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Background

Measurement and Control

The obvious reason to combine
measurement and control is
feedback, to purposefully change
the average system evolution.
Classically non-trivial, even with
perfect measurement.
cf. adaptive measurement —
controlling future measurements
on the basis of the results of past
ones, to obtain better data,
leaving the average system
evolution unchanged.
Classically, a non-problem if
measurements are perfect, but
non-trivial in the quantum case.
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Real-time quantum feedback prepares and stabilizes
photon number states
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Mazyar Mirrahimi3, Hadis Amini2, Michel Brune1, Jean-Michel Raimond1 & Serge Haroche1,4

Feedback loops are central to most classical control procedures. A
controller compares the signalmeasured by a sensor (systemoutput)
with the target value or set-point. It then adjusts an actuator (system
input) to stabilize the signal around the target value. Generalizing
this scheme to stabilize a micro-system’s quantum state relies on
quantum feedback1–3, which must overcome a fundamental dif-
ficulty: the sensor measurements cause a random back-action on
the system. An optimal compromise uses weak measurements4,5,
providing partial information withminimal perturbation. The con-
troller should include the effect of this perturbation in the computa-
tion of the actuator’s operation, which brings the incrementally
perturbed state closer to the target. Although some aspects of this
scenario have been experimentally demonstrated for the control of
quantum6–9 or classical10,11micro-system variables, continuous feed-
back loop operations that permanently stabilize quantum systems
around a target state have not yet been realized. Here we have imple-
mented such a real-time stabilizing quantum feedback scheme12 fol-
lowing a method inspired by ref. 13. It prepares on demand photon
number states (Fock states) of a microwave field in a superconduct-
ing cavity, and subsequently reverses the effects of decoherence-
induced field quantum jumps14–16. The sensor is a beam of atoms
crossing the cavity, which repeatedly performs weak quantum non-
demolitionmeasurements of the photon number14. The controller is
implemented in a real-time computer commanding the actuator,
which injects adjusted small classical fields into the cavity between
measurements.Themicrowave field is a quantumoscillatorusableas
a quantum memory17 or as a quantum bus swapping information
between atoms18. Our experiment demonstrates that active control
can generate non-classical states of this oscillator and combat their
decoherence15,16, and is a significant step towards the implementa-
tion of complex quantum information operations.
A Fock state with n photons is hard to generate and very fragile.

Prepared in a cavity of damping time Tc, it survives on average for
Tc/n before undergoing a quantum jump towards the jn2 1æ Fock state.
In contrast, classical Glauber states19, which are coherent superpositions
of Fock states with an average photon number !n and a Poisson photon
number probability distribution P(n)5 exp(2!n) (!nn/n!), are much
easier to prepare and more robust. Glauber states are easily obtained
by coupling the initially empty cavity to a classical field source for a fixed
amount of time. This operation amounts to the translation of the field in
its phase space from the vacuum(!n5 0 coherent state) to a final coherent
state having an amplitude a5

ffiffiffiffiffi
!n0

p
with a mean photon number !n0.

After the source is switched off, the field remains in a coherent state with
an exponentially decaying amplitude, !n becoming !n(t)5 !n0exp(2t/Tc).
Experimentalmethods to prepare Fock states in a cavity C start from a

coherent state and exploit the coupling of the field to two-level
qubits14,20,21. A deterministic procedure feeds quanta one at a time into
the field initially in vacuum by swapping its energy with a qubit
periodically re-pumped into its excited state21. This method, which has

been generalized to synthesize arbitrary superpositions of Fock states22,
cannot counteract decoherence because it does not provide real time
information on the actual field stateinC. Fock states can also be prepared
by a quantum non-demolition (QND) measurement performed on an
initial coherent state with !n0? 0 (ref. 14). Atomic qubits probe the field
one at a time and the photon number is progressively pinned down to an
inherently randomvalue, theprobabilityP(n) for findingnbeingthevalue
corresponding to the initial coherent field. This QND method provides
real time information about the field statehistoryduring theprocess. This
information can be used for a deterministic steering of the field towards a
target Fock state jntæ, aswell as for detection and subsequent correction of
quantum jump events. We have performed a quantum feedback experi-
ment by combining the detection of successive atoms with field phase-
space translations of controlled amplitudes. We thus prepare Fock states
jntæ on demand and, on average, stabilize them by bringing the field back
into them after decoherence-induced quantum jumps.
The experiment is performed in a superconducting cavity C with

Tc5 65ms cooled to 0.8K (see Fig. 1 and SupplementaryMethods). It
is initially fed by the source Swhichprepares a coherent statewith a real
amplitude at5

ffiffiffiffi
nt

p
. The quantum sensors are circular Rydberg atoms

prepared in B at regular time intervals (Ta5 82ms)18,23. The number of
Rydberg atoms in each sample obeys Poisson statistics, with 0.6 atoms
per sample on average. The atomic states jgæ and jeæ with principal
quantum numbers 50 and 51 are the 0 and 1 states of a qubit slightly
off-resonant with cavity C (atom–cavity detuning d/2p5 245 kHz).
The qubit coherence undergoes in C a light-induced phase shift linear
in the photon number (phase-shift per photon w05 0.256p). This
phase shift is measured by a Ramsey interferometer (R1 and R2).
Detecting each atomic sample in D provides partial information about
the number of photons in C.
Each iteration of the feedback loop12 consists of a sample detection

by the detector D, a cavity field state estimation by the controller K and
a field translation performed by the actuator S (Fig. 1). In each itera-
tion, K first updates its estimation of the field density operatorr on the
basis of the detection outcome, and corrects this estimation by taking
into account the effect of cavity relaxation at finite temperature during
the iteration time Ta. It then computes the amplitude a of the trans-
lation described by the operator D(a)5 exp(aa{2 a*a) (here a is the
photon annihilation operator, { and * denote Hermitian and complex
conjugate, respectively). Because the initial and target density opera-
tors are real, we restrict the translations to real values of a. The field
translation minimizes a proper ‘distance’ d(rt, D(a)rD(2a)) (defined
below) between the displaced state and the target state rt5 jntæÆntj.
Finally, at the end of each feedback loop iteration, K calculates the
translated field’s state, which is to be used at the beginning of the next
iteration. Note that this quantum state estimation, performed on a
single quantum trajectory, cannot be obtained from the measurement
data only. It also incorporates all available information on the state
preparation, displacements and relaxation.

1Laboratoire Kastler Brossel, ENS, UPMC–Paris 6, CNRS, 24 rue Lhomond, 75005 Paris, France. 2Centre Automatique et Systèmes, Mathématiques et Systèmes, Mines ParisTech, 60 Boulevard Saint-
Michel, 75272Paris Cedex 6, France. 3INRIA Paris-Rocquencourt, Domainede Voluceau, BP105, 78153Le ChesnayCedex, France. 4Collège de France, 11 placeMarcelinBerthelot, 75231Paris Cedex 05,
France.
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Figure 1 | Scheme of the quantum feedback set-up. An atomic Ramsey
interferometer (auxiliary cavities R1 and R2) sandwiches the superconducting
Fabry–Perot cavity C resonant at 51GHz and cooled to 0.8K (the mean
number of blackbody photons is 0.05). The pulsed classical source S9 induces
p/2 pulses resonant with the | gæR | eæ transition in R1 and R2 (with relative
phase wr) on the velocity-selected (250m s21) Rydberg atom qubits (purple
circles) prepared by laser excitation (blue arrow) from a rubidium atomic beam

(green arrow) in B. The field-ionization detector D measures the qubits in the
e/g basis with a 35% detection efficiency and an error rate of a few per cent
(Supplementary Methods). The actuator S feeds cavity C by diffraction on the
mirror edges. The controller K (a CPU-based ADwin Pro-II system) collects
information fromD to determine the real translation amplitude a applied by S.
It sets the S-pulse duration through a PIN diode switch A (63-ms pulse for
|a | 5 0.1) as well as a 180u phase-shifter W controlling the sign of a.
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Figure 2 | Individual quantum feedback trajectories. Two feedback runs
lasting 164ms (2,000 loop iterations) stabilizing |nt5 2æ (left column) and
|nt5 3æ (right column). The phase-shift per photon, w05 0.256p, allows
controller K to discriminate n values between 0 and 7. For nt5 2, the Ramsey
phase is wr520.44 rad, corresponding to nearly equal e and g detection
probabilities when n5 2. For nt5 3, two Ramsey phases wr,1520.44 rad and
wr,2521.24 rad are alternatively used, corresponding to equal e and g
probabilities when n5 2 and n5 3, respectively. a, Sequences of qubit

detection outcomes. The detection results are shown as blue downward bars for
g and red upward bars for e. Two-atom detections in the same state appear as
double-length bars. b, Estimated distance between the target and the actual
state. c, Applied a-corrections (shown on a log scale as sgn(a)log |a | ). d, Photon
number probabilities estimated by K: P(n5 nt) is in green, P(n, nt) in red,
P(n. nt) in blue. e, Field density operators r in the Fock-state basis estimated
by K at four different times marked by arrows.
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number of blackbody photons is 0.05). The pulsed classical source S9 induces
p/2 pulses resonant with the | gæR | eæ transition in R1 and R2 (with relative
phase wr) on the velocity-selected (250m s21) Rydberg atom qubits (purple
circles) prepared by laser excitation (blue arrow) from a rubidium atomic beam

(green arrow) in B. The field-ionization detector D measures the qubits in the
e/g basis with a 35% detection efficiency and an error rate of a few per cent
(Supplementary Methods). The actuator S feeds cavity C by diffraction on the
mirror edges. The controller K (a CPU-based ADwin Pro-II system) collects
information fromD to determine the real translation amplitude a applied by S.
It sets the S-pulse duration through a PIN diode switch A (63-ms pulse for
|a | 5 0.1) as well as a 180u phase-shifter W controlling the sign of a.
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Figure 2 | Individual quantum feedback trajectories. Two feedback runs
lasting 164ms (2,000 loop iterations) stabilizing |nt5 2æ (left column) and
|nt5 3æ (right column). The phase-shift per photon, w05 0.256p, allows
controller K to discriminate n values between 0 and 7. For nt5 2, the Ramsey
phase is wr520.44 rad, corresponding to nearly equal e and g detection
probabilities when n5 2. For nt5 3, two Ramsey phases wr,1520.44 rad and
wr,2521.24 rad are alternatively used, corresponding to equal e and g
probabilities when n5 2 and n5 3, respectively. a, Sequences of qubit

detection outcomes. The detection results are shown as blue downward bars for
g and red upward bars for e. Two-atom detections in the same state appear as
double-length bars. b, Estimated distance between the target and the actual
state. c, Applied a-corrections (shown on a log scale as sgn(a)log |a | ). d, Photon
number probabilities estimated by K: P(n5 nt) is in green, P(n, nt) in red,
P(n. nt) in blue. e, Field density operators r in the Fock-state basis estimated
by K at four different times marked by arrows.
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The obvious reason to combine
measurement and control is
feedback, to purposefully change
the average system evolution.
Classically non-trivial, even with
perfect measurement.
cf. adaptive measurement —
controlling future measurements
on the basis of the results of past
ones, to obtain better data,
leaving the average system
evolution unchanged.
Classically, a non-problem if
measurements are perfect, but
non-trivial in the quantum case.
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Feedback loops are central to most classical control procedures. A
controller compares the signalmeasured by a sensor (systemoutput)
with the target value or set-point. It then adjusts an actuator (system
input) to stabilize the signal around the target value. Generalizing
this scheme to stabilize a micro-system’s quantum state relies on
quantum feedback1–3, which must overcome a fundamental dif-
ficulty: the sensor measurements cause a random back-action on
the system. An optimal compromise uses weak measurements4,5,
providing partial information withminimal perturbation. The con-
troller should include the effect of this perturbation in the computa-
tion of the actuator’s operation, which brings the incrementally
perturbed state closer to the target. Although some aspects of this
scenario have been experimentally demonstrated for the control of
quantum6–9 or classical10,11micro-system variables, continuous feed-
back loop operations that permanently stabilize quantum systems
around a target state have not yet been realized. Here we have imple-
mented such a real-time stabilizing quantum feedback scheme12 fol-
lowing a method inspired by ref. 13. It prepares on demand photon
number states (Fock states) of a microwave field in a superconduct-
ing cavity, and subsequently reverses the effects of decoherence-
induced field quantum jumps14–16. The sensor is a beam of atoms
crossing the cavity, which repeatedly performs weak quantum non-
demolitionmeasurements of the photon number14. The controller is
implemented in a real-time computer commanding the actuator,
which injects adjusted small classical fields into the cavity between
measurements.Themicrowave field is a quantumoscillatorusableas
a quantum memory17 or as a quantum bus swapping information
between atoms18. Our experiment demonstrates that active control
can generate non-classical states of this oscillator and combat their
decoherence15,16, and is a significant step towards the implementa-
tion of complex quantum information operations.
A Fock state with n photons is hard to generate and very fragile.

Prepared in a cavity of damping time Tc, it survives on average for
Tc/n before undergoing a quantum jump towards the jn2 1æ Fock state.
In contrast, classical Glauber states19, which are coherent superpositions
of Fock states with an average photon number !n and a Poisson photon
number probability distribution P(n)5 exp(2!n) (!nn/n!), are much
easier to prepare and more robust. Glauber states are easily obtained
by coupling the initially empty cavity to a classical field source for a fixed
amount of time. This operation amounts to the translation of the field in
its phase space from the vacuum(!n5 0 coherent state) to a final coherent
state having an amplitude a5

ffiffiffiffiffi
!n0

p
with a mean photon number !n0.

After the source is switched off, the field remains in a coherent state with
an exponentially decaying amplitude, !n becoming !n(t)5 !n0exp(2t/Tc).
Experimentalmethods to prepare Fock states in a cavity C start from a

coherent state and exploit the coupling of the field to two-level
qubits14,20,21. A deterministic procedure feeds quanta one at a time into
the field initially in vacuum by swapping its energy with a qubit
periodically re-pumped into its excited state21. This method, which has

been generalized to synthesize arbitrary superpositions of Fock states22,
cannot counteract decoherence because it does not provide real time
information on the actual field stateinC. Fock states can also be prepared
by a quantum non-demolition (QND) measurement performed on an
initial coherent state with !n0? 0 (ref. 14). Atomic qubits probe the field
one at a time and the photon number is progressively pinned down to an
inherently randomvalue, theprobabilityP(n) for findingnbeingthevalue
corresponding to the initial coherent field. This QND method provides
real time information about the field statehistoryduring theprocess. This
information can be used for a deterministic steering of the field towards a
target Fock state jntæ, aswell as for detection and subsequent correction of
quantum jump events. We have performed a quantum feedback experi-
ment by combining the detection of successive atoms with field phase-
space translations of controlled amplitudes. We thus prepare Fock states
jntæ on demand and, on average, stabilize them by bringing the field back
into them after decoherence-induced quantum jumps.
The experiment is performed in a superconducting cavity C with

Tc5 65ms cooled to 0.8K (see Fig. 1 and SupplementaryMethods). It
is initially fed by the source Swhichprepares a coherent statewith a real
amplitude at5

ffiffiffiffi
nt

p
. The quantum sensors are circular Rydberg atoms

prepared in B at regular time intervals (Ta5 82ms)18,23. The number of
Rydberg atoms in each sample obeys Poisson statistics, with 0.6 atoms
per sample on average. The atomic states jgæ and jeæ with principal
quantum numbers 50 and 51 are the 0 and 1 states of a qubit slightly
off-resonant with cavity C (atom–cavity detuning d/2p5 245 kHz).
The qubit coherence undergoes in C a light-induced phase shift linear
in the photon number (phase-shift per photon w05 0.256p). This
phase shift is measured by a Ramsey interferometer (R1 and R2).
Detecting each atomic sample in D provides partial information about
the number of photons in C.
Each iteration of the feedback loop12 consists of a sample detection

by the detector D, a cavity field state estimation by the controller K and
a field translation performed by the actuator S (Fig. 1). In each itera-
tion, K first updates its estimation of the field density operatorr on the
basis of the detection outcome, and corrects this estimation by taking
into account the effect of cavity relaxation at finite temperature during
the iteration time Ta. It then computes the amplitude a of the trans-
lation described by the operator D(a)5 exp(aa{2 a*a) (here a is the
photon annihilation operator, { and * denote Hermitian and complex
conjugate, respectively). Because the initial and target density opera-
tors are real, we restrict the translations to real values of a. The field
translation minimizes a proper ‘distance’ d(rt, D(a)rD(2a)) (defined
below) between the displaced state and the target state rt5 jntæÆntj.
Finally, at the end of each feedback loop iteration, K calculates the
translated field’s state, which is to be used at the beginning of the next
iteration. Note that this quantum state estimation, performed on a
single quantum trajectory, cannot be obtained from the measurement
data only. It also incorporates all available information on the state
preparation, displacements and relaxation.

1Laboratoire Kastler Brossel, ENS, UPMC–Paris 6, CNRS, 24 rue Lhomond, 75005 Paris, France. 2Centre Automatique et Systèmes, Mathématiques et Systèmes, Mines ParisTech, 60 Boulevard Saint-
Michel, 75272Paris Cedex 6, France. 3INRIA Paris-Rocquencourt, Domainede Voluceau, BP105, 78153Le ChesnayCedex, France. 4Collège de France, 11 placeMarcelinBerthelot, 75231Paris Cedex 05,
France.
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Figure 1 | Scheme of the quantum feedback set-up. An atomic Ramsey
interferometer (auxiliary cavities R1 and R2) sandwiches the superconducting
Fabry–Perot cavity C resonant at 51GHz and cooled to 0.8K (the mean
number of blackbody photons is 0.05). The pulsed classical source S9 induces
p/2 pulses resonant with the | gæR | eæ transition in R1 and R2 (with relative
phase wr) on the velocity-selected (250m s21) Rydberg atom qubits (purple
circles) prepared by laser excitation (blue arrow) from a rubidium atomic beam

(green arrow) in B. The field-ionization detector D measures the qubits in the
e/g basis with a 35% detection efficiency and an error rate of a few per cent
(Supplementary Methods). The actuator S feeds cavity C by diffraction on the
mirror edges. The controller K (a CPU-based ADwin Pro-II system) collects
information fromD to determine the real translation amplitude a applied by S.
It sets the S-pulse duration through a PIN diode switch A (63-ms pulse for
|a | 5 0.1) as well as a 180u phase-shifter W controlling the sign of a.
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Figure 2 | Individual quantum feedback trajectories. Two feedback runs
lasting 164ms (2,000 loop iterations) stabilizing |nt5 2æ (left column) and
|nt5 3æ (right column). The phase-shift per photon, w05 0.256p, allows
controller K to discriminate n values between 0 and 7. For nt5 2, the Ramsey
phase is wr520.44 rad, corresponding to nearly equal e and g detection
probabilities when n5 2. For nt5 3, two Ramsey phases wr,1520.44 rad and
wr,2521.24 rad are alternatively used, corresponding to equal e and g
probabilities when n5 2 and n5 3, respectively. a, Sequences of qubit

detection outcomes. The detection results are shown as blue downward bars for
g and red upward bars for e. Two-atom detections in the same state appear as
double-length bars. b, Estimated distance between the target and the actual
state. c, Applied a-corrections (shown on a log scale as sgn(a)log |a | ). d, Photon
number probabilities estimated by K: P(n5 nt) is in green, P(n, nt) in red,
P(n. nt) in blue. e, Field density operators r in the Fock-state basis estimated
by K at four different times marked by arrows.
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number of blackbody photons is 0.05). The pulsed classical source S9 induces
p/2 pulses resonant with the | gæR | eæ transition in R1 and R2 (with relative
phase wr) on the velocity-selected (250m s21) Rydberg atom qubits (purple
circles) prepared by laser excitation (blue arrow) from a rubidium atomic beam

(green arrow) in B. The field-ionization detector D measures the qubits in the
e/g basis with a 35% detection efficiency and an error rate of a few per cent
(Supplementary Methods). The actuator S feeds cavity C by diffraction on the
mirror edges. The controller K (a CPU-based ADwin Pro-II system) collects
information fromD to determine the real translation amplitude a applied by S.
It sets the S-pulse duration through a PIN diode switch A (63-ms pulse for
|a | 5 0.1) as well as a 180u phase-shifter W controlling the sign of a.
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Figure 2 | Individual quantum feedback trajectories. Two feedback runs
lasting 164ms (2,000 loop iterations) stabilizing |nt5 2æ (left column) and
|nt5 3æ (right column). The phase-shift per photon, w05 0.256p, allows
controller K to discriminate n values between 0 and 7. For nt5 2, the Ramsey
phase is wr520.44 rad, corresponding to nearly equal e and g detection
probabilities when n5 2. For nt5 3, two Ramsey phases wr,1520.44 rad and
wr,2521.24 rad are alternatively used, corresponding to equal e and g
probabilities when n5 2 and n5 3, respectively. a, Sequences of qubit

detection outcomes. The detection results are shown as blue downward bars for
g and red upward bars for e. Two-atom detections in the same state appear as
double-length bars. b, Estimated distance between the target and the actual
state. c, Applied a-corrections (shown on a log scale as sgn(a)log |a | ). d, Photon
number probabilities estimated by K: P(n5 nt) is in green, P(n, nt) in red,
P(n. nt) in blue. e, Field density operators r in the Fock-state basis estimated
by K at four different times marked by arrows.
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The obvious reason to combine
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feedback, to purposefully change
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Classically non-trivial, even with
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on the basis of the results of past
ones, to obtain better data,
leaving the average system
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Classically, a non-problem if
measurements are perfect, but
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Mixed State Discrimination Using Optimal Control

B. L. Higgins,1 B.M. Booth,1 A. C. Doherty,2 S. D. Bartlett,3 H.M. Wiseman,1,* and G. J. Pryde1,†

1Centre for Quantum Dynamics, Griffith University, Brisbane, 4111, Australia
2Physics Department, The University of Queensland, Brisbane, 4072, Australia

3School of Physics, The University of Sydney, Sydney, 2006, Australia
(Received 7 September 2009; published 24 November 2009)

We present theory and experiment for the task of discriminating two nonorthogonal states, given

multiple copies. We implement several local measurement schemes, on both pure states and states mixed

by depolarizing noise. We find that schemes which are optimal (or have optimal scaling) without noise

perform worse with noise than simply repeating the optimal single-copy measurement. Applying optimal

control theory, we derive the globally optimal local measurement strategy, which outperforms all other

local schemes, and experimentally implement it for various levels of noise.

DOI: 10.1103/PhysRevLett.103.220503 PACS numbers: 03.67.!a, 03.65.Ta, 42.50.Ex

Quantum control—the application of control theory to
quantum systems—offers powerful tools to enable quan-
tum technologies to function robustly in the presence of
noise and device imperfections [1–5] and to simplify pro-
tocols by reducing the need for entangling operations or
collective measurements [6,7]. One such tool is adaptive
measurement, wherein one adapts future measurements
based on the outcomes of previous ones [1]. Quantum
control based on adaptive measurements has been used to
improve the measurement of an optical phase [4,8,9]. Here,
we consider the problem of quantum state discrimination
and demonstrate experimentally that adaptive local mea-
surements can discriminate pure states better than non-
adaptive ones. Moreover, we show that in the presence of
noise, which is unavoidable in practice, the full power of
optimal control theory is required to derive the globally
optimal adaptive (local) measurement scheme, which we
then experimentally implement.

The task of state discrimination is a fundamental primi-
tive in many fields of quantum information science, in-
cluding quantum communications, cryptography, and
computing. If a quantum system is prepared in one of
several possible states, this preparation can only be deter-
mined with certainty if the possible states are all mutually
orthogonal. For nonorthogonal states, two complementary
tasks are often considered [1]: minimizing the likelihood of
either an incorrect result (an error) [10] or of an incon-
clusive result with no errors [11–13].

In this Letter, we consider the minimum-error discrimi-
nation of two nonorthogonal qubit states, given N identical
copies of the state, using only local measurements, where
the cost function CN (which is to be minimized) is the
probability of error. While continuous measurement
schemes for distinguishing two infinite-dimensional pure
states from a single copy have been studied elsewhere
[5,14], here we consider discrete measurements of each
of N discrete copies of the state. An optimal solution for
multiple-copy discrimination of pure states is given by
Helstrom [10] (see also [1]) and takes the form of a two-

outcome projective measurement on the joint space of all
copies. For N > 1, this measurement is a nonlocal (collec-
tive) measurement on all copies, and schemes in which the
same local measurement is performed on each system do
not achieve this optimal performance [15]. Remarkably, it
has been predicted theoretically that the optimum can be
reached using adaptive local measurements [15]. In this
adaptive scheme each system is measured locally in the
basis that minimizes the probability of error immediately
after that measurement. We refer to this procedure of N
adaptive measurements as the ‘‘locally optimal local mea-
surement’’ scheme. As shown in [15], for pure states this
adaptive measurement performs just as well as the optimal
collective measurement on all N copies of the state. In the
asymptotic limit N ! 1, the scaling of CN for various
state discrimination schemes has been well studied [15–
17], with the notable finding that adaptive local measure-
ments do not provide an advantage (in terms of scaling)
over fixed strategies, even for mixed states [17].
Although the asymptotic performance of state discrimi-

nation schemes is of considerable academic interest, prac-
tical applications will require results for finite N, and
moreover must consider the effect of noise (i.e., mixed
states). Here, we adjust the local measurement strategies
presented in Ref. [15] to function in the presence of noise,
and analyze their performance theoretically and experi-
mentally. Importantly, we discover that, with the exception
of states that are almost pure, simple nonadaptive ‘‘un-
biased measurements’’ (see below) outperform the locally
optimal strategy defined above, for a sufficiently large
number of copies. However, the globally optimal local
measurement strategy, determined using optimal control
theory, does outperform unbiased measurements, even
though it does not achieve the optimum achievable using
nonlocal measurements. For N up to 10, we theoretically
predict and experimentally demonstrate the performance
of each scheme with various levels of noise.
All measurements we consider are projective, in

a basis fj!i; j!! "=2ig, where ! 2 ½0;"=2Þ and
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How Many Bits Does It Take to Track an Open Quantum System?

R. I. Karasik and H.M. Wiseman*
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(Received 1 September 2010; published 14 January 2011)

AD-dimensional Markovian open quantum system will undergo quantum jumps between pure states, if

we can monitor the bath to which it is coupled with sufficient precision. In general, these jumps, plus the

between-jump evolution, create a trajectory which passes through infinitely many different pure states.

Here we show that, for any ergodic master equation, one can expect to find an adaptivemonitoring scheme

on the bath that can confine the system state to jumping between only K states, for some K!ðD#1Þ2þ1.
ForD ¼ 2 we explicitly construct a two-state ensemble for any ergodic master equation, showing that one

bit is always sufficient to track a qubit.

DOI: 10.1103/PhysRevLett.106.020406 PACS numbers: 03.65.Yz, 03.65.Aa, 42.50.Dv, 42.50.Lc

The first quantitative model of quantum dynamics was
Einstein’s model of stimulated and spontaneous jumps [1]
between Bohr’s stationary atomic states [2]. In modern
language, this is a model for an open quantum system
weakly coupled to a heat bath, and, as Einstein showed,
such jumps can lead to an equilibrium state that is a
thermal mixture of energy eigenstates, with finite entropy.
In Einstein’s model, if one could track the individual
stochastic events of energy exchange between atom and
bath, then one would know which energy eigenstate the
system occupied at any time. Truncating to a finite number
D of energy eigenstates, a finite classical memory (having
K states, with K ! D) is obviously sufficient to keep track
of the quantum system (that is, to store knowledge of its
exact pure state) in thermal equilibrium.

Einstein’s theory is a special case of Markovian open
quantum system dynamics for finite-dimensional systems,
which most generally are describable by a Lindblad-form
master equation (ME) [3]:

_! ¼ L! ' #i½Ĥeff!# !Ĥy
eff) þ

XL

l¼1

ĉl!ĉ
y
l ; (1)

where Ĥeff ' Ĥ# i
P

lĉ
y
l ĉl=2. Here Ĥ is Hermitian (it is

the Hamiltonian) but the jump operators fĉlg are arbitrary.
Einstein’s theory is a special case because in it each jump
operator is proportional to jEihE0j, for some Ĥ eigenstates
jEi and jE0i, so that the state after any jump is a stationary
state jEi. For a general ME, it is always possible, in
principle, to monitor the bath such that every jump is
resolvable, so that the system can be known to be in
some pure state jc ðtÞi at all times [3–5]. However, in
general, after a jump at time "j, the state / ĉljc ð"jÞi will
depend on the prejump state jc ð"jÞi, and will not be an

eigenstate of Ĥ. Even if it were an energy eigenstate, it
would not, in general, remain stationary until the next jump
because its subsequent evolution would be generated by

the effective (non-Hermitian) Hamiltonian Ĥeff appearing
in Eq. (1).
It is thus not at all obvious whether for a general finite-

dimensional open quantum system it would be possible to
keep track of its pure state, even in principle, with a finite
classical memory. On the face of it, it would seem neces-
sary to store the exact times of each jump—a sequence of
real numbers f"j: jg each of which would require, in
principle, an infinite memory to store. Alternately one
could store the conditioned quantum state jc ðtÞi itself,
but this (a D-dimensional complex vector) would also
require an infinite memory. This situation is of course
completely different from a D-state stochastic classical
system (which is what Einstein’s model amounts to).
In this Letter we address this fundamental question

about open quantum system dynamics. We show that for
any Markovian dynamics which is ergodic (i.e., with a
unique equilibrium ! of rank D), one can expect to be
able to track the state with a K-state classical apparatus for
some K ! ðD# 1Þ2 þ 1. This is possible only because
there is entanglement between the system and bath, which
means that different monitoring schemes on the bath give
rise to different sorts of stochastic pure-state trajectories
(‘‘unravellings’’ [4]) for a given ME. We then prove that
for D ¼ 2 (a qubit), K ¼ 2 is always sufficient; that is,
there is always an unravelling for which the qubit jumps
between only two possible states, j#1i and j#2i. Although
this sounds similar to Einstein’s dynamics, it is in fact quite
different in general—the two states are nonorthogonal,
h#1j#2i ! 0, and the monitoring of the qubit’s environ-
ment must be adaptive, controlled by the classical bit that
stores the state of the qubit.
We begin by revisiting the preferred ensemble fact [6],

to explain why it is not possible in general to unravel a ME
such that the system jumps between the eigenstates of the
equilibrium ! (as in Einstein’s model). Then we show the
general result cited above for D-dimensional systems, and
give an explicit construction of the adaptive unravelling for
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Entanglement-free Heisenberg-limited phase
estimation
B. L. Higgins1, D. W. Berry2, S. D. Bartlett3, H. M. Wiseman1,4 & G. J. Pryde1

Measurement underpins all quantitative science. A key example is
the measurement of optical phase, used in length metrology and
many other applications. Advances in precision measurement
have consistently led to important scientific discoveries. At the
fundamental level, measurement precision is limited by the num-
ber N of quantum resources (such as photons) that are used.
Standard measurement schemes, using each resource indepen-
dently, lead to a phase uncertainty that scales as 1/

ffiffiffiffi
N

p
—known

as the standard quantum limit. However, it has long been conjec-
tured1,2 that it should be possible to achieve a precision limited
only by the Heisenberg uncertainty principle, dramatically
improving the scaling to 1/N (ref. 3). It is commonly thought that
achieving this improvement requires the use of exotic quantum
entangled states, such as the NOON state4,5. These states are extre-
mely difficult to generate. Measurement schemes with counted
photons or ions have been performed with N# 6 (refs 6–15), but
few have surpassed the standard quantum limit12,14 and none have
shown Heisenberg-limited scaling. Here we demonstrate experi-
mentally a Heisenberg-limited phase estimation procedure. We
replace entangled input states with multiple applications of the
phase shift on unentangled single-photon states. We generalize
Kitaev’s phase estimation algorithm16 using adaptive measure-
ment theory17–20 to achieve a standard deviation scaling at the
Heisenberg limit. For the largest number of resources used
(N5 378), we estimate an unknown phase with a variance more
than 10 dB below the standard quantum limit; achieving this
variance would require more than 4,000 resources using standard
interferometry. Our results represent a drastic reduction in
the complexity of achieving quantum-enhanced measurement
precision.

Phase estimation is a ubiquitous measurement primitive, used for
precision measurement of length, displacement, speed, optical pro-
perties, and much more. Recent work in quantum interferometry
has focused on n-photon NOON states5–12,21, (jnæj0æ1 j0æjnæ)/

ffiffiffi
2

p
,

expressed in terms of number states of the two arms of the interfero-
meter. With this state, an improved phase sensitivity results from a
decrease in the phase period from 2p to 2p/n. We achieve improved
phase sensitivity more simply using an insight from quantum com-
puting.We apply Kitaev’s phase estimation algorithm16,22 to quantum
interferometry, wherein the entangled input state is replaced by mul-
tiple passes through the phase shift. The idea of using multi-pass
protocols to gain a quantum advantage was proposed for the problem
of aligning spatial reference frames23, and furtherdeveloped in relation
to clock synchronization24 and phase estimation25,26.

The conceptual circuit for Kitaev’s phase estimation algorithm is
shown in Fig. 1a. The algorithm yields, with K1 1 bits of precision,
an estimate west of a classical phase parameter w, where eiw is an
eigenvalue of a unitary operator U. It requires us to apply K1 1

unitaries, Up, with p5 2K, 2K2 1, …, 1, each controlled by a different
qubit. Each qubit is prepared in the state H 0ij ~ 1ffiffi

2
p 0ij z 1ijð Þ, and

the control induces a phase shift eipw on the j1æ component. The
qubits are measured sequentially in the sx basis (X), and the results
control additional phase shifts, indicated by R(a); exp(iaj0æÆ0j), on
subsequent qubits. This enables the inverse quantum Fourier trans-
form to be performed without entangling gates27. With a random
phase h on the qubits, as shown in Fig. 1a, themeasurement results on
the qubits are the binary digits of (west2 h)/2p; this ensures that the
accuracy of the estimate is independent of the value of w.

Alternatively, this independence could be obtained by using a
second classical ‘feedback’ phase h, as in Fig. 1b, which also eliminates
the need for many of the gates in Fig. 1a. This is a classical real-valued
parameter whose value is adjusted by p/p, indicated by the symbol
D(p/p), controlled by the results of measurements. The value of h
determines (as indicated by the diamond-shaped control symbol in
Fig. 1b) phase-shifts R(ph) on the qubits. Applying this to interfero-
metry, we can measure an unknown optical phase w using dual-rail
photonic qubits22. Here the operatorU induces a relative phase shiftw
each time the beam path (in one arm of the interferometer) passes
through the unknown optical phase w. The additional phase shifts
(determined by h) can be implemented using a single-pass control-
lable phase in the other arm.

If a fixed probability of error in west is allowed (that is, if the
uncertainty is quantified by a confidence interval), then the uncer-
tainty of Kitaev’s phase estimation scales as 22K (ref. 22). Because the
number of control photons is Nphot5K1 1, this scaling implies an
exponential decrease in the phase uncertainty with increasing
resources—apparently violating the Heisenberg uncertainty prin-
ciple. The correct analysis, however, is as follows. Although the cost
of implementing Up can be assumed to be essentially independent of
p in the context of quantum computation, in interferometry it
requires p applications of the phase shift, and should thus be counted
as requiring p resources25. Using this definition, the total number of
resources used is N5 2K1 12 1. Then for N? 1, the uncertainty
scales as 1/N, as in the Heisenberg limit. We note that this quantifica-
tion of resources in terms of the number of applications of the phase
shift is the relevant one for phase estimation of sensitive (for example,
biological) samples, wherein the goal is to pass as little light through
the sample as is necessary.

On the other hand, if Dwest is taken to be the standard deviation—
the usual measure of uncertainty—then Kitaev’s algorithm does not
scale as 1/N. Rather, we have shown analytically that it asymptotes asffiffiffi
2

p " ffiffiffiffi
N

p
, the same scaling as the standard quantum limit (SQL)—see

also ref. 21. The broadwings of the distribution of phase estimates are
not due to any deficiency in the estimation procedure—the quantum
Fourier transform is optimal—but rather are a consequence of the
sequence of phase shifts on the photons, 2Kw, 2K2 1w, …, w.

1Centre for Quantum Dynamics, Griffith University, Brisbane 4111, Australia. 2Centre for Quantum Computer Technology, Macquarie University, Sydney 2109, Australia. 3School of
Physics, University of Sydney, Sydney 2006, Australia. 4Centre for Quantum Computer Technology, Griffith University, Brisbane 4111, Australia.
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Entanglement-enhanced measurement of a
completely unknown optical phase
G. Y. Xiang1,2, B. L. Higgins1, D. W. Berry3, H. M. Wiseman1* and G. J. Pryde1*

Precise interferometric measurement is vital to many scientific
and technological applications. Using quantum entanglement
allows interferometric sensitivity that surpasses the shot-noise
limit (SNL)1,2. To date, experiments demonstrating entangle-
ment-enhanced sub-SNL interferometry3–6, and most theoretical
treatments7–13, have addressed the goal of increasing signal-to-
noise ratios. This is suitable for phase-sensing—detecting small
variations about an already known phase. However, it is not suffi-
cient for ab initio phase-estimation—making a self-contained
determination of a phase that is initially completely unknown
within the interval [0, 2p). Both tasks are important2, but not
equivalent. To move from the sensing regime to the ab initio esti-
mation regime requires a non-trivial phase-estimation algor-
ithm14–17. Here, we implement a ‘bottom-up’ approach,
optimally utilizing the available entangled photon states,
obtained by post-selection5,6. This enables us to demonstrate
sub-SNL ab initio estimation of an unknown phase by entangle-
ment-enhanced optical interferometry.

The SNL for ab initio phase-estimation is a standard deviation
df of 1/

!!!
N

√
(asymptotically), compared with the best achievable

performance of p/N (the Heisenberg limit)2. Here, N is the total
number of photon-passes through the unknown phase f. Using
entangled multiphoton states yields an in-principle advantage in
bandwidth over recent demonstrations of sub-SNL phase measure-
ment using multiple passes of single photons16. The latter is unsui-
table for very fast measurement because the time t to complete a
measurement scales with N. Obtaining increased precision
without significantly decreasing the bandwidth can only be achieved
by entanglement.

One technique for achieving sub-SNL ab initio phase-estimation
using entangled states would be to apply the measurement algor-
ithm of ref. 16 to a sequence of entangled n-photon ‘NOON’
states12,18–22 of varying n. These are the states that are optimal for
phase-sensing for a given n. In this case, the measurement time t
increases only as log N. NOON states, however, are notoriously dif-
ficult to generate, even for moderate n. Previous investigations into
exploiting entanglement-enhanced sensitivity have used a ‘top-
down’ approach, starting with a theoretical knowledge of the
optimal states and determining how to approximate these exper-
imentally by constructing complex circuits to filter them from
more easily produced states, and selecting only some types of
measurement results—only one or two of the five possible results
for four-photon states, for example5,6. In contrast, we adopt a
‘bottom-up’ approach by taking available entangled states and
using a complete set of detectors, and all possible detection patterns,
to obtain the maximum possible phase information. Our scheme
uses Bayesian analysis and optimized adaptive feedback23. In con-
trast to the algorithm of ref. 16, our general approach can be
applied to any entangled state, not just NOON states.

In our experiment, we use n-photon dual Fock state inputs (that
is, states of the form |n/2,n/2la,b) to the first beamsplitter of the
interferometer, as shown in Fig. 1. These states have been shown
to be capable of phase-sensing at the Heisenberg limit6,10,24, that
is, with Fisher length O(1/n). The heralded generation of these
states has very recently been demonstrated25 for n¼ 2, and in prin-
ciple this is extendible to larger n. At the present time, to study these
states beyond n¼ 2, it is necessary to post-select on obtaining the
correct number n of detections in the output array, because spon-
taneous parametric downconversion (SPDC) produces a superposi-
tion of these states with different n. As in other experiments that
have used this technique5,6,20–22,26, we count only the photons
detected in n-fold coincidences. Another bottom-up approach is
to measure the whole superposition, as studied theoretically in
ref. 27. In our experiment, we use both the two-photon state |1,1l
and the four-photon state |2,2l (as well as the single-photon input
|1,0l) at different stages of the estimation protocol.

Non-classical interference of the dual Fock states at the first beam-
splitter produces photon number entanglement in the two arms of the
interferometer, c and d. For a |1,1la,b input, the state inside the inter-
ferometer is the n¼ 2 NOON state (|2,0lc,d + |0,2lc,d)/

!!
2

√
. With the

unknown phase shift f in one arm of the interferometer, and a con-
trollable ‘feedback’ phase shift u in the other arm, this state evolves
to (e2if|2,0le,f + e2iu|0,2le,f )/

!!
2

√
. The phase factor e2if increases the

frequency of the interference fringes by a factor of two compared
with a single photon input. Generally, n-photon NOON states
exhibit an n-fold increase in this frequency, which gives such states
the best possible sensitivity to small phase shifts.

Although non-classical interference acting on an |n/2,n/2la,b
state continues to generate entangled states as n increases, these
states are not NOON states for n. 2. The four-photon |2,2la,b
input results in a state inside the interferometer of

a

b

c

d

e

f

g

h

θ

ϕ

Figure 1 | A Mach–Zehnder interferometer with the phase shift to be
measured, f, in one arm, and a controllable phase shift, u, in the other
arm. The modes are indicated by the labels a to h.
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Performance of Schemes
 5/11/12 11:14 AM 

Scenario Type of Light Detection Theory V (theory) Experiment V (expt) 

Heterodyne ? 1970s? 0.50!n-1=SQL Armen et al, PRL ‘02 ? 0.62!n-1 

Adaptive HMW, PRL ‘95 0.25!n-1 Armen et al, PRL ‘02 0.40!no
-1 Coherent 

Optimal ? 1950s? 0.25!n-1=CSL  

Heterodyne ? (pre ‘95) 0.25!n-1 ?  

Adaptive DWB&HMW, PRA ‘01 slow(n)!ln(n)!n-2 –  

Single pulse, 

constant phase, 

n = mean pho- 

      ton number Squeezed 

Optimal Collett, PS ‘93 0.25!ln(n)!n-2  

Heterodyne DWB&HMW, PRA ‘02 0.35!N-1/2 "#Wheatley et al, PRL ‘10 0.37!N-1/2 

Adaptive DWB&HMW, PRA ‘02 0.25!N-1/2 "#Wheatley et al, PRL ‘10 0.30!N-1/2 Coherent 

Optimal DWB&MJH&HMW up 0.25!N-1/2=CSL  

Heterodyne DWB&HMW, PRA ‘06 0.25!N-1/2 –  

Adaptive DWB&MJH&HMW up slow(N)#!N-2/3  " Yonezawa et al, Sci. ‘12 0.21!N-1/2 

Continuous beam, 

Wiener phase,  

N = n per coh- 

      erence time.  
Squeezed 

(OPO output) 
Optimal DWB&MJH&HMW up !0.21!N-2/3  

 

Adaptive homodyne measurement

Φ
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theory: H. M. Wiseman, PRL 75, 4587 (1995).

…variance within 1% of optimal phase 

measurement for about 10 photons ! 
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Quantum-enhanced optical phase tracking: Theory

The Parameter(s) to be Estimated
Local Oscillator 
(LO) beam
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ϕ(t) =
√
κ

∫ t

−∞
e−λ(t−s)dV (s). For λ = 0, τcoh = κ−1
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Quantum-enhanced optical phase tracking: Theory

The Squeezed Beam
Local Oscillator 
(LO) beam
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At centre frequency antisqueezed spectrum Sp(0) ≡ e2rp [rp ≥ rm]
. . . squeezed spectrum Sm(0) ≡ e−2rm < 1 =⇒ nonclassical.
Coherent amplitude α, so that flux = N = |α|2+squeezed flux.
Broadband squeezing =⇒ squeezed flux is “infinite”.
But we show (numerically) that using narrowband squeezing (with
negligible flux) makes little difference so we take N = |α|2.
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Quantum-enhanced optical phase tracking: Theory

The Photocurrent
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Φ(t) = ϕf (t) + π/2
≈ ϕ(t) + π/2.

I(t)dt = 2 |α| sin [ϕ(t)− ϕf (t)] dt +
√

Rsq(t)dW (t), (1)

Rsq(t) = sin2 [ϕ(t)− ϕf (t)] e2rp + cos2 [ϕ(t)− ϕf (t)] e−2rm , (2)

For good tracking σ2
f ≡ 〈[ϕ(t)− ϕf (t)]2〉 � 1. We expand I(t) to

second order in [ϕ(t)− ϕf (t)] and approximate Rsq(t) by its average:

I(t)dt ' 2 |α| [ϕ(t)− ϕf (t)] dt +
√

R̄sqdW (t), (3)

R̄sq = e−2rm + σ2
f × e2rp . (4)
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Quantum-enhanced optical phase tracking: Theory

The Filtered Estimate
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Under this approx., the optimal (Kalman) filter of the current is

ϕf (t) = Γ

∫ t

−∞
e−λ(t−s) I(s)

2|α|
ds,

where Γ =
√

4 |α|2 κ/R̄sq must be� λ to justify the approx.

Taking λ = 0 for simplicity gives σ2
f =

√
κ/Γ.

This is still implicit as R̄sq (and hence Γ) depends on σ2
f .
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Quantum-enhanced optical phase tracking: Theory

The Smoothed Estimate
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ϕf is the optimal causal estimate, but a better estimate is found by
optimally smoothing the filter:

ϕs(t) = (2λ+ Γ)

∫ ∞
t

e−(λ+Γ)(s−t)ϕf (s)ds.

Again taking λ = 0 for simplicity gives σ2
s = σ2

f /2.
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Quantum-enhanced optical phase tracking: Theory

Squeeze till it hurts!
Even with everything ideal — λ = 0, rm = rp = r , σ2

f � 1 — too
much squeezing hurts the performance of the adaptive scheme
because R̄sq = e−2rm + σ2

f × e2rp .
Shown here for N = |α|2/κ = 100, Squeezing (dB) = 10 log10 e2r .
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Quantum-enhanced optical phase tracking: Experiment

Outline

1 Background

2 Quantum-enhanced optical phase tracking: Theory

3 Quantum-enhanced optical phase tracking: Experiment

4 Ultimate Limits (with MJH and DWB)

5 Conclusions

Howard Wiseman (Griffith University) Quantum-enhanced optical phase tracking QC @ KITP, March 2013 15 / 22



Quantum-enhanced optical phase tracking: Experiment

The Experiment
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κ ≡ (1.9± 0.1)× 104 rad/s,

λ ≡ (5.9± 0.5)× 104 rad/s,

|α|2 = (1.00± 0.06)× 106s−1,

{ =⇒ Power = 200 femtowatts. }
rm = 0.36± 0.01 (squeezing),
rp = 0.59± 0.01 (anti-squeezing).

=⇒ λ/Γ < 0.2
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Quantum-enhanced optical phase tracking: Experiment

The Results
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Ultimate Limits (with MJH and DWB)

Quantum Cramér-Rao Bound
Using the theory of Tsang, HMW, & Caves, PRL 106, 090401 (2011).

〈[ϕest(t)− ϕ(t)]2〉 ≥ F−1
t ,t , (5)

where F−1
t ,t is the matrix inverse of the continuously indexed Fisher

information “matrix” Ft ,t ′ := F (Q)(t , t ′) + F (C)(t , t ′), where

F (Q)(t , t ′) :=
2
~2

〈
∆f (t)∆f (t ′) + ∆f (t ′)∆f (t)

〉
F (C)(t , t ′) :=

∫
Dϕ Pprior[ϕ]

δ ln Pprior[ϕ]

δϕ(t)
δ ln Pprior[ϕ]

δϕ(t ′)
. (6)

where f (t) is the photon-flux operator and (λ, κ) 7→ Pprior[ϕ].

In the high-squeezing limit we find

F (Q)(t , t ′) ' 4N δ(t − t ′) + 8N 2e−γp|t−t ′|,

and for λ = 0,

〈[ϕest(t)− ϕ(t)]2〉 & 0.21(N/κ)−2/3.
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Ultimate Limits (with MJH and DWB)

Is this achievable by adaptive measurements?

DWB & HMW derived a (N/κ)−2/3 scaling in 2002 [PRA], but
this was for broad-band squeezing, and
it ignored the (infinite) flux in the squeezed photons.

DWB & HMW corrected this short-coming in 2006 [PRA] by
considering finite-bandwidth squeezing,
taking into account the squeezed photons, and
optimizing the bandwidth as well as the degree of squeezing,

and found a scaling of only (N/κ)−5/8 [cf. CSL ∼ (N/κ)−1/2].

However, very recently we have [see our 2013 erratum]
realized the 2006 paper used the wrong expression for the
squeezed flux,
corrected this in the analytical argument, which now gives a
(N/κ)−2/3 scaling, and
verified this scaling (up to some sub-logarithmic multiplier)
numerically for 1 ≤ N ≤ 1020.
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Conclusions

Squeezed states allow one to beat the coherent-state-limit for
phase estimation using a local oscillator.
However, if the phase is initially completely unknown, or widely
varying, to do better than CSL scaling requires an adaptive
measurement (at least).
We have performed the first experiment of this kind that has
beaten the CSL (by 15± 4%).
The theory predicts, and we observe experimentally, that there is
such a thing as “too much squeezing” — the first time this has
been observed for a fundamental task.
With optimal squeezing we think that, in principle, adaptive
measurement could achieve the best possible scaling ∼ N−2/3,
as determined from the quantum Cramér-Rao bound.
Future experiments should optimize the bandwidth as well as the
degree of squeezing, for a given total flux.
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