Superposition, Entanglement, and Raising Schrödinger's Cat D. J. Wineland, NIST, Boulder, CO

Erwin Schrödinger’s Cat (1935)

At "half-life of particle, cat is dead and alive! "superposition"

Schrödinger (1952):
"We never experiment with just one electron or atom or (small) molecule. In thought experiments, we sometimes assume that we do; this invariably entails ridiculous consequences..."

But now we can enter this world!
Need:

* precise control + isolation from environment
* simple small systems
e.g., single or small groups of particles

The development:

* personal story + the work of many others

Norman Ramsey's group, Harvard,1966

On to Hans Dehmelt's lab: trapped electrons/ions

Single electrons

precursor to measurement of $\mu_{\text {electron }}$

R. S. Van Dyck, P. Schwinberg, H. Dehmelt, Phys. Rev. Lett. 38, 310 (1977)

D. Wineland, P. Ekstrom, and H. Dehmelt, Phys. Rev. Lett. 31, 1279 (1973).

Single electrons

 precursor to measurement of $\mu_{\text {electron }}$R. S. Van Dyck, P. Schwinberg, H. Dehmelt, Phys. Rev. Lett. 38, 310 (1977)

D. Wineland, P. Ekstrom, and H. Dehmelt, Phys. Rev. Lett. 31, 1279 (1973).
and, some ideas about laser cooling
D.J.Wineland and H. Dehmelt, Bulletin, Am. Phys. Soc. 20, 637 (1975)
concurrently,
T. W. Hänsch and A. L. Schawlow, Opt. Comm. 13, 68 (1975)

On to NIST (National Institute of Standards and Technology) (then NBS, National Bureau of Standards)

Helmut Hellwig
Cs beam frequency standard "NBS-6"

Optical-Sideband Cooling of Visible Atom Cloud Confined in Parabolic Well
W. Neuhauser, M. Hohenstatt, and P. Toschek

Institut für Angewandte Physik I der Universität Heidelberg, D-69 Heidelberg, West Germany
and
H. Dehmelt

Department of Physics, University of Washington. Seattle, Washington 98195
(Received 25 April 1978)
An assemblage of $<50 \mathrm{Ba}^{+}$ions, contained in a parabolic well, has been visually observed and cooled by means of near-resonant laser irradiation.

Peter Toschek
, Number 25

Radiation-Pressure Cooling of Bound Resona

D. J. Wineland, R. E. Drullinger, and F. L. Time and Frequency Division, National Bureau of Standards, Bc (Received 26 April 1978)
We report the first observation of radiation-pressure cooling o absorbers which are elastically bound to a laboratory fixed appar fined in a Penning electromagnetic trap are cooled to $<40 \mathrm{~K}$ by in $8-\mu \mathrm{W}$ output of a frequency doubled, single-made dye laser tuned side of the Doppler profile on the ${ }^{2} S_{1 / 2} \leftrightarrow{ }^{2} P_{3 / 2}\left(M_{J}=+\frac{1}{2} \longleftrightarrow M_{J}=+\frac{3}{2}\right.$ transitions. Cooling to approximately $10^{-3} \mathrm{~K}$ should be possible.

Isolating individual ions:

W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt, Phys. Rev. A22, 1137 (1980).

single ${ }^{24} \mathrm{Mg}^{+}$ion
D.J. Wineland and W. M. Itano, Phys. Lett. 82A, 75-78 (1981).

Single Hg^{+}ion experiments at NIST $(1981 \rightarrow)$

On to quantized motion:

Connections to cavity QED:

atomic two-level system:

atom-oscillator coupling:

Cavity-QED

quantized oscillator = mode of electromagnetic field

- atom/oscillator coupling \Leftrightarrow dipole coupling

Trapped atom

quantized oscillator = mode of motion

- atom/oscillator coupling
\Leftrightarrow dipole coupling modulated by motion
for both, $H_{l}=h-\left(3 / 4 a+3 / 4 a^{y}\right)$ Jaynes-Cummings coupling

Cooling to the ground state of motion:

Cooling to the ground state of motion

Single ions for (optical) clocks:

J. C. Bergquist et al., $1981 \rightarrow$

Jim Bergquist

- trapping \Rightarrow first-order Doppler shift $\rightarrow 0$
- laser cooling \Rightarrow time dilation small
- trapping in high vacuum at 4 K
\Rightarrow environmental perturbations (collisions, black body shifts, etc.) small
\Rightarrow first clock with systematic uncertainly (7×10^{-17}) below Cesium
- W. H. Oskay et al., Phys. Rev. Lett. 97, 020801 (2006)

Single ions for (optical) clocks:

J. C. Bergquist et al., $1981 \rightarrow$

Jim Bergquist

Single Hg^{+}ion

> Plus many other ion species: ${ }^{88} \mathrm{Sr}^{+},{ }^{171} \mathrm{Yb}^{+},{ }^{27} \mathrm{Al}^{+},{ }^{40} \mathrm{Ca}^{+},{ }^{115} \mathrm{In}^{+}$
see, e.g., P. Gill, Phil. Trans. R. Soc. A 369, 4109 (2011)

Enter quantum information processing
 Richard Feynman, David Deutsch, Paul Benioff,...(1980's)

Peter Shor: algorithm for efficient number factoring on a quantum computer (~ 1994)

Artur Ekert: presentation at the 1994 International Conference on Atomic Physics Boulder, Colorado

Atomic Ion Quantum Computation:

 (J. I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)$$
\text { SPIN } \rightarrow \text { MOTION MAP }
$$ SPIN \leftrightarrow MOTION GATE

INTERNAL STATE "QUBIT"

Ignacio Cirac
Peter Zoller

MOTION "DATA BUS"

(e.g., center-of-mass mode)

Motion qubit states

Atomic Ion Quantum Computation:

 (J. I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)
SPIN \rightarrow MOTION MAP

SPIN \leftrightarrow MOTION GATE

Chris Monroe
"Controlled-NOT" gate between motion and atom's internal state C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 75, 4714 (1995).

Ignacio Cirac

MOTION "DATA BUS"

(e.g., center-of-mass mode)

Motion qubit states

Some examples:

- gates, simple algorithm implementations many groups including NIST
- simulations of other quantum systems (R. Feynman, S. Lloyd...)
\diamond e.g., interacting oscillating ion dipoles simulate quantum magnets
C. Monroe et al., U. Maryland
T. Schätz et al., Freiburg;
J. Bollinger et al., NIST
- universal (digital) quantum simulator
R. Blatt et al., Innsbruck

John Bollinger

Rainer Blatt

Atomic ion experimental groups pursuing Quantum Information Processing:

Aarhus
Amherst
Tsinghua (Bejing)
U.C. Berkeley
U.C.L.A.

Duke
ETH (Zürich)
Freiburg
Garching (MPQ)
Georgia Tech Griffiths
Hannover
Innsbruck
JQI (U. Maryland)
Lincoln Labs
Imperial (London)
Mainz

MIT
NIST
NPL
Osaka
Oxford
Paris (Université Paris)
PTB
Saarland
Sandia National Lab
Siegen
Simon Fraser
Singapore
Sussex
Sydney
U. Washington

Weizmann Institute

Is there a quantum/classical boundary and what defines it?

- Well-known discussions:
- Ghirardi, Rimini, Weber, (A. Bassi, G. Ghirardi, Phys. Rep. 379, 257 (2003))
- A. J. Leggett (J. Phys.: Condens. Matter 14, R415 (2002))
- R. Penrose (Gen. Relativ. Gravit. 28, 581 (1996))
- Does it depend on size and what means "size"?
- mass? (look at decoherence of mesoscopic mechanical oscillators)
- physical dimensions?
\diamond optics - entanglement extends over km
\diamond mechanical system dimensions?
- number of elementary constituents?
\diamond e.g. electrons in super conducting circuits (A. J. Leggett, B. Whaley, ...)
- number of particles or degrees of freedom entangled?
$\diamond \mathrm{N}_{\text {entangled }} \cong 100$ atoms
(C. Gross et al., 464, 1165 (2010) - M. Oberthaler group)
- Interesting to explore all regimes!

Hardware

"ideal"

 trap

want small traps (for speed) \Rightarrow lithographic techniques

microfab at: GTRI, Sandia, NIST, Innsbruck, Mainz,

Dirty laundry: "anomalous" ion heating
Collaboration with Dustin Hite, Kyle McKay, Dave Pappas (Div. 686)

Ar ${ }^{+}$beam cleaning

Many other qubits: e.g., 2DEG GaAs Qubits

C. Marcus group

S. Hermelin et al., Nature 447, 435 (2011)

Al' "quantum-logic clock" (T. Rosenband et al.)

$$
\alpha|\downarrow\rangle_{A l}+\beta|\uparrow\rangle_{A l} \rightarrow \text { motion superposition } \rightarrow \alpha|\downarrow\rangle_{M g}+\beta|\uparrow\rangle_{M g}
$$

\diamond laser-cooled Mg^{+}keeps Al^{+}cold
$\diamond \mathrm{Mg}^{+}$helps to calibrate $\left\langle\mathrm{B}^{2}\right\rangle$ from all sources
\checkmark collisions observed by ions switching places
\diamond......
\Rightarrow systematic uncertainty $=0.8 \times 10^{-17}$

James Chou with "portable" Al^{+}clock

measure
gravitational potential red shift

NIST group: collaboration of many people

-

- plus students, postdocs, visitors (> 100)
- institutional support: Helmut Hellwig, Sam Stein, Don Sullivan, Tom O'Brian, Carl Williams, Katharine Gebbie...

Nobel award ceremony

And good friends along the way!

