Quantum-enhanced optical phase tracking. [Science **337**, 1514 (2012)]

H. M. Wiseman^{GU}, <u>H. Yonezawa^{UT}</u>, D. Nakane^{UT}, T. A. Wheatley^{UNSW-C}, K. Iwasawa^{UT}, S. Takeda^{UT}, H. Arao^{UT}, K. Ohki^{KU}, K. Tsumura^{UT}, D. W. Berry^{MU}, T. C. Ralph^{UQ}, E. H. Huntington^{UNSW-C}, **A. Furusawa^{UT}**

Centre for Quantum Dynamics

Howard Wiseman (Griffith University)

Outline

- Quantum-enhanced optical phase tracking: Theory
- 3 Quantum-enhanced optical phase tracking: Experiment
- Ultimate Limits (with MJH and DWB)

5 Conclusions

< ロ > < 同 > < 回 > < 回 >

Outline

- 2 Quantum-enhanced optical phase tracking: Theory
- 3 Quantum-enhanced optical phase tracking: Experiment
- 4 Ultimate Limits (with MJH and DWB)
- 5 Conclusions

< 同 ト < 三 ト < 三 ト

Measurement and Control

Howard M. Wiseman and Gerard J. Milburn

- The obvious reason to combine measurement and control is feedback, to purposefully change the average system evolution.
- Classically non-trivial, even with perfect measurement.
- cf. adaptive measurement controlling future measurements on the basis of the results of past ones, to obtain better data, leaving the average system evolution unchanged.
- Classically, a non-problem if measurements are perfect, but non-trivial in the quantum case.

Measurement and Control

LETTER

Real-time quantum feedback prepares and stabilizes photon number states

Clément Sayrin¹, Igor Dotsenko¹, Xingxing Zhou¹, Bruno Peaudecert¹, Théo Rybarczyk¹, Skhastien Gleyzes¹, Pierre Rouchon², Mazyar Mirrahimi², Hadis Amini², Michel Brune¹, Jean-Michel Raimond¹ & Serge Haroche^{1,4}

- The obvious reason to combine measurement and control is feedback, to purposefully change the average system evolution.
- Classically non-trivial, even with perfect measurement.
- cf. adaptive measurement controlling future measurements on the basis of the results of past ones, to obtain better data, leaving the average system evolution unchanged.
- Classically, a non-problem if measurements are perfect, but non-trivial in the quantum case.

Measurement and Control

LETTER

Real-time quantum feedback prepares and stabilizes photon number states

Clément Sayrin¹, Igor Dotsenko¹, Xingxing Zhou¹, Bruno Peaudecert¹, Théo Rybarczyk¹, Sebastien Gleyzes¹, Pierre Rouchon², Mazyar Mirrahimi², Hadis Amini², Michel Brune¹, Jean-Michel Raimond¹ & Serge Haroche^{1,4}

- The obvious reason to combine measurement and control is feedback, to purposefully change the average system evolution.
- Classically non-trivial, even with perfect measurement.
- cf. adaptive measurement controlling future measurements on the basis of the results of past ones, to obtain better data, leaving the average system evolution unchanged.
- Classically, a non-problem if measurements are perfect, but non-trivial in the quantum case.

Measurement and Control

Howard M. Wiseman and Gerard J. Milburn

- The obvious reason to combine measurement and control is feedback, to purposefully change the average system evolution.
- Classically non-trivial, even with perfect measurement.
- cf. adaptive measurement controlling future measurements on the basis of the results of past ones, to obtain better data, leaving the average system evolution unchanged.

• Classically, a non-problem if measurements are perfect, but non-trivial in the quantum case.

Measurement and Control

Howard M. Wiseman and Gerard J. Milburn

- The obvious reason to combine measurement and control is feedback, to purposefully change the average system evolution.
- Classically non-trivial, even with perfect measurement.
- cf. adaptive measurement controlling future measurements on the basis of the results of past ones, to obtain better data, leaving the average system evolution unchanged.
- Classically, a non-problem if measurements are perfect, but non-trivial in the quantum case.

Adaptive Measurement: Recent Examples

- 0. Measurement-based *Q* computation.
- Optimal state discrimination of multiple copies.
- 2. Tracking an open quantum system with a finite-state machine.
- 3. Phase estimation using quantum states under various conditions.

Adaptive Measurement: Recent Examples

.

0. Measurement-based Q computation.

Optimal state discrimination of multiple copies.

 Tracking an open quantum system with a finite-state machine.

 Phase estimation using quantum states under various conditions.

Adaptive Measurement: Recent Examples

- 0. *Measurement-based Q computation.*
- Optimal state discrimination of multiple copies.
- 2. Tracking an open quantum system with a finite-state machine.
- Phase estimation using quantum states under various conditions.

Adaptive Measurement: Recent Examples

	, inature
	LETTERS
Entanglement-free estimation	Heisenberg-limited phase
B. L. Higgins ¹ , D. W. Berry ² , S. D. Bartlett	t ³ , H. M. Wiseman ^{1,4} & G. J. Pryde ¹
nature photonics	LETTERS PUBLISHED ONLINE: 12 DECEMBER 2010 DOI: 10.1038/NPHOTON.2010.268
Entanglement-enh	anced measurement of a
completely unkno G. Y. Xiang ¹² , B. L. Higgins ¹ , D. W. Be	wn optical phase erry ³ , H. M. Wiseman ^{1*} and G. J. Pryde ^{1*}
Completely unknov G. Y. Xiang ^{1,2} , B. L. Higgins ¹ , D. W. Be 21 SEPTEMBER 2012	Wn optical phase arry ³ , H. M. Wiseman ^{1*} and G. J. Pryde ^{1*}

Hidehiro Yonezawa,* Daisuke Nakane,* Trevor A. Wheatley,**** Kohjiro Iwasawa,* Shuntaro Takeda,¹ Hajime Arao,¹ Kentaro Ohki,⁴ Koji Tsumura,⁵ Dominic W. Berry,^{6,7} Timothy C. Ralph,^{2,8} Howard M. Wiseman,⁹ Elanor H. Huntington,^{2,3} Akira Furusawa¹*

- 0. Measurement-based *Q* computation.
- Optimal state discrimination of multiple copies.
- Tracking an open quantum system with a finite-state machine.
- 3. Phase estimation using quantum states under various conditions.

< ロ > < 同 > < 回 > < 回 >

Measurements of Phase with a Local Oscillator

Other schemes: **heterodyne** / dual-homodyne; **adaptive** 'dyne; **optimal**. Optimal! That sounds good. What is it? I don't know in general. What about in the simplest case? Sure it's this POVM. And how can I do this in the lab? I haven't a clue.

Howard Wiseman (Griffith University)

Measurements of Phase with a Local Oscillator

Other schemes: heterodyne / dual-homodyne; adaptive 'dyne; optimal.

Optimal! That sounds good. What is it? I don't know in general. *What about in the simplest case?* Sure it's this POVM. *And how can I do this in the lab?* I haven't a clue.

Howard Wiseman (Griffith University)

Measurements of Phase with a Local Oscillator

Other schemes: heterodyne / dual-homodyne; adaptive 'dyne; optimal. Optimal! That sounds good. What is it? I don't know in general. What about in the simplest case? Sure it's this POVM. And how can I do this in the lab? I haven't a clu

Howard Wiseman (Griffith University)

Measurements of Phase with a Local Oscillator

Other schemes: heterodyne / dual-homodyne; adaptive 'dyne; optimal. Optimal! That sounds good. What is it? I don't know in general. What about in the simplest case? Sure it's this POVM. And how can I do this in the lab? I haven't a clue.

Howard Wiseman (Griffith University) Quantum-enhanced optical phase tracking

Performance of Schemes

Scenario	Type of Light	Detection	Theory	V (theory)	Experiment	V (expt)
	Coherent	Heterodyne	? 1970s?	0.50·n ⁻¹ =SQL	Armen et al, PRL '02 ?	0.62·n ⁻¹
Single pulse,		Adaptive	HMW, PRL '95	0.25· <i>n</i> ⁻¹	Armen et al, PRL '02	0.40·n _o ⁻¹
constant phase,		Optimal	? 1950s?	0.25· <i>n</i> ⁻¹ =CSL		
n = mean pho-	Squeezed	Heterodyne	? (pre `95)	0.25· <i>n</i> ⁻¹	?	
ton number		Adaptive	DWB&HMW, PRA '01	$slow(n) \cdot ln(n) \cdot n^{-2}$	-	
		Optimal	Collett, PS '93	$0.25 \cdot \ln(n) \cdot n^{-2}$		
	tinuous beam, Coherent ner phase,	Heterodyne	DWB&HMW, PRA '02	0.35·N ^{-1/2}	± Wheatley et al, PRL '10	$0.37 \cdot N^{-1/2}$
Continuous beam,		Adaptive	DWB&HMW, PRA '02	0.25·N ^{-1/2}	± Wheatley et al, PRL '10	$0.30 \cdot N^{-1/2}$
Wiener phase,		Optimal	DWB&MJH&HMW up	0.25·N ^{-1/2} =CSL		
N = n per coh-	Squeezed (OPO output)	Heterodyne	DWB&HMW, PRA '06	0.25·N ^{-1/2}	-	
erence time.		Adaptive	DWB&MJH&HMW up	$slow(N) \cdot N^{-2/3}$	± Yonezawa et al, Sci. '12	$0.21 \cdot N^{-1/2}$
		Optimal	DWB&MJH&HMW up	$\geq 0.21 \cdot N^{-2/3}$		

Howard Wiseman (Griffith University)

Outline

2 Quantum-enhanced optical phase tracking: Theory

3 Quantum-enhanced optical phase tracking: Experiment

4 Ultimate Limits (with MJH and DWB)

5 Conclusions

Howard Wiseman (Griffith University) Quantum-enhanced optical phase tracking QC @ KITP, March 2013 8 / 22

< ロ > < 同 > < 回 > < 回 >

The Parameter(s) to be Estimated

$$arphi(t) = \sqrt{\kappa} \int_{-\infty}^{t} e^{-\lambda(t-s)} dV(s).$$
 For $\lambda = 0, \ au_{\mathsf{coh}} = \kappa^{-1}$

Howard Wiseman (Griffith University)

The Squeezed Beam

- At centre frequency antisqueezed spectrum $S_{\rho}(0) \equiv e^{2r_{\rho}} [r_{\rho} \geq r_m]$
- ... squeezed spectrum $S_m(0) \equiv e^{-2r_m} < 1 \implies$ nonclassical.
- Coherent amplitude α , so that flux = $\mathcal{N} = |\alpha|^2 +$ squeezed flux.
- Broadband squeezing \implies squeezed flux is "infinite".
- But we show (numerically) that using narrowband squeezing (with negligible flux) makes little difference so we take $\mathcal{N} = |\alpha|^2$.

The Photocurrent Local Oscillator A в (LO) beam $\Phi(t)$ Df. Phase sensitive modulation Feedback $\Phi(t) - \phi(t)$ Phase-squeezed beam Filter Phase modulation Processing LO Signal $\varphi(t)$ aueezeo Estimate $\varphi_s(t)$ 1.A.A heam 1.Anno

$\Phi(t) = \varphi_f(t) + \pi/2$ $\approx \varphi(t) + \pi/2.$

$$(t)dt = 2 |\alpha| \sin [\varphi(t) - \varphi_f(t)] dt + \sqrt{R_{sq}(t)} dW(t), \qquad (1)$$

$$R_{\rm sq}(t) = \sin^2 \left[\varphi(t) - \varphi_f(t)\right] e^{2r_p} + \cos^2 \left[\varphi(t) - \varphi_f(t)\right] e^{-2r_m}, \quad (2)$$

For good tracking $\sigma_f^2 \equiv \langle [\varphi(t) - \varphi_f(t)]^2 \rangle \ll 1$. We expand I(t) to second order in $[\varphi(t) - \varphi_f(t)]$ and approximate $R_{sq}(t)$ by its average:

$$V(t)dt \simeq 2 |\alpha| [\varphi(t) - \varphi_f(t)] dt + \sqrt{\bar{R}_{sq}} dW(t),$$
 (3)

$$\bar{R}_{\rm sq} = e^{-2r_m} + \sigma_f^2 \times e^{2r_p}. \tag{4}$$

F

A (10) A (10)

The Filtered Estimate

Under this approx., the optimal (Kalman) filter of the current is

$$arphi_f(t) = \Gamma \int_{-\infty}^t e^{-\lambda(t-s)} rac{I(s)}{2|lpha|} ds$$

where $\Gamma = \sqrt{4 |\alpha|^2 \kappa / \bar{R}_{sq}}$ must be $\gg \lambda$ to justify the approx.

- Taking $\lambda = 0$ for simplicity gives $\sigma_t^2 = \sqrt{\kappa/\Gamma}$.
- This is still implicit as \bar{R}_{sa} (and hence Γ) depends on σ_{f}^2 .

The Smoothed Estimate

 φ_f is the optimal *causal* estimate, but a better estimate is found by optimally *smoothing* the filter:

$$\varphi_{s}(t) = (2\lambda + \Gamma) \int_{t}^{\infty} e^{-(\lambda + \Gamma)(s-t)} \varphi_{f}(s) ds.$$

• Again taking $\lambda = 0$ for simplicity gives $\sigma_s^2 = \sigma_f^2/2$.

Squeeze till it hurts!

- Even with everything ideal $\lambda = 0$, $r_m = r_p = r$, $\sigma_f^2 \ll 1$ too much squeezing hurts the performance of the adaptive scheme because $\bar{R}_{sq} = e^{-2r_m} + \sigma_f^2 \times e^{2r_p}$.
- Shown here for $N = |\alpha|^2/\kappa = 100$, Squeezing (dB) = $10 \log_{10} e^{2r}$.

Howard Wiseman (Griffith University) Quantum-enhanced optical phase tracking QC @ KITP, March 2013 14 / 22

Outline

- Background
- 2 Quantum-enhanced optical phase tracking: Theory
- 3 Quantum-enhanced optical phase tracking: Experiment
- 4 Ultimate Limits (with MJH and DWB)

5 Conclusions

Howard Wiseman (Griffith University) Quantum-enhanced optical phase tracking QC @ KITP, March 2013 15 / 22

< 回 > < 三 > < 三 >

The Experiment

The Results

- i) coherent-state limit, $\eta = 1$.
- ii) coherent-states, $\eta = 0.85$.

iii) squeezing, $\eta = 0.85$, $r_p > r_m$.

iv) squeezing, $\eta = 1$, $r_{\rho} = r_m$.

< 6 k

→ ∃ → < ∃ →</p>

Outline

- Background
- 2 Quantum-enhanced optical phase tracking: Theory
- 3 Quantum-enhanced optical phase tracking: Experiment
- Ultimate Limits (with MJH and DWB)

5 Conclusions

Howard Wiseman (Griffith University) Quantum-enhanced optical phase tracking QC @ KITP, March 2013 18 / 22

< 回 > < 三 > < 三 >

Quantum Cramér-Rao Bound

Using the theory of Tsang, HMW, & Caves, PRL 106, 090401 (2011).

$$\langle [\varphi_{\text{est}}(t) - \varphi(t)]^2 \rangle \ge F_{t,t}^{-1},$$
 (5)

DDO E KENKE

where $F_{t,t}^{-1}$ is the matrix inverse of the continuously indexed Fisher information "matrix" $F_{t,t'} := F^{(Q)}(t,t') + F^{(C)}(t,t')$, where

$$F^{(Q)}(t,t') := \frac{2}{\hbar^2} \left\langle \Delta f(t) \Delta f(t') + \Delta f(t') \Delta f(t) \right\rangle$$

$$F^{(C)}(t,t') := \int D\varphi P_{\text{prior}}[\varphi] \frac{\delta \ln P_{\text{prior}}[\varphi]}{\delta\varphi(t)} \frac{\delta \ln P_{\text{prior}}[\varphi]}{\delta\varphi(t')}. \tag{6}$$
where $f(t)$ is the photon-flux operator and $(\lambda,\kappa) \mapsto P_{\text{prior}}[\varphi].$

In the high-squeezing limit we find

$$\mathcal{F}^{(Q)}(t,t')\simeq 4\mathcal{N}\delta(t-t')+8\mathcal{N}^2e^{-\gamma_{\mathcal{P}}|t-t'|},$$

and for $\lambda = 0$,

$$\langle [arphi_{\mathsf{est}}(t) - arphi(t)]^2
angle \gtrsim 0.21 (\mathcal{N}/\kappa)^{-2/3}$$

Is this achievable by adaptive measurements?

- DWB & HMW derived a $(N/\kappa)^{-2/3}$ scaling in 2002 [PRA], but
 - this was for broad-band squeezing, and
 - it ignored the (infinite) flux in the squeezed photons.
- DWB & HMW corrected this short-coming in 2006 [PRA] by
 - considering finite-bandwidth squeezing,
 - taking into account the squeezed photons, and
 - optimizing the bandwidth as well as the degree of squeezing, and found a scaling of only $(N/\kappa)^{-5/8}$ [cf. CSL $\sim (N/\kappa)^{-1/2}$].
- However, very recently we have [see our 2013 erratum]
 - realized the 2006 paper used the *wrong expression* for the squeezed flux,
 - corrected this in the analytical argument, which now gives a $(\mathcal{N}/\kappa)^{-2/3}$ scaling, and
 - verified this scaling (up to some sub-logarithmic multiplier) numerically for $1 \leq \mathcal{N} \leq 10^{20}.$

▲ ■ ト ■ つへで arch 2013 20 / 22

イロト 不得 トイヨト イヨト

Conclusions

Outline

- Background
- 2 Quantum-enhanced optical phase tracking: Theory
- 3 Quantum-enhanced optical phase tracking: Experiment
- 4 Ultimate Limits (with MJH and DWB)

5 Conclusions

< 回 > < 三 > < 三 >

- Squeezed states allow one to beat the coherent-state-limit for phase estimation using a local oscillator.
- However, if the phase is initially completely unknown, or widely varying, to do better than CSL scaling requires an adaptive measurement (at least).
- We have performed the first experiment of this kind that has beaten the CSL (by $15 \pm 4\%$).
- The theory predicts, and we observe experimentally, that there is such a thing as "too much squeezing" the first time this has been observed for a fundamental task.
- With optimal squeezing we think that, in principle, adaptive measurement could achieve the best possible scaling $\sim \mathcal{N}^{-2/3}$, as determined from the quantum Cramér-Rao bound.
- Future experiments should optimize the bandwidth as well as the degree of squeezing, for a given *total* flux.