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Conference Announcement — QuAMP 2013

If you would like an excuse to visit Swansea, QuAMP, the
première UK conference devoted to quantum, atomic,
molecular and plasma physics, will take place 8-12 September
2013 hosted by Swansea University.

Conference Topics:
1 Atomic and molecular systems - interactions and physics,
2 Ultra-fast phenomena, Metrology, Antimatter physics
3 Quantum optics, Quantum information and computing
4 Plasma physics
5 Ultra-cold matter
6 and hopefully some Quantum Control!

Details to follow – drop me a line at sgs29@swan.ac.uk if
you would like to be included in the conference mailing list.
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Overview: Control Paradigms & Applications

1 Model-based Open-loop Coherent Control

2 Model-free Adaptive/Learning Coherent Control

3 Dissipation-Assisted Coherent Control

4 Static Reservoir Engineering

5 Dynamic Reservoir Engineering using Direct Feedback

6 . . .
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Model-based Open-loop Coherent Control [OLCC]

1 Preparation of ’exotic’ quantum states for quantum
computing, metrology, simulations, etc.

2 Control unitary evolution for quantum computing, etc.

Ideal application for Open-loop Coherent Control assuming
Target and initial state known
Controlled dynamics fast, environmental coupling weak
Control coherent, evolution unitary (to good approximation)
Model of dynamic evolution available

Many approaches to solve OLCC problem:
1 Inituitive or physic-based designs

Pump-dump sequences, adiabatic passage (STIRAP), etc
2 Constructive geometric techniques

Design principle for conventional NMR pulse sequences
3 Optimal control based on optimization of objective
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Optimal OLCC

Model-based formulation straight-forward in principle:

Problem
Find control such that merit function optimized subject to
constraints e.g. on dynamical evolution, admissible controls

General receipe for solution:
1 Choose objective (merit) function
2 Suitably parametrize the controls
3 Run optimization algorithm

But have to make many choices
1 Different ways to formulate objectives and constraints
2 Many control parametrizations – piecewise constant,

splines, wavelets, harmonic functions
3 Many optimization algorithms
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Implementation of Encoded Logic Gates

Easy problems:
almost any not totally dumb choice will work
many quantum control problems easier than expected

Hard problems do exist though & then smart choices matter!
Large systems, many qubits (huge Hilbert space)
Highly constrained control (e.g., limited local control,
non-selective global control, amplitude, frequency,
bandwidth constraints)

Example: Implementation of Encoded Logic Gates
Find ways to realize logic gates (esp. non-transversal gates) for
five-qubit code with highly constrained control

NJP 11, 105003 (2009)
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Implementation of Encoded Logic Gates

J
=

0
.0

1
J

=
0

Qubit 1 Qubit 2 Qubit 4Qubit 3 Qubit 5

Global control via frequency−selective pi−pulses

. . . fails even for modest fixed couplings

Competition of maximizing frequency selectivity (favors long
pulses) and minimizing coupling effect (favors short pulses)
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Implementation of Encoded Logic Gates II

Optimal control well suited to solve this type of problem
L

o
c

a
l

G
lo

b
a

l

Qubit 1 Qubit 2 Qubit 3 Qubit 5Qubit 4

Found solutions for all single-qubit logic gates (5-qubit gates)
including non-transversal ones for different models even for
large coupling (shown: simulataneous X-gate with J = 1)
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Challenges Encountered and Solutions

1 Choice of control objective: logic gate is 5-qubit unitary
must perform correct operation on 2-D logic subspace and
fault-tolerance requires correct mapping of error subspaces
but many unitaries in SU(32) satisfy these requirements

Smart objective functional should reflect this freedom.
Especially crucial for highly constrained problems.

2 Optimization algorithms: tried different approaches
0th order (function values only) Simplex
1st order (function values, 1st derivative) GRAPE/Krotov
2nd order (function values, 1st and 2nd derivative) (quasi)
Newton methods

Observed good initial convergence for various algorithms
all struggled near the top
most efficient quasi-Newton method struggled the most
bizarre randomized sequential update performed best!?
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Problem: Gradient accuracy

Gradient accuracy important crucial to get to the top
Signal-to-noise ratio decreases as gradient becomes small
Linear and finite difference approximations problematic
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[NJP13, 073029 (2011)]

Doubly so for quasi-Newton methods which construct
hessian from gradient record [JMR212, 412 (2011)]
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Solution: Accurate Gradients

Parametrization of controls⇒ gradient functional becomes
vector of partial derivatives. PCC: fm(t) =

∑
k fmkχ[tk−1,tk ]

dF
dfmk

= <Tr
[
V †Λ(T , tk )Imk Λ(tk−1,0)

]
Setting Λf (t , tk−1) = e(t−tk−1)L(k)

, L(k) = L0 +
∑

m fmkLm

Imk =
∫ tk

tk−1
Λf (tk , t)LmΛf (t , tk−1) dt

Standard approximation Imk ≈ LmΛ(tk , tk−1)∆t inaccurate
but Imk can be evaluated exactly by spectral decomposition
[SD] or augmented matrix exponential [NJP14, 073023]:

exp
(

A B
0 C

)
=

(
eA ∫ 1

0 eA(1−s)BeCs ds
0 eC

)
setting A = C = L(fmp)∆t and B = Lm∆t .
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Convergence Behaviour

1 With accurate gradient formulas we now observe good
convergence behaviour using quasi Newton methods for

closed, markovian and non-markovian systems
pure-state, mixed state and gate control problems.
different control types (piecewise const, harmonic, spline)

2 SD-method incorporated in Shai’s Optimal Control toolbox
AME now implemented in Spinach – significant speedup!

3 Sequential update (’Krotov’) still better at lower fidelities
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Markovian vs Non-Markovian Control
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Speed Limits?
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Limits of Robustness

Controls generally robust with regard to many errors
(control noise, slight system imperfections)
Very sensitive to control leakage i.e., inadvertent
excitation of noise qubits/environment highly deleterious
Can be mitigated by incorporating leakage effect into
optimization, but resulting control problem hard
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Dealing with model uncertainty or ignorance

Big challenge in practice: model uncertainty (or ignorance)
1 System identification to determine model [SI]

2 Experimental evaluation of objective [EE]

EE Optimization can be solved with standard algorithms but
Efficiency crucial to minimize the number of experiments

Methods based on higher-order local models generally
more efficient than simplex or direct search strategies

Higher-order local models can be constructed by sampling
function values only

Problem: Noisy data can be a killer — especially when trying
to compute accurate gradients or Hessians — but can be dealt
with — e.g., using ’digital filtering’ techniques.
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Comparison of optimisation algorithms

Benchmark problem: [PRA 80, 030301 (2009)]
Information transfer in Heisenberg spin chain (N = 10)
Same 100 randomly generated initial x0 used for each run
Success if transfer fidelity > 99.99%

Success % F.evals E.time Best T
genetic 0 12,300 35.4 15.7071
simplex 75 8,700 21.8 94.9778
BFGS 95 2,900 7.3 86.0347
qNewton 100 1,400 3.6 74.6144

⇒ constrainted optimization using quasi-Newton method with
digital filtering: high success rate and efficient computation

Similar results for many other problems studied — including
frequency-domain controls.
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Dissipation-assisted control

Coherent control has fundamental limits: many properties are
conserved under unitary evolution, i.e., no entropy reduction

Can’t solve problems that require entropy reduction
preparing known state from fully or partially unknown state
cooling to ground state, e.g., of vibrational modes

Molecule with many vibrational
modes

Initial ensemble, many modes
populated, populations may be
unknown

Coherent control can swap
populations around but not
increase purity

Dissipation to the rescue? PRA63, 013407 (2001)
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Vibrational Cooling

1 Apply short selective pump pulses that leave population of
target state invariant and promote remaining populations to
excited electronic manifold.

2 Let excited electronic states decay to various vibrational
levels associated with electronic ground state.

3 Repeat.
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Vibrational Cooling Example

Works at least in theory for toy model: PRA63, 013407 (2001)
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Reservoir Engineering

Hamiltonian engineering (coherent control) not sufficient for
initialization of a quantum system
stabilization of quantum states

These tasks can be accomplished by reservoir engineering.
many strategies for engineering environment
elegant option: measurements and feedback

Motivation: Direct-feedback master equation [Wiseman 94]

ρ̇(t) = −i[Htot , ρ(t)] + D[M − iF ]ρ(t) + 1−η
η D[F ]ρ(t)

Htot = H0 + Hc + 1
2(M†F + FM),

Basic observation: Any state — pure or mixed — can be
stabilized for any system for suitable static choice of hermitian
operators H, F , M. Even with limited resources many states
are still stabilizable. See Lorenza’ talk last week.
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Protecting Entanglement from Markovian dephasing

Example: two qubits, Heisenberg coupling with local control
(Z-type) subject to Markovian dephasing

If system is prepared in Bell state |00〉+ eiφ|11〉,
Markovian dephasing leads to exponential decay of
entanglement in almost all cases.

Coherent control cannot counteract this decay — control
(dephasing) only affects antisymmetric (symmetric) part of
the dynamical evolution operator.

Dynamic decoupling fails if dephasing Markovian

Bell states not stabilized with feedback control of the form

ρ̇ = [H0 + f (ρ(t))Hc , ρ] + D[Z ]ρ+ D[M]ρ (1)

Bell state approximately stabilizable using direct feedback,
e.g. choose H = 0, M =

√
mZI, F =

√
fXX
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Markovian dephasing leads to exponential decay of
entanglement in almost all cases.

Coherent control cannot counteract this decay — control
(dephasing) only affects antisymmetric (symmetric) part of
the dynamical evolution operator.

Dynamic decoupling fails if dephasing Markovian

Bell states not stabilized with feedback control of the form

ρ̇ = [H0 + f (ρ(t))Hc , ρ] + D[Z ]ρ+ D[M]ρ (1)

Bell state approximately stabilizable using direct feedback,
e.g. choose H = 0, M =

√
mZI, F =

√
fXX

Sophie Schirmer Open-loop control and reservoir engineering



Protecting Entanglement from Markovian dephasing

Example: two qubits, Heisenberg coupling with local control
(Z-type) subject to Markovian dephasing

If system is prepared in Bell state |00〉+ eiφ|11〉,
Markovian dephasing leads to exponential decay of
entanglement in almost all cases.

Coherent control cannot counteract this decay — control
(dephasing) only affects antisymmetric (symmetric) part of
the dynamical evolution operator.

Dynamic decoupling fails if dephasing Markovian

Bell states not stabilized with feedback control of the form

ρ̇ = [H0 + f (ρ(t))Hc , ρ] + D[Z ]ρ+ D[M]ρ (1)

Bell state approximately stabilizable using direct feedback,
e.g. choose H = 0, M =

√
mZI, F =

√
fXX

Sophie Schirmer Open-loop control and reservoir engineering



Direct Feedback Stabilization

Although we can’t stabilize pure state, purity and concurrence
can be made arbitrarily close to unity:

f

m

log
10

(1−2 (m f)1/2/(1+m+f))
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Even better, we can prepare entanglement too! Show movies.
Feedback not trivial to implement, realizeable using quantum
circuits? Non-uniqueness of M and F may help.

[J. Russian Laser Research 32, 502 (2011)]
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