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perfect measurement.

@ cf. adaptive measurement —
controlling future measurements
> ; on the basis of the results of past
Meas m : ones, to obtain better data,

and (ﬁn\tl‘bl leaving the average system

evolution unchanged.

@ Classically, a non-problem if
measurements are perfect, but
[ ] non-trivial in the quantum case.
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Adaptive Measurement: Recent Examples

Letter
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High-speed linear optics quantum computing
using active feed-forward

Nature 445, 65-69 (4 January 2007) | doi:10.1038/nature05346; Received 6 July 2006; Accepted 11 October
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Adaptive Measurement: Recent Examples
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Background
Measurements of Phase with a Local Oscillator
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Other schemes: heterodyne / dual-homodyne; adaptive 'dyne; optimal.
Optimal! That sounds good. What is it? | don’t know in general. What about in the
simplest case? Sure it's this POVM. And how can | do this in the lab? | haven't a clue.
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Performance of Schemes
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Quantum-enhanced optical phase tracking: Theory

The Parameter(s) to be Estimated
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Quantum-enhanced optical phase tracking: Theory

The Squeezed Beam

Feedback
Filter

Phase
squeezed
beam

Signal @(t)

hbe

Estimate ¢, (f)
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@ At centre frequency antisqueezed spectrum S,(0) = €27 [r, > 1]

@ ...squeezed spectrum Sp(0) = e7?m <1 — nonclassical.

@ Coherent amplitude «, so that flux = A" = |a|?>+squeezed flux.

@ Broadband squeezing = squeezed flux is “infinite”.

@ But we show (numerically) that using narrowband squeezing (with
negligible flux) makes little difference so we take A" = |a/?.
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Quantum-enhanced optical phase tracking: Theory

The Photocurrent
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O(t) = ps(t) + /2
~p(t)+m/2.

I(tydt = 2lafsin[p(t) — @r(t)] dt + |/ R (t)dW (1), (1)

Ra(t) = sin®[p(t)
For good tracking of =

second order in [p(t)

I(t)dt ~

Ry =
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— @r(1)] €% + cos? [p(t) — pr(t)] €72, (2)

([e(t) — pr(1)]?) < 1. We expand /(1) to

— ¢¢(t)] and approximate Ry (t) by its average:

2(a] [o(t) — r(D)] dt + /RgdW(1). @)
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Quantum-enhanced optical phase tracking: Theory

The Filtered Estimate
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@ Under this approx., the optimal (Kalman) filter of the current is

t I(s)
— —A(t—s)
ety =1 [ e 25

where I = /4 |a|? k/Ry, must be > X to justify the approx.

@ Taking A = 0 for simpli_city gives a? =/k/I.
@ This is still implicit as Ry, (and hence I') depends on o%.
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Quantum-enhanced optical phase tracking: Theory

The Smoothed Estimate

Local Oscillator e ——
(LO) beam

Feedback
Filter

Phase
squeezed
beam

[40]

@ ¢ is the optimal causal estimate, but a better estimate is found by
optimally smoothing the filter:

os(t) = (2A+T) /t e~ (N0 (5)ds.

@ Again taking A = 0 for simplicity gives 02 = 02/2.
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Quantum-enhanced optical phase tracking: Theory

Squeeze till it hurts!

@ Even with everythingideal — A =0, rp =1, =r, 0?2 < 1 —1to0
much squeezing hurts the performance of the adaptive scheme

because Ry = €72 + 0% x €%,
@ Shown here for N = |a|2/x = 100, Squeezing (dB) = 10log,, €.
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Quantum-enhanced optical phase tracking: Experiment

The Experiment

e Messurement & Estimate | A Signal o(t)
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Quantum-enhanced optical phase tracking: Experiment

The Results
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) coherent-state limit, n = 1.

ii) squeezed theory, n = 0.85.
) as per (i) without o2 x e2/.
) theory, n =1, rp = rm.
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Ultimate Limits (with MJH and DWB)

Quantum Cramér-Rao Bound
Using the theory of Tsang, HMW, & Caves, PRL 106, 090401 (2011).

(lpest(t) — (D7) = Fi', (5)
where F{t1 is the matrix inverse of the continuously indexed Fisher
information “matrix” Fy p := F(Q)(¢,t') + F(O)(t, t'), where

2

FQt, t) = -3 (DF(AF(E) + AF(E)AF(2))

d In Pyrior[] 0 In Porior[]
(C) AN . prior prior
F (t7 t) . /D(P Pprlor[‘P] 5()0(2;) (5(,0(['/)

where f(t) is the photon-flux operator and (A, x) — Pyrior[¢]-

(6)

In the high-squeezing limit we find
FQ(t, 1) ~ 4N5(t — t') + 8N2e w11,
and for A = 0,
(lpest(t) — (B)]?) Z 0.21(N/5)2/°.
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Ultimate Limits (with MJH and DWB)

Is this achievable by adaptive measurements?

@ DWB & HMW derived a (\/x)~2/3 scaling in 2002 [PRA], but

o this was for broad-band squeezing, and
o it ignored the (infinite) flux in the squeezed photons.

@ DWB & HMW corrected this short-coming in 2006 [PRA] by
e considering finite-bandwidth squeezing,
e taking into account the squeezed photons, and
e optimizing the bandwidth as well as the degree of squeezing,

and found a scaling of only (NV/x)~5%/8 [cf. CSL ~ (N/k)~1/2].

@ However, very recently we have [see our 2013 erratum]

o realized the 2006 paper used the wrong expression for the
squeezed flux,

@ corrected this in the analytical argument, which now gives a
(N /k)~2/3 scaling, and

o verified this scaling (up to some sub-logarithmic multiplier)
numerically for 1 < A < 10%0.
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Conclusions

@ Squeezed states allow one to beat the coherent-state-limit for
phase estimation using a local oscillator.

@ However, if the phase is initially completely unknown, or widely
varying, to do better than CSL scaling requires an adaptive
measurement (at least).

@ We have performed the first experiment of this kind that has
beaten the CSL (by 15 + 4%).

@ The theory predicts, and we observe experimentally, that there is
such a thing as “too much squeezing” — the first time this has
been observed for a fundamental task.

@ With optimal squeezing we think that, in principle, adaptive
measurement could achieve the best possible scaling ~ N ~2/3,
as determined from the quantum Cramér-Rao bound.

@ Future experiments should optimize the bandwidth as well as the
degree of squeezing, for a given total flux.
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