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Coherent ControlCoherent Control
Control of interference of matter waves.
Control knobs are external fields.

1) Controllability: 
For a given scenario does a control strategy exist that
will drive the initial state to a specified target.
2) Synthesis: 
Constructively finding the control field that 
will achieve the goal. Direct forward design using templates.

STIRAP, Two!photon, ...

Inversion: Optimal Control Theory (OCT)
Random search, genetic algorithms ...

3) Optimization: 
Finding the optimal control field that 
will achieve the goal subject to constraints.



Controllability Controllability 

The control Hamiltonian: H = H0 +!uj(t)Xj

Xj are control operators
uj(t) control fields
L controls L << N
N size of Hilbert space

Weak:
Can we make any state to state transformation within a closed Hilbert space?

Strong:         U
Can we generate any Unitary transformation within a closed Hilbert space?

"j #"k

"= !cj $j

H0$j = %j$j d U
  dt

= H(t) U

U(0)=I

Weak Strong

U(T)$j         $k

L

j=1
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Controllability Controllability 

Strong
If the commutators of H0 and Xj generate 
all the operators in Hilbert space 
then the system is completely controllable
[H0, Xj] , ... , [[H0,Xj],Xk] , ... , [[[H0,Xj],Xk],Xl]

H = H0 +!uj(t)Xj

Clark and Tarn, J. Math. phys. 24 2608 (1983)
Ramakrishna and Rabitz, J. Math. phys. 54 1715 (1996)

Any Unitary transformation can be generated.

Good for quantum computers



Controllability Controllability 

Parking a car: 
Generating lateral motion by a series of forward!backward maneuvers

For the harmonic oscillator: H0 =
  

1/2(P2 + X2)
Our control part Hc

 
= ux(t)X+up(t)P

If "(0) is the ground state we can generate any coherent state.
                  But we cannot generate a cat state!

If we change H0 to a Morse oscillator the same controls are sufficient.

                         We can generate a cat state!

H = H0 +!uj(t)Xj
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Controllability Controllability 

Parking a car: 
Generating lateral motion by a series of forward!backward maneuvers

  

Our control part Hc

 
= ux(t)X+up(t)P

If "(0) is the ground state we can generate any coherent state.
                  But we cannot generate a cat state!

If we change H0 to a Morse oscillator the same controls are sufficient.

                         We can generate a cat state!

H = H0 +!uj(t)Xj

For the harmonic oscillator: H = 1/2(P2 + X2
0 )
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Optimal control solutions

The Fourier transform:
Wigner time!energy spectrum

spectral band width

The optimal field %(t)

Vibrational Cooling pulse

Can these pulses be executed without error?

José P. Palao and Ronnie Kosloff
Quantum Computing by an Optimal Control Algorithm for Unitary Transformations
Phys. Rev. Lett. 89, 188301 (2002).



The control problem
State to state control |ψi〉 → |ψf 〉 at time T .
The control Hamiltonian:

Ĥ = Ĥ0 +∑
k

[uk(t) + ξk(t)] X̂k .

uk(t) are control fields. X̂k are control operators
The unavoidable noise ξk(t) is modelled by Gaussian noise:
〈ξk(t)ξl(t

′)〉= 2Γk(t)δklδ (t− t ′).
where Γk(t) depend on the control field Γk(t) = f (uk(t)).

The equation of motion for this noisy system (Gorini-Kossakowski):

∂

∂ t
ρ̂ = −i

[
Ĥ0 +∑

k

uk(t)X̂k , ρ̂

]
−∑

k

Γk(t)
[
X̂k ,

[
X̂k , ρ̂

]]
.

(With noise on the controls)

weak quantum measurement
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Purity and fidelity
In the absence of noise the system is completely controllable.
Due to the noise the purity

P ≡Tr
{

ρ̂
2
}

of an initially pure state ρ̂ = |ψ〉〈ψ| will decrease.
For a noisy control we define complete controllability when the
purity loss during the target transformation is small, i.e., ∆P � 1.
This purity loss can be accounted by the average fidelity:

F = Tr {ρf |ψf 〉〈ψf |} ,

where ψf is the target final state, and ρf is the mixed final state
attained using noisy controls. For high fidelity, i.e., 1−F � 1,:

F ≤ 1

2
(2−∆P) .

If purity loss is large, the state-to-state objective is lost, →,

complete controllability is not true any more.
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Purity loss and uncetianty

For a pure state ρ̂ = |ψ〉〈ψ|, the instantaneous rate of purity loss
becomes (Viola):

Ṗ ≡− d

dt
Tr
{

ρ̂
2
}
|ρ̂=|ψ〉〈ψ| = 4 ∑

k,uk 6=0

Γk(t)∆X̂k
[ψ] ,

where ∆X̂k
[ψ] is the variance of the control operator X̂k in the

state ψ :

∆X̂k
[ψ]≡

〈
ψ

∣∣∣X̂2
k

∣∣∣ψ〉−〈ψ

∣∣∣X̂k

∣∣∣ψ〉2 .
The variance of a generic state scales as ∆X̂k

[ψ]∼ N2 where N is

the size of Hilbert space.

In contrast the purity loss of generalised coherent states

(GCS) scale as ∆X̂k
[ψ]∼ N .
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Bounds on minimum control time

Metric of change

A measure of the change |ψi〉 to |ψf 〉
Using the drift Hamiltonian Ĥ0 basis set |n〉,
the transformation from the initial state

|ψi〉= ∑n ri ,ne
iφi ,n |n〉 →, |ψf 〉= ∑n rf ,ne

iφf ,n |n〉,
is characterised by the Eculidean norm ‖∆r‖:

1�‖∆r‖ ≥ ε > 0,

where ∆r≡ rf − ri , ri = (ri ,1, ri ,2, ...) and rf = (rf ,1, rf ,2, ...). The

choice of norm excludes changes to states that can be reached by

free propagation generated by the drift Hamiltonian Ĥ0.
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For estimation of this bound an auxiliary operator Â is defined such
that: (i) it commutes with Ĥ0; (ii) its expectation value changes

during the transformation. Since Â commutes with Ĥ0 the change
of its expectation value during the transformation is due to the
operation of the control fields. We define

Â = ∑
n

sn |n〉〈n| ,

where sn = sign{∆rn}. The change of the expectation value of the
operator Â ψi → ψf is given by〈

Â
〉
f
−
〈

Â
〉
i

= ∑
n

|∆rn|
(
ri ,n + rf ,n

)
≥∑

n

∆r2n = ‖∆r‖2 ,



we obtain 〈
Â
〉
f
−
〈

Â
〉
i
≥ ε

2,

which gives the minimal change of the expectation value of the
operator Â during the transformation ψi → ψf .
The change of the expectation value of Â can be estimated from the
Heisenberg equations:

d

dt
Â = i∑

k

uk(t)
[
X̂k , Â

]
Let the time of the transformation be T . Then,〈
Â
〉
f
−
〈

Â
〉
i

=
∫ T

0

d

dt

〈
Â
〉

dt ≤∑
k

∫ T

0
|uk(t)| dt max

0≤t≤T

∣∣∣〈[X̂k , Â
]〉∣∣∣

(1)

≤ 2∑
k

∫ T

0
|uk(t)|dt |Λk | ,



Bounds on minimum control time

where Λk ∼ N stands for the eigenvalue of X̂k , maximal by the
absolute value.

Defining the average control amplitude ūk ≡ 1
T

∫ T
0 |uk(t)| dt, the

inequality:

T ≥ ε2

(2∑k ūk |Λk |)
∼ ε2

(2N ∑k ūk),

which bounds the time of the transformation for given ūk
(Rabitz Calarco).
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Bounds on purity loss

The bounds on purity loss are obtained under assumption that the
purity loss ∆P during the transformation is small. In this case the
evolving state can be approximated by
ρ(t) = ρ(0) + ρ(1) ≈ ρ(0) = |ψ(t)〉〈ψ(t)|. Taking the leading
contribution of ρ(1) into account, we estimate the lower bound on
the purity loss:

∆P ≥ 4T ∑
k

Γk min
0≤t≤T

{∆X̂k
[ψ(t)]

+
1

2
T
〈

ψ(t)
∣∣∣[X̂k , [X̂k ,ρ

(1)(t)]]
∣∣∣ψ(t)

〉
}.

where Γk ≡ T−1
∫ T
0 Γk(t)dt is the average dephasing rate over the

transformation. We further assume that during the transformation
the system follows generic states so that ∆X̂k

[ψ(t)]∼ (Λk)2 ∼ N2.
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Using the above inequality,

∆P ≥
2ε2∑k Γk min0≤t≤T

{
∆X̂k

[ψ(t)]
}

∑k ūk |Λk |
.

To estimate min0≤t≤T

{
∆X̂k

[ψ(t)]
}

we find the lower bound on

the variance of X̂k in the states |ψ〉= ∑n rne
iφn |n〉 such that

‖r− ri‖ ≤ ε . The variance ∆X̂k
[ψ] is a function of the amplitudes

r = (r1, r2, ...) and the phases φ1,φ2, .... The free evolution can
change the phases at no cost in purity. Therefore, the minimal
variance attainable for given amplitudes is sought:

∆̃X̂k
(r)≡ min

φ1,φ2,...

{
∆X̂k

[ψ]
}

We assume, that ∆̃X̂k
(r) is a smooth function of r for

‖r− ri‖ ≤ ‖∆r‖, i.e., for sufficiently small ∆r and |δ r| ≤ ‖∆r‖ we

can expand ∆̃X̂k
(ri + δ r)≈ ∆̃X̂k

(ri ) + ∇∆̃X̂k
(ri ) ·δ r.



∣∣∣δ ∆̃X̂k
(r)
∣∣∣≡ ∣∣∣∇∆̃X̂k

(r) ·δ r
∣∣∣≤ ∥∥∥∇∆̃X̂k

(r)
∥∥∥‖δ r‖ .

The minimum is obtained at φ∗1 (r),φ∗2 (r), .... Then

∆̃X̂k
(r) = ∆X̂k

[ψ∗] and

∇∆̃X̂k
(r) = ∇∆X̂k

[ψ∗]

It should be noted that ∆X̂k
[ψ∗] depends on rn both through the

amplitudes of ψ∗ and through the phases φ∗n (r), which are also

functions of r. Nonetheless, since φ∗n (r) are defined as giving the

minimum of ∆X̂k
[ψ], derivatives of ∆X̂k

[ψ∗] with respect to φ∗n (r)

vanish and φ∗n (r) may be considered as r-independent for the

operator ∇ in the rhs.



∇∆̃X̂k
(r) = ∇

〈
ψ
∗
∣∣∣X̂2

k

∣∣∣ψ∗〉
− 2

〈
ψ
∗
∣∣∣X̂k

∣∣∣ψ∗〉∇

〈
ψ
∗
∣∣∣X̂k

∣∣∣ψ∗〉 . (2)

Using the explicit form of ψ∗ and the fact that ∇ act only on the
state’s amplitudes we can show that the Euclidean norm of the rhs
of Eq.(2) is bounded by 3

√
2(Λk)2. Then, Eqs. (2) and (2) imply∣∣∣δ ∆̃X̂k

(r)
∣∣∣≤ 3

√
2(Λk)2 ‖δ r‖. It follows that for |ψ〉= ∑n rne

iφn |n〉
with ‖r− ri‖ ≤ ε � 1

∆X̂k
[ψ]≥ ∆̃X̂k

(ri )−3
√

2(Λk)2 ε (3)



From the inequalities we obtain

∆P ≥ 2ε
2∑k Γk

∑k ūk
×

minl

{
∆̃X̂l

(ri )−3
√

2(Λl)
2

ε

}
maxl {|Λl |}


The variance ∆X̂k

[ψ] scales as N2 in a generic state of the system .

The scaling of ∆̃X̂k
(ri ) is a more subtle question, since it is the

outcome of the minimization with respect to the phases in the

eigenstates basis.
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For an arbitrary state-to-state objective it is sufficient to show that
∆̃X̂k

(ri )∼ N2 for some |ψi〉. Let’s consider a generic eigenstate |φ〉
of Ĥ0. The variance ∆X̂k

[φ ] scales as N2 for all k . Moreover, the

variance is independent of phases. Therefore, taking |ψi〉= |φ〉 we
shall have ∆̃X̂k

(ri )∼ N2, and, to the leading order in ε ,minl

{
∆̃X̂l

(ri )−3
√

2(Λl)
2

ε

}
maxl {|Λl |}

= cN−1,

where the number c is of the order of unity. We conjecture that
approximation (4) holds for a generic state-to-state transformation,
not necessarily from an eigensatate of the Hamiltonian. The reason
is that generically the total uncertainty of a state evolving under the
free evolution will remain ∼ N2.



Bounds on purity loss

∑k Γk
∑k ūk

≤ ∆P

2cε2N
.

This inequality holds for ∆P,ε � 1; the number c is of
the order of unity.
This result, obtained in less general form in M. Khasin and RK,

PRL. 106 123002 (2011), relates the relative noise strength on the

controls with the size of the system for a high-fidelity

transformation.
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The main result can be stated as follows. For systems and controls

defined by the control Hamiltonian and for a generic state-to-state

transformation such that the expectation value of the operator Â

changes by ε2� 1, the purity loss associated with the noise on the

controls will be small, ∆P � 1, only if the noise complies with the

condition. This condition determines the upper bound on the noise

strength. For a generic transformation, where the total uncertainty

of the evolving state ∼ N2, the number c is of the order of unity.

For fixed change ε2 and purity loss ∆P the upper bound on the

noise strength for a generic transformation will decrease as N−1. For

large N the relative noise must decrease indefinitely with the size of

the system in order to provide high fidelity.



Noise Model

Typical noise includes a static part and a dynamical part:

Γk(t) = Γk + ckuk(t)2.

The model reflects the following properties of noise:
(i) for weak field, the dephasing rate Γk is independent on the
amplitude of field.
(i) for large amplitude of the control field the noise ξk(t) in
becomes proportional to the amplitude, ξk(t)∼ uk(t).

Γk(t)≥ 2|uk(t)|
√

Γkck .

The necessary condition for state to state controllability:

min
k

√
Γkck ≤

∆P

2cε2N
,
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For (approximate) state to state controllability 
the purity loss should be managed to a minimum close to zero
for every initial and final state.

Noise and controlNoise and control

$j         $k

For a large quantum system there is a class of states for which 
the purity loss is unmanageable.
As a result large quantum systems are uncontrollable!

These uncontrollable states are characterized by a purity loss that 
scales with the size of the system.

Michael Khasin and Ronnie Kosloff
Noise and controllability: Suppression of controllability in large quantum systems
Phys. Rev. Lett. 106 123002 (2011).
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Noise and controlNoise and control H = H0 +!(uj(t)+&j(t))Xj

where & represent a delta correlated noise

'&j(t)&j(t’)(=2)j |uj(t)|*(t!t’)

Then the Master equation becomes:

d +
 dt = !i[H,+] + ,)j |uj(t)| [Xj,[Xj,+]]

The same Master equation is obtained for a system
subject to a continuous measurement of the observables
associated with Xj.

Any control field has to involve noise!

L

j=1
Can controllability be maintained 
  with noise even approximately?

A Markovian Model
of noise associated
with the control



Generalized coherent statesGeneralized coherent states
Looking for the states with minimum uncertainty with respect 
to the generators of the noise algebra:

 - (") =,'-Xj(    
2 =,( 'Xj(   !'Xj( )2 2

These states will be weakly invariant to the master noise equation

Example for pure dephasing = !i[H,+] + ) [H,[H,+]]d +
 dt

The eigenstates of H are GCS

GCS

Any superposition of GCS will collapse to a mixture of GCS

+(0)=|"('"|

|"( =,Ck|$k(

+(.)=,dk|$k('$k|

(pointer states)



Generalized coherent states GCS
Collapse of a Cat state due to position or momentum diffusion

= !i[H,+] + ) [X,[X,+]]+ ) [P,[P,+]]d +
 dt

localization in coherent states
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Scaling of Optimal control soultions with system size

H= !aNa+!bNb+"(a†b+b†a)+U(Na+Nb)2 2

Example: Tunneling Hamiltonian

inter!particle 
  interaction

 single particle 
tunneling term

A B

Scaling of Optimal control soultions with system size



We define
Jx =  (a†b+b†a)
Jy =  (a†b!b†a)
Jz =  (a†a!b†b)

1
2
 1
2i
1
2

Then: H=   Jz !#!$(t)Jk  
2

and the total number of particles is conserved N =Na+Nb

is the effective many body non linear control Hamiltonian

What is the # of states?

The # of states
= size of Hilbert space
D=N+1

Obtaining the many body control Hamiltonian

U
N

This system is completely controllable



x = i[H,X]!%#[ Ji, [Ji,X]]

H= !#!k(t)Jk +     Jz
2U

N

.
i=1

3

The Heisenberg equation of motion:

Therefore when  % c  <<  !  the dynamics of Ji is not affected

We have a competition between localization caused by the dissipator
and dispersion on all states caused by the non linear term Jz

2

The eigenvalue of the linear part:Y(t) = exp( (!i !&c')() 

The dynamics:
Competition between localization and dispersion.

Kahsin & Kosloff, PRA 81 043635 (2010).



We define
Jx =  (a†b+b†a)
Jy =  (a†b!b†a)
Jz =  (a†a!b†b)

1
2
 1
2i
1
2

Then: H= !! Jx +     JzU
N

2

and the total number of particles is conserved N =Na+Nb

is the effective many body non linear Hamiltonain

What is the # of states?

The # of states
= size of Hilbert space
D=N+1



Generalized Coherent states  (GCS) for SU(2)

Looking for the states with minimum uncertainty with respect 
to the operators of the algebra:  " [0] =1"Jx2 +1"Jy 2+ 1"Jz2   

2 2 2

= 1Jx +Jy +Jz2   !(  1Jx2 +1Jy 2+ 1Jz2 )
2 2 22 2 2

Generalized purity: P())=(  1Jx2) +1Jy 2)+ 1Jz2) )
Casimir C= Jx +Jy +Jz      1C2=j(j+1) 2 2 2

Maximum purity = Minimum uncertainty

2 2 2

All the extreme states are GCS such as:

|j2z  , |!j2z   ,|j2x, |!j2x, ...



Experimenting with Optimal control theory

Employing Krotov’s method.

targets of state to state Control:

1) GCS 6 GCS    |j2z  6 |j2x   unrestricted.

2) GCS 6 GCS    |j2z  6 |j2x   guided.

3) GCS 6 cat state    |j2z  6 (1/-2)(|j2x +|!j 2x )

4) cat state 6GCS    (1/-2)(|j2x +|!j 2x ) 6 |j2z      

Convergence properties as a function of the Hilbert space size

Is there a relation between the optimal field for different j  ?

OCT
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Expectation of the target F = 1P2, P=|)(T)21)(T)|

Convergence of OCT as a function of system size j

j=5

j=320

200 iterations1) GCS 6 GCS    |j2z  6 |j2x   unrestricted.
OCT



j=5
j=160 ! ! ! 

Pilot field for j=5

Optimal Control Theory
2) GCS 6 GCS    |j2z  6 |j2x   guided.

OCT
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Pilot field for j=5

Local Control Theory

corected by 
1 iteration

2) GCS 6 GCS    |j2z  6 |j2x   guided.
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Pilot field for j=10

3) GCS 6 cat state    |j2z  6 (1/-2)(|j2x +|!j 2x )

4) cat state 6GCS    (1/-2)(|j2x +|!j 2x ) 6 |j2z   

Extreme sensativity to increasing j
Each optimal field is completely different

OCT
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3) CS → cat state    |α〉  → (1/√2)(|α〉' |−α〉 )

4) cat state →CS    (1/√2)(|α〉' |−α〉) → |α〉

Mores oscillator H=H0 +f(t)X

Shimshon Kallush and Ronnie Kosloff
Mutual influence of locality and chaotic dynamics 
on quantum controllability
Phys. Rev. A 85, 013420 (2012).

Shimson Kallush, and Ronnie Kosloff,
Scaling the robustness of the solutions for quantum 
controllable problems,
Phys. Rev. A 83 063412 (2011).
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3) GCS → cat state    |α〉  → (1/√2)(|α〉' |−α〉 )

4) cat state →GCS    (1/√2)(|α〉' |−α〉) → |α〉   

Henon Heils H=H0 +f(t)O
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Discussion Conclusion H = H0 +7uj(t)Xj

L

j=1

1) Control Hamiltonian assumes a fixed number of controls L
     and an increasing size of Hilbert space N. 

2)   This is different than the quantum computing model where 
    the number of controls increases logarithmicly with the size of 
    Hilbert space L 8log N.

3) Some Markovian noise on the controls is unavoidable.

4) State to state control is lost due to loss of purity P = tr{92}.

    as a result a pure state cannot be transformed to a pure state.

5) The purity loss is proportional to the uncertainty with respect 
    to the control operators X.



Discussion Conclusion

6) Generalized coherent states GCS have minimum uncertainty
eventually only they will survive.

7) Superpositions of GCS are sensative to noise:
cat states are hard to maintain.

8) Using optimal control theory (without noise) state to state
GCS to GCS are scalable to large size.

9) The control fields that produce cat states are not scalable.

9 = !i[H,9]!%#[ Ji, [Ji,9]]
.

i=1

3
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Generalized Coherent states  (GCS)

A GCS is transformed to another GCS
by a global time dependent unitary operator 
U(t)= exp(!i ( 3(t)Jx +4(t)Jy +'(t)Jz )) 

The purity is invariant to a unitary transformation U (rotation)
generated by the group U= exp(!i ( 3Jx +4Jy +5Jz )) 
P()) = P(U))

The uncertainty " [0] of a GCS scales linearly with j
The uncertainty " [0] of a cat state scales as j2

The global stable solution of the 
Stochastic Schrodinger equation is a GCS
Khasin &Kosloff, JPA 41 (2008) 365203

x = i![Jx,X]!'#[ Ji, [Ji,X]] 



H = H0 +!uj(t)Xj H0"j = #j"j

$i= !rjie%&j "j

Time scale of Control
L

j=1

$f= !rjfe%&j "j

We consider changes 'r  such that 1 >> ||'r|| ( # > 0 .
where ||'r|| is the Eucledian norm between the vectors ri and rf
free propagation does not change this norm

We get: #2 ) 2 *+uk|,k|

|,k| is the maximum eigenvalue of Xk.
We now estimate the purity loss at the same time scale.

state to state transformation

+uk is the action of control k

    (  2#2 

       *uk|,k|
T

Timescale of control
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