Control of quantum sensors

Paola Cappellaro

Massachusetts Institute of Technology

Limits and goals of qt. control

 Quantum information processing requires universal quantum control

- Control of quantum sensors has different goals and constraints
 - Less stringent requirements
 - New challenges:
 e.g. compromise between noise refocusing and external field sensing

Control of quantum devices

 Continuous decoupling magnetometry

 Reconstruction of timedependent magnetic fields

 Isolated defect in diamond with electronic spin 1

• ODMR in a confocal microscope

• Electronic spin 1

- Single-spin state detection
- Fluorescence intensity (FI)
- Optical polarization
 - mK at room temperature

ODMR in a confocal microscope

Electronic spin 1

ODMR in a confocal microscope

- Single-spin state detection
 - Fluorescence intensity (FI)
- Optical polarization
- Precise control
 - Manipulation via resonant microwave

Spin magnetometer

- Control + localization
 - → sensitivity & spatial resolution

A. Yacoby

Spin magnetometer

- Control + localization
 - → sensitivity & spatial resolution

H.-C. Chang

Electronic spin 1

ODMR in a confocal microscope

- Single-spin state detection
 - Fluorescence intensity (FI)
- Optical polarization
- Precise control
 - Manipulation via resonant microwave

Electronic spin 1

0.5

- Single-spin state detection
 - Fluorescence intensity (FI)
- Optical polarization
- Precise control
 - Manipulation via resonant microwave

ODMR in a confocal microscope

- Up to ms, allows many operations
- Complex environment
- Nuclear spins
- Electronic Nitrogen spins

Single-spin magnetometer

Detect magnetic field with Ramsey-type experiment

Shot-noise limited sensitivity (minimum resolvable field)

$$\delta B \sim C \frac{\hbar}{g \mu_B} \frac{1}{\sqrt{T_2^*}}$$
 [T Hz- $^{1/2}$]

– Noise limits the evolution time to $au \lesssim T_2^*$

J. Taylor, P.C. et al., Nature Phys 2008

Single-spin magnetometer

Detect magnetic field with Ramsey-type experiment

Shot-noise limited sensitivity (minimum resolvable field)

$$\delta B \sim C \frac{\hbar}{g \mu_B} \frac{1}{\sqrt{T_2}} \qquad \qquad \text{[T Hz-$^{1\!\!/}\!\!2]}$$

- Limited by dephasing time → Spin echo
- No sensing of DC-field, limited by pulse errors

CONTINUOUS DECOUPLING MAGNETOMETRY

A. Aiello, M. Hirose, P.C. Nature Comm. **4**, 1419 (2013) M. Hirose, A. Aiello, P.C. Phys. Rev. A. **86**, 062320 (2012)

 Detection of static magnetic fields Ramsey

(high sensitivity, short T₂)

Detection of static magnetic fields
 Ramsey

R

high consitivity ch

Rabi*

(high sensitivity, short T_2) (long T_2 , low sensitivity)

*Fedder et al., Appl Phys B **102**, 497–502 (2011)

Detection of static magnetic fields Ramsey

(high sensitivity, short T_2)

Rabi*

(long T₂, low sensitivity)

Example: Rotary Echo

I. Solomon (1958)

Detection of static magnetic fields

Ramsey

Rabi*

(high sensitivity, short T₂)

(long T₂, low sensitivity)

Example: Rotary Echo

Detection of static magnetic fields

Ramsey

(high sensitivity, short T_2)

Rabi*

(long T_2 , low sensitivity)

- Compromise:
 - Longer T₂ than Ramsey, higher sensitivity than Rabi
- Corrects for μw instability

Rotary Echo

Intermediate (variable) T₂ and sensitivity

Rotary Echo Magnetometry

Sensitivity

Experimental results with 1 NV center

Sensitivity

Higher sensitivity, robust against μw noise

Advantage: Robustness

- Rotary Echo corrects for driving fluctuations
 - Experiments (added noise)

- Adjustable coherence time
 - match external constraints, avoid overhead times

- Adjustable coherence time
 - match external constraints, avoid overhead times

- Adjustable coherence time
 - match external constraints, avoid overhead times

- Adjustable coherence time
 - match external constraints, avoid overhead times

AC Magnetometry

 Pulsed and continuous Dynamical Decoupling allow measuring AC fields

- cDD allows more flexibility than PDD
 - Compromise between decoupling efficiency and bandwidth

Rotary Echo

 ω

.20

.10

.05

Rotary Echo

 ω

.20

.10

.05

Rotary Echo

 ω

.20

.10

.05

Rotary Echo

 ω

.20

.10

.05

Rotary Echo

PDD (echo)

Spectroscopy

 Frequency selectivity can be varied by pulse cycle and Rotary Echo angle

– Acquired phase is weighted by DD evolution:

$$\overline{B} = \frac{1}{t} \int_0^t b(t) F_{\text{DD}}(t) dt = \overline{B}_{\text{max}} W_{\text{DD}}(\omega)$$

Spectroscopy

 Frequency selectivity can be varied by pulse cycle and Rotary Echo angle

WAVEFORM RECONSTRUCTION

Waveform reconstruction

Magnetic fields from biological activities

Magnetic activities in He-La cells

L. P. McGuinness et al., Nature Nanotechnology 6, 358–363 (2011)

CPMG sequences → frequency filters

CPMG sequences → frequency filters

Change pulse spacing

CPMG sequences → frequency filters

Change pulse spacing

CPMG sequences → frequency filters

- Limitations:
 - Inefficient reconstruction
 - Cannot reconstruct general time-dependence
 - Increasing pulse number, variable decoupling, ...

Waveform reconstruction

- Arbitrary waveform reconstruction with a complete (Walsh) transform
 - Complete set of orthonormal filters generated by pulsed control
 - Digital sampling reconstruction, systematic and efficient
 - Still achieves noise refocusing

Walsh Functions

Complete basis (with increasing precision @ higher order)

```
m=0 (Ramsey)

m=1 (Spin echo)

m=2 (CPMG-2)

m=3 (PDD-3)

m=4 (CPMG-4)

m=5

m=6

m=7 (PDD-7)

m=8 (CPMG-8)
```

Walsh Functions

• Complete basis (with increasing precision @ higher order)

CPMG (PDD) are a subset of Walsh

Walsh Reconstruction

Acquired phase depends on field and Walsh:

$$\varphi_m(T) = \gamma_e \int_0^T b(t) W_m(t/T) dt = \gamma_e \hat{b}_T(m)$$

Field obtained from Walsh transform

$$\tilde{b}_N(t) = \frac{1}{N} \sum_{m=0}^{N-1} \hat{b}_T(m) W_m(t/T)$$

Accurate reconstruction (minimal error)

Walsh vs. CPMG

Reconstruction of polychromatic, asymmetric

wave: $b(t) = a_1 \sin(\omega_1 t) + a_2 \sin(\omega_2 t + \varphi)$

Preliminary results

• Experimental reconstruction $b(t)*\mathrm{Amp}$

Preliminary results

• Experimental reconstruction $b(t)*\mathrm{Amp}$

Outlooks

 General scheme, applicable to other measurements (e.g. temperature)

Noise spectroscopy for random fields

- Optimization
 - Optimal subset of Walsh, given prior information
 - Compressive sensing

Conclusions

 Quantum sensors introduce new challenges and opportunities in quantum control

- Devise control strategies to achieve flexible quantum sensors
- Quantum probe manipulation extract field information efficiently

Clarice Aiello

Alex Cooper

Gary Wolcowitz

Masashi Hirose

Thanks!

Ashok Ajoy

Honam Yum

Easwar Magesan

