control is when working out how to do that requires some knowledge of quantum physics.

• e.g. Maximizing the creation of some molecular product, subject to a bound on laser intensity and modulation bandwidth.

• e.g. Minimizing the uncertainty in the estimate of a unitary-gate parameter, subject to a bound on the number of applications of the gate.

Part I — Phase Estimation

- The Rules of the Game
- The Standard Quantum Limit
- The Heisenberg Limit
- The Quantum Phase Estimation Algorithm
- Our 1st algorithm: Generalized QPEA [Nature 450, 393-6 (2007)]
- Our new algorithm: Non-Adaptive Multi-Pass [arXiv:0809.3308v2]
- Experiment [Nature **450**, 393-6 (2007) and arXiv:0809.3308v2]
- Conclusion

The Rules of the Game

- 1. We have a gate that performs the unitary operation $U = \exp(i\phi |1\rangle \langle 1|)$ on a specific sort of qubit, and an auxilliary gate $R(\theta) \equiv \exp(i\theta |0\rangle \langle 0|)$. e.g. (as in our experiment) the qubit could be a photon-polarization qubit, and an equivalent gate implemented by passing the photon through a HWP at angle $\phi/4$.
- 2. We have an indefinite supply of these qubits.
- 3. The parameter ϕ is initially **completely unknown**.
- 4. We are allowed at most N applications of the gate U.
- 5. We aim to minimize the **variance** in our best estimate ϕ_{est} of ϕ . Technically, we use a cyclic variance measure, $V_{\text{Holevo}} = \langle \exp[i(\phi - \phi_{\text{est}})] \rangle^{-2} - 1$.

We do not impose temporal or "spatial" (number of qubits) constraints.

The Standard Quantum Limit

N qubits, independently prepared in the state $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$, independently measured in the X basis $(|\pm\rangle)$, and with $\exp(i\phi |1\rangle \langle 1|)$ applied once on each. ϕ_{est} is inferred from the results of the measurement.

For even sampling, θ_{init} is random, and θ is incremented by π/N between one qubit and the next. Here N = 4:

$$SQL = V[\phi_{est}] \sim 1/N$$
 for $N \gg 1$.

The Heisenberg Limit (i)

Theoretically, the ultimate limit allowed by QM 1 is much better:

$$\mathrm{HL} = V[\phi_{\mathrm{est}}] \sim \pi^2 / N^2 \text{ for } N \gg 1.$$

This requires creating the optimal entangled state [Berry & HMW, PRL (2000)] and a measurement in the phase basis. Here N = 3:

This requires "spatial" resources O(N) but only constant time.

¹This is called the Heisenberg Limit because the scaling can be derived from the H.U.P. $V[\phi]V[\hat{n}] \ge 1/2$, where $0 \le \hat{n} \le N$ is the operator such that the full unitary $U_{\text{total}} = \exp(i\phi\hat{n})$.

The Heisenberg Limit (ii)

Alternatively, we can use **binary encoding** where U acts on the kth qubit $(k = 0, 1, \dots, K) P = 2^k$ times, which we represent by U^P .

Here $N = 2^{K+1} - 1 = 4 + 2 + 1 = 7$:

The QFT⁻¹ [Shor, 1994] takes the phase basis to the number (logical) basis so that ϕ_{est} is read-out from Z measurements ($r = [r]_0 \cdot [r]_1 [r]_2 \ldots$).

This uses only $O(\log N)$ spatial resources, but a time O(N).

The Quantum Phase Estimation Algorithm (i)

As shown by Griffiths and Niu (PRL, 1996), the QFT⁻¹ can be achieved by local (single-qubit) measurement and feedback:

Entangling operation on many qubits is hard. So we can try replacing the entangled state by independent qubits as in the SQL, yielding the QPEA:

The Quantum Phase Estimation Algorithm (ii)

Since the QPEA gives K+1 bits of $\phi_{\rm est}/\pi,$ and $N\sim 2^{K+1}$ we would expect

QPEA
$$V[\phi_{\text{est}}] \propto (\pi/2^{K+1})^2 \propto \pi^2/N^2 = \text{HL}.$$

But an exact calculation gives

QPEA $V[\phi_{est}] \sim 2/N \propto SQL$.

What went wrong?

Outliers. The distribution $P(\phi_{est})$ is sharply peaked around at ϕ , with

QPEA (HWHM)² $\simeq 2.81^2/N^2 \propto HL$.

But it has high wings, giving SQL scaling for the variance.

The Quantum Phase Estimation Algorithm (ii)

Since the QPEA gives K+1 bits of $\phi_{\rm est}/\pi$, and $N\sim 2^{K+1}$ we would expect

QPEA
$$V[\phi_{\text{est}}] \propto (\pi/2^{K+1})^2 \propto \pi^2/N^2 = \text{HL}.$$

But an exact calculation gives

QPEA
$$V[\phi_{\text{est}}] \sim 2/N \propto \text{SQL}.$$

What went wrong?

Outliers. The distribution $P(\phi_{est})$ is sharply peaked around at ϕ , with

QPEA (HWHM)² $\simeq 2.81^2/N^2 \propto HL$.

But it has high wings, giving SQL scaling for the variance.

The Quantum Phase Estimation Algorithm (ii)

Since the QPEA gives K+1 bits of $\phi_{\rm est}/\pi$, and $N\sim 2^{K+1}$ we would expect

QPEA
$$V[\phi_{\text{est}}] \propto (\pi/2^{K+1})^2 \propto \pi^2/N^2 = \text{HL}.$$

But an exact calculation gives

QPEA
$$V[\phi_{\text{est}}] \sim 2/N \propto \text{SQL}.$$

What went wrong?

Outliers. The distribution $P(\phi_{est})$ is sharply peaked around at ϕ , with

QPEA (HWHM)² $\simeq 2.81^2/N^2$ as in the HL.

But it has high wings, giving SQL scaling for the variance.

Our 1st algorithm: Generalized QPEA

QPEA: the kth qubit $(k = 0, 1, \dots K)$ passes the phase gate 2^k times.

We generalize this by having, for each k, M independent qubits which pass the gate 2^k times, so that the total number of passes through the phase gate is

$$N = M \times (2^{K+1} - 1).$$

We use the algorithm of Berry and HMW (PRL 2000) to make the *locally optimal* adaptive measurement.

- For M = 1, this exactly reproduces the optimal QFT⁻¹ of the QPEA.
- Numerically we find [Nature 450, 393-6 (2007)] M = 5 is best:

$$M = 5$$
 GQPEA $V[\phi_{est}] \simeq (4.8/N)^2 \propto (\pi/N)^2 = HL.$

Previous work [Giovannetti, Lloyd, and Maccone, PRL '06] has claimed one can more simply attain the Heisenberg Limit by using **non-adaptive measurements** and "large" M.

Actually this is **impossible** even if M is chosen depending on K.

Can we get to the HL with **no feedback** with a more general algorithm, with a function M(K, k) that assigns more qubits to smaller k-values (which use exponentially fewer resources)?

Yes, for some functions of the form $M(K,k) = M_K + \mu(K-k)$.

Numerically we find the best results are for $M_K = 2$ and $\mu = 3$ [arXiv:0809.3308v2]

NAMP $V[\phi_{\text{est}}] \simeq (6.4/N)^2 \propto (\pi/N)^2 = \text{HL}.$

Previous work [Giovannetti, Lloyd, and Maccone, PRL '06] has claimed one can more simply attain the Heisenberg Limit by using **non-adaptive measurements** and "large" M.

Actually this is **impossible** even if M is chosen depending on K.

Can we get to the HL with **no feedback** with a more general algorithm, with a function M(K, k) that assigns more qubits to smaller k-values (which use exponentially fewer resources)?

Yes, for some functions of the form $M(K,k) = M_K + \mu(K-k)$.

Numerically we find the best results are for $M_K = 2$ and $\mu = 3$ [arXiv:0809.3308v2]

NAMP $V[\phi_{\text{est}}] \simeq (6.4/N)^2 \propto (\pi/N)^2 = \text{HL}.$

Previous work [Giovannetti, Lloyd, and Maccone, PRL '06] has claimed one can more simply attain the Heisenberg Limit by using **non-adaptive measurements** and "large" M.

Actually this is **impossible** even if M is chosen depending on K.

Can we get to the HL with **no feedback** with a more general algorithm, with a function M(K, k) that assigns more qubits to smaller k-values (which use exponentially fewer resources)?

Yes, for some functions of the form $M(K,k) = M_K + \mu(K-k)$.

Numerically we find the best results are for $M_K = 2$ and $\mu = 3$ [arXiv:0809.3308v2]

NAMP $V[\phi_{\text{est}}] \simeq (6.4/N)^2 \propto (\pi/N)^2 = \text{HL}.$

Previous work [Giovannetti, Lloyd, and Maccone, PRL '06] has claimed one can more simply attain the Heisenberg Limit by using **non-adaptive measurements** and "large" M.

Actually this is **impossible** even if M is chosen depending on K.

Can we get to the HL with **no feedback** with a more general algorithm, with a function M(K, k) that assigns more qubits to smaller k-values (which use exponentially fewer resources)?

Yes, for some functions of the form $M(K,k) = M_K + \mu(K-k)$.

Numerically we find the best results are for $M_K=2$ and $\mu=3$ [arXiv:0809.3308v2]

NAMP
$$V[\phi_{\text{est}}] \simeq (6.4/N)^2 \propto (\pi/N)^2 = \text{HL}.$$

The Experimental Apparatus

Experiment [Nature (2007), arXiv:0809.3308v2]

• The absolute quantum limit to estimating the phase ϕ of a qubit gate $\exp(i\left|1\right\rangle\left\langle 1\right|\phi)$, with N gate applications, is

 $V[\phi_{\text{est}}] \sim (\pi/N)^2 = \text{HL},$

- preparing an entangled state of $O(\log N)$ qubits.
- multiple passes through the gate of any given qubit.
- control of individual qubits based on prior results.
- We have shown **analytically**, **numerically**, and **experimentally** that HL-**scaling** can be attained with **only**
 - multiple passes through the gate of any given qubit.
- Future directions: not using *exponential time*.

• The absolute quantum limit to estimating the phase ϕ of a qubit gate $\exp(i |1\rangle \langle 1| \phi)$, with N gate applications, is

$$V[\phi_{\text{est}}] \sim (\pi/N)^2 = \text{HL},$$

- preparing an entangled state of $O(\log N)$ qubits.
- multiple passes through the gate of any given qubit.
- control of individual qubits based on prior results.
- We have shown **analytically**, **numerically**, and **experimentally** that HL-**scaling** can be attained with **only**
 - multiple passes through the gate of any given qubit.
- Future directions: not using *exponential time*.

• The absolute quantum limit to estimating the phase ϕ of a qubit gate $\exp(i |1\rangle \langle 1| \phi)$, with N gate applications, is

 $V[\phi_{\text{est}}] \sim (\pi/N)^2 = \text{HL},$

- preparing an entangled state of $O(\log N)$ qubits.
- multiple passes through the gate of any given qubit.
- control of individual qubits based on prior results.
- We have shown **analytically**, **numerically**, and **experimentally** that HL-scaling can be attained with **only**
 - multiple passes through the gate of any given qubit.
- Future directions: not using *exponential time*.

• The absolute quantum limit to estimating the phase ϕ of a qubit gate $\exp(i |1\rangle \langle 1| \phi)$, with N gate applications, is

 $V[\phi_{\text{est}}] \sim (\pi/N)^2 = \text{HL},$

- preparing an entangled state of $O(\log N)$ qubits.
- multiple passes through the gate of any given qubit.
- control of individual qubits based on prior results.
- We have shown **analytically**, **numerically**, and **experimentally** that HL-scaling can be attained with **only**
 - multiple passes through the gate of any given qubit.
- Future directions: entangled states to avoid *exponential time*.

Part II — State Discrimination

- The Rules of the Game (and a Primer)
- Potential Strategies, including SQL and Helstrom Limit
- Pure State Case: Theory (Acín *et al.*) and Experiment (us)
- Mixed State Case: Theory and Experiment (us)
- Conclusion

The Rules of the Game (and a Primer)

1. We are given N qubits either in state $\rho_+^{\otimes N}$ or in state $\rho_-^{\otimes N}$, where

$$\rho_{\pm} = \frac{1}{2} \left(I + r \cos \theta \ \hat{\sigma}_x \pm r \sin \theta \ \hat{\sigma}_z \right),$$

with prior probabilities \wp_0 and $1 - \wp_0$ (we always assume $\wp_0 = 0.5$).

2. We have to decide which state it is, and the cost function (to be minimized) is the probability of error C(N).

For the case N = 1, the optimal strategy is to make the Helstrom measurement (1976) by measuring

$$\hat{H}(1,\wp_0) \equiv \wp_0 \rho_+ - (1-\wp_0)\rho_-$$

and depending on whether the outcome is positive or negative, declare + or -.

Potential Strategies

- 1. Majority Vote (SQL): Measure $\hat{H}(1,\frac{1}{2})$ on each qubit and declare \pm depending on which outcome occurs more often.
- 2. Globally Optimal Meas^t (Helstrom L.): Measure $\hat{H}(N, \frac{1}{2}) \propto \rho_+^{\otimes N} \rho_-^{\otimes N}$ and declare on the basis of the sign of the outcome.
- 3. Globally Optimal Local Meas^t: Use *Dynamic Programming* to determine the optimal observable $\hat{O}_n(N)$ for the *n*th qubit, based on prior results.
- 4. Locally Optimal Local Meas^t: Measure $\hat{H}(1, \frac{1}{2})$ on the first qubit, update prior to \wp_1 using Bayes' theorem, then measure $\hat{H}(1, \wp_1)$ on the second qubit, update prior to \wp_2 and so on
- 5. Fully Biased Meas^t: Measure $\hat{H}(1,1)$ $[\hat{H}(1,0)]$ on every qubit, and update the prior using Bayes' theorem. For the pure state case (r = 1) this means a "+" ["-"] is declared if and only if the 'vote' is unanimous.

Pure State Case (Theory)

If $\rho_{\pm} \rightarrow |\phi_{\pm}\rangle$, we have a simple problem. **Theory** by Acín *et al.*, 2005:

- Majority Vote (SQL): $C(N) = c^N$, where $c \equiv \cos 2\theta = |\langle \phi_+ | \phi_- \rangle|$.
- Globally Opt. = Glob. Opt. Local = Locally Opt. Loc.: $C(N) = c^{2N}$.
- Fully Biased (Unanimity Vote): C(1) > c, but $\lim_{N\to\infty} C(N) \propto c^{2N}$.

Pure State Case (Experiment)

Higgins, Booth, Doherty, Bartlett, HMW, Pryde (unpub.).

Parameters: $\theta = 15^{\circ}$, r > 0.9999.

For systems with non-zero noise (= 1 - r), the problem is much more complicated — analytical results possible only for MV and GO.

All schemes are now different, and FB and LOL can be worse than SQL.

Experiment:

Theory for 10% noise:

H. M. Wiseman, Concepts and Methods in Quantum Control, KITP May 2009

For systems with non-zero noise (= 1 - r), the problem is much more complicated — analytical results possible only for MV and GO.

All schemes are now different, and FB and LOL can be worse than SQL.

Theory for 10% noise:

Experiment:

H. M. Wiseman, Concepts and Methods in Quantum Control, KITP May 2009

For systems with non-zero noise (= 1 - r), the problem is much more complicated — analytical results possible only for MV and GO.

All schemes are now different, and FB and LOL can be worse than SQL.

Theory for 10% noise:

Experiment:

For systems with non-zero noise (= 1 - r), the problem is much more complicated — analytical results possible only for MV and GO.

All schemes are now different, and FB and LOL can be worse than SQL.

Theory for 10% noise:

Experiment:

H. M. Wiseman, Concepts and Methods in Quantum Control, KITP May 2009

Mixed State Case — Asymptotic Theory

Look at $L = \lim_{N \to \infty} (\partial/\partial N) \log C(N)$. In practice $N \sim 200$ is sufficient.

To calculate accurately with DP, we need small grid spacing S for $\{\wp\}$. We fit the data to $L(S) = a - b |\log S|^{-1.22}$, then extrapolate to L(0) = a.

- 1. For mixed states, the optimal local (single qubit) state discrimination scheme can only be achieved by applying dynamic programming, a technique from optimal stochastic control theory.
- 2. In $N \gg 1$ limit, the different schemes behave very differently in different regimes of purity:

	How Pure are the States?		
Measurement Scheme	100% Pure	Almost ($\gtrsim 99.9\%$)	Not Very ($\lesssim 99\%$)
Majority Vote Meas ^t	SQL	SQL	SQL
Fully Biased Meas ^t	\sim Helstrom Limit	Bad!	Bad!
Locally Optimal Local Meas ^t	Helstrom Limit	sub-SQL	Bad!
Globally Optimal Local Meas ^t	Helstrom Limit	more sub-SQL	pprox SQL
Optimal Global Meas ^t	Helstrom Limit	Helstrom Limit	Helstrom Limit

Conclusions (Global)

Adaptive local measurements always give better performance than nonadaptive local measurements.

However, in terms of asymptotic $(N \gg 1)$ scaling of the performance:

1. in phase estimation and **pure** state discrimination,

- adaptation is sufficient to achieve the Heisenberg/Helstrom Limit.
- adaptation is **not necessary** for the Heisenberg/Helstrom Limit.
- 2. in **almost-pure** state discrimination
 - adaptation is **not sufficient** to achieve the Helstrom Limit.
 - adaptation is sufficient (and perhaps necessary) to beat the SQL.

Numerical Results: Variances for all M

Our adaptive scheme acheives HL scaling for $M \geq 4$...

Numerical Results: Selected Variances

... with an overhead as small as ≈ 2.3 for M = 5.