

Filtering Classical Noise by Quantum Control KITP 2013

Michael J. Biercuk

Quantum Control Laboratory
Centre for Engineered Quantum Systems
School of Physics, The University of

www.physia/sals/atiedals/ueasubiemakt Institute

Formerly

Errors: A challenge for experimentalists

What error model should we pursue?

- Independent stochastic errors
- Full quantum mechanical bath
- Classical colored noise
 - Ambient fields
 - Local Oscillator instabilities

12.6 GHz carrier

Dephasing due to classical fields

⁹Be⁺ @4.5T Ω₀~124 GHz

How do we deal with resulting errors?

- Closed-loop feedback control
 - ⇒ Quantum Error Correction

- Open-loop control
 - ⇒Dynamic Error Suppression (Unitary Quantum control)

What tools do we have?

Dissipative State Prep.

"Single Qubit Gates" I, X, Y, Z, H, S, T,

Telecom-style Modulation $I(t),\ Q(t)$

Questions: What is the influence of these techniques on control fidelity in a noisy environment? How well can we do?

Quantum Control as Noise Filtering

Requirement: Evaluate the performance of quantum control operations in the presence of *time-dependent* noise

The Filter Function

Biercuk et al., *J. Phys. B* 44, 154002 (2011).

Simplest Example: Dynamical Decoupling

Dynamical Decoupling as Noise Filtering

Angular Frequency

Adjust pulse timing to modify filter

Uhrig *et al.*, *PRL* 98, 100504 (2007); Cywinski et al., *PRB* 77, 174509 (2008). MJB et al., *J. Phys. B* 44, 154002 (2011).

 $H_c \to I$

FF approach is experimentally verified

Experiments performed with trapped ions and Engineered Noise

Filter optimization by autonomous

Noise filtering beyond Memory

Challenge: Noncommuting control/ noise

$$H_0 \propto eta(t) \sigma_{\it Z} \quad H_c \propto \sigma_{m x} \quad \mathit{U}(t) = \mathit{Texp}\left(-i \int_0^\infty \mathit{H}(t') \mathit{d}t'
ight)$$

$$\mathcal{F}_{av} = 1 - \sum_{n=2}^{\infty} \left\{ \frac{1}{(2\pi)^n} \sum_{i_1...i_n} \int d\omega_1... \int d\omega_n \mathcal{S}_{i_1...i_n}(\omega_1, ..., \omega_n) \mathcal{R}_{i_1...i_n}(\omega_1, ..., \omega_n) \right\}$$

- Treat any piecewise-constant single-qubit control protocol
- Treat the effects of universal decoherence
- Reduces error estimation from hours to milliseconds

Example: FF's for simple Pi pulses

$$\mathcal{F}_{av} = 1 - \sum_{n=2}^{\infty} \left\{ \frac{1}{(2\pi)^n} \sum_{i_1...i_n} \int d\omega_1... \int d\omega_n \mathcal{S}_{i_1...i_n}(\omega_1,...,\omega_n) \mathcal{R}_{i_1...i_n}(\omega_1,...,\omega_n) \right\}$$
Multi-axis errors from single-axis control

Fully generalized Filter Functions
$$\omega^2$$

$$R_{zz}^{(Prim)}(\omega) = \frac{\omega^2}{\omega^2 - \Omega^2} \left(e^{i\omega\tau_{\pi}} + 1 \right) \quad R_{zy}^{(Prim)}(\omega) = \frac{i\omega\Omega}{\omega^2 - \Omega^2} \left(e^{i\omega\tau_{\pi}} + 1 \right)$$

Green, Uys, MJB, PRL 109 020501 (2012)

$$\langle F \rangle \simeq 1 - \sum_{i} \langle a_{1,i}^2 \rangle - \left\{ \sum_{i} (\langle a_{2,i}^2 \rangle + 2 \langle a_{1,i} a_{3,i} \rangle) - \frac{1}{3} \sum_{i,j} \langle a_{1,j}^2 a_{1,j}^2 \rangle \right\}$$
 (38)

In the frequency domain

$$\langle \mathcal{F} \rangle = 1 - \frac{1}{4\pi} \int_0^{\infty} \frac{d\omega}{\omega^2} S(\omega) F_1(\omega, \tau) - \frac{1}{(4\pi)^2} \int_0^{\infty} \frac{d\omega}{\omega^2} S(\omega) \int_0^{\infty} \frac{d\omega'}{\omega'^2} S(\omega') F_2(\omega, \omega'\tau) + ...$$
(39)

where

$$F_1(\omega, \tau) \equiv \sum |y_{1,t}(\omega, \tau)|^2$$
(40)

$$F_2(\omega, \omega'\tau) \equiv \sum_i (F_{2,a,i}(\omega, \omega', \tau) + 2F_{2,b,i}(\omega, \omega', \tau)) - \frac{1}{3} \sum_{i,j} F_{2,c,i,j}(\omega, \omega', \tau).$$
 (41)

The terms making up $F_2(\omega, \omega'\tau)$, and may be written

$$F_{2,a,t}(\omega, \omega', \tau) \equiv \{y_{2,t}(\omega, \omega', \tau) + y_{2,t}(\omega, -\omega', \tau) + y_{2,t}(-\omega, \omega', \tau) + y_{2,t}(-\omega, -\omega', \tau)\}$$
 (42)

$$y_{2,i}(\omega, \omega', \tau) = \frac{\omega^2 \omega'^2}{4} \left\{ \int_0^{\tau} dt_4 e^{i\omega't_4} \int_0^{t_4} dt_3 e^{-i\omega't_3} \int_0^{\tau} dt_2 e^{i\omega t_2} \int_0^{t_2} dt_1 e^{-i\omega t_1} s_{2,i}(t_1, t_2) s_{2,i}(t_3.t_4) \right.$$

$$+ \int_0^{\tau} dt_4 e^{i\omega't_4} \int_0^{t_4} dt_3 e^{i\omega t_3} \int_0^{\tau} dt_2 e^{-i\omega't_2} \int_0^{t_2} dt_1 e^{-i\omega t_1} s_{2,i}(t_1, t_2) s_{2,i}(t_3.t_4)$$

$$+ \int_0^{\tau} dt_4 e^{i\omega t_4} \int_0^{t_4} dt_3 e^{i\omega't_3} \int_0^{\tau} dt_2 e^{-i\omega't_2} \int_0^{t_2} dt_1 e^{-i\omega t_1} s_{2,i}(t_1, t_2) s_{2,i}(t_3.t_4) \right\}$$

$$+ \int_0^{\tau} dt_4 e^{i\omega t_4} \int_0^{t_4} dt_3 e^{i\omega't_3} \int_0^{\tau} dt_2 e^{-i\omega't_2} \int_0^{t_2} dt_1 e^{-i\omega t_1} s_{2,i}(t_1, t_2) s_{2,i}(t_3.t_4) \right\}$$

$$(43)$$

$$F_{2,b,i}(\omega,\omega',\tau) \equiv \{y_{3,i}(\omega,\omega',\tau) + y_{3,i}(\omega,-\omega',\tau) + y_{3,i}(-\omega,\omega',\tau) + y_{3,i}(-\omega,-\omega',\tau)\}$$
 (44)

$$\begin{split} y_{3,i}(\omega,\omega',\tau) &= \frac{\omega^2 \omega'^2}{4} \left\{ \int_0^\tau dt_4 e^{i\omega't_4} \int_0^\tau dt_3 e^{-i\omega't_3} \int_0^{t_3} dt_2 e^{i\omega t_2} \int_0^{t_2} dt_1 e^{-i\omega t_1} s_{1,i}(t_4) s_{3,i}(t_1,t_2,t_3) \right. \\ &+ \int_0^\tau dt_4 e^{i\omega't_4} \int_0^\tau dt_3 e^{i\omega t_3} \int_0^{t_3} dt_2 e^{-i\omega't_2} \int_0^{t_2} dt_1 e^{-i\omega t_1} s_{1,i}(t_4) s_{3,i}(t_1,t_2,t_3) \\ &+ \int_0^\tau dt_4 e^{i\omega t_4} \int_0^\tau dt_3 e^{i\omega't_3} \int_0^{t_3} dt_2 e^{-i\omega't_2} \int_0^{t_2} dt_1 e^{-i\omega t_1} s_{1,i}(t_4) s_{3,i}(t_1,t_2,t_3) \right\} \\ &+ F_{2,c,i,j}(\omega,\omega',\tau) \equiv \left| y_{1,i}(\omega,\tau) \right|^2 \left| y_{1,j}(\omega',\tau) \right|^2 + 2Re \left[y_{1,i}(\omega,\tau) y_{1,j}(\omega,\tau)^* \right] Re \left[y_{1,i}(\omega',\tau) y_{1,j}(\omega',\tau)^* \right] \end{split}$$

Example FF's for Corrected Gates

Filter Functions for Composite Pulses

- BB1: $U(\pi,\beta)U(2\pi,3\beta)U(\pi,\beta)$ $\beta = \cos^{-1}(-1/4)$
- CORPSE: $U(\pi/3,0)U(5\pi/3,\pi)U(7\pi/3,0)$
- DCG: $U(\pi,0)U^{(1/2)}(\pi,0)U$ Robust to fast Griving Field Fig. 10%

Experimental control imperfections

Currently studying in the lab...

- 12.6 GHz 171Yb+ qubit
- Vector source
- Engineered noise bath

Simple composite pulse

$$rac{\pi}{2}_x - \pi_y - rac{\pi}{2}_x$$

Moving to multiqubit gates

$\overline{I, X, Y, Z, H, S, T, CNOT/CPHASE}$

MS Gates with Laser Detuning & Amplitude Errors

$$\overline{|\alpha(\tau)|^2} = \frac{\Omega^2}{4} \int_{-\infty}^{\infty} \frac{F_p\left((\delta + \Delta)\tau\right)}{(\delta + \Delta)^2} P(\Delta) d\Delta$$

Our basis: Walsh functions

Structure gives interesting implications at the system level

Noise filtering at the system level

Designing a practical long-time quantum memory – considerations:

- Perturbative DD (increasing N) fails for long-time storage, by requiring the unphysical constraint τ_{min} -> 0
- 2. Numerical optimization becomes impractical in long time (large-*N*) limit
- 3. Access to quantum state required throughout memory time, with minimum latency

Latency is a killer

Optimizing the filter directly fails to address third consideration

Error calculated for UDD and assuming noise common for singlet-triplet qubit

Systematic approach: Repetition

- Take a short, high-order "base sequence" and repeat as needed.
- Interrupt latency is limited to integer multiples of the base sequence length, not the total storage time
- Analytically evaluate the effect of repetition in the long-storage-time limit

Repeated application of noise filter

$$\chi_p = \int_0^\infty \frac{S(\omega)}{2\pi\omega^2} F_p(\omega) d\omega \qquad \text{Repeat} \qquad \chi_{[p]^m} = \int_0^\infty \frac{S(\omega)}{2\pi\omega^2} \, \frac{\sin^2(m\omega T_p/2)}{\sin^2(\omega T_p/2)} F_p(\omega) \, d\omega$$

$$\lim_{m \to \infty} \chi_{[p]^m} \equiv \chi_{[p]^\infty} = \int_0^{\omega_c} \frac{S(\omega)}{4\pi\omega^2} \frac{F_p(\omega)}{\sin^2(\omega T_p/2)} d\omega \qquad \qquad \boxed{\chi_{[p]^m}}$$

$$\chi_{[p]^m} \le 2\chi_{[p]^\infty}$$

If integral converges, coherence bounded at long times

Similar effects already in use

Future Possibilities: Algorithmic Design(?)

Exploit echo-like effects in algorithmic design Can produce filter functions for algorithms, blocks, etc.

Summary

- Quantum control as noise filtering
 - New analytical approach based on noise filters
 - Filtering during gate operations
 - Approaches compatible with large-scale systems
- We're bringing a "30,000 foot" viewpoint to these analyses.

Other stuff:

Quantum Simulation of the variable-range 2D Ising model on a triangular lattice with *N* ~300 qubits

Acknowledgements & Collaborators

Harrison Ball
Todd Green
David Hayes
MC Jarratt
Michael Lee
Jarrah Sastrawan
Alex Soare

Lorenza Viola Kaveh Khodjasteh

Hermann Uys

John Bollinger
Joe Britton
Brian Sawyer
David Wineland

PhD opportunities and postdoctoral fellowships available in my Group

Visitors Welcome! michael.biercuk@sydney.edu.au

