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I

Quantum control: Systems and tasks



Physical systems

Chemistry Quantum Optics Condensed matter

Quantum Information



Quantum control from a quantum information perspective

Tasks: • Implementation of unitary time evolutions (gate operations)

• Read out measurements

• Transfer initial state into a highly entangled state (one-way QC)

• Transfer of arbitrary states into a highly entangled state (cooling)

• State preparation of the unknown ground state of a Hamiltonian

• Quantum simulations

Related tasks: • Accurate modelling of physical system

• Ground state cooling

• Transport of qubits



Decoherence



Decoherence



Decoherence and dissipation

Decoherence can be viewed as the loss of information from a system into
the environment. (Wiki)

In physics, dissipation embodies the concept of a dynamical system where
important mechanical modes, such as waves or oscillations, lose energy over
time, typically due to the action of friction or turbulence. (Wiki)



Quantum control errors

Sources
(classical and quantum):

• parameter fluctuations

• systematic errors

• finite level shifts

• phase fluctuations

• random spin flips

• emission of photons

• finite temperatures

• ...

Protection
(active and passive):

• system optimisation

• optimal control

• quantum error correction

• decoherence-free states

• topological QC

• dynamical decoupling & bang-bang

• feedback

• using measurements

• using dissipation

• ...



Why use measurements and dissipation?

Unitary operations:

Measurements and dissipation:

These can result in very robust and easy to implement unitary operations,
as long as no information is revealed about the state of the qubits.



II

Dissipation in quantum optics:
Macroscopic quantum jumps 1,2

1Dehmelt, Bull. Am. Phys. Soc. 20, 60 (1975).
2Blatt and Zoller, Eur. J. Phys. 9, 250 (1988).



Historical debate on quantum jumps

Schrödinger asserted that the application of QM to single systems
would necessarily lead to nonsense such as quantum jumps. Bohr argued
in response that the problem lay with the physics experiments of the time. 1,2

1Bohr, Philos. Mag. 26, 476 (1913).
2Blatt and Zoller, Eur. J. Phys. 9, 250 (1988).



Macroscopic quantum jumps

The existence of a random telegraph signal in the fluorescence of single
ions, was predicted as early as 1975 by Dehmelt.1,2

1Dehmelt, Bull. Am. Phys. Soc. 20, 60 (1975).

2Nagourney et al., PRL 56, 2797 (1986); Sauter et al., PRL 57, 1696 (1986); Bergquist et al., PRL 57, 1699 (1986).



Another level scheme with quantum jumps 1

We now look at a concrete example:
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1Metz and Beige, PRA 76, 022331 (2007).



Transition into a dark period
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Possible trajectory of the four-level toy model for Ωb = Γb and Γd = 10−2 Γb.
The upper figure shows the population in the dark state |b〉; the vertical
lines mark photon emissions. The population in |b〉 eventually reaches one.



Photon emissions within a light period
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Again, the spontaneous emission of a photon results in the build up of
population in |b〉. This time, another photon is emitted before the dark state
population reaches one. The system remains in a macroscopic light period.



Quantum jump description

The no-photon evolution: Hcond = 1
2~Ωb

[
|b〉〈e|+ |g〉〈b|+ H.c.

]
− i

2~Γd

[
|b〉〈b|+ |d〉〈d|+ 2 |e〉〈e|

]
− i

2~Γb

[
|b〉〈b|+ |e〉〈e|

]
Reset Operators: Rd = |d〉〈e|+ |g〉〈d|+ |b〉〈e|+ |g〉〈b|

Rb = |b〉〈e|+ |g〉〈b|

Characteristic time scales:

Tdark =
1
Γd

, Tlight =
3 + 2x2 + x4

Γd
, Tem =

3 + 2x2 + x4

(2 + x2)Γb

with x ≡ Γb/Ωb and for Γd � Γb , Ωb ≈ Γb .



Origin of the trajectories

Dynamics: The Hamiltonian entangles the system with the free radiation field.

Repeated photon measurements:

In case of an emission
in the k̂-direction: 1

|ψ〉 ∆t
−→ Rk̂ |ψ〉/‖ · ‖

with probability

‖Rk̂ |ψ〉 ‖
2

Rk̂: reset operator

In case of no emission: 2

|ψ〉 ∆t
−→ Ucond(∆t, 0) |ψ〉/‖ · ‖

with probability

‖Ucond(∆t, 0) |ψ〉 ‖2

Hcond: non-Hermitian Hamiltonian

1 Schön and Beige, Phys. Rev. A 64, 023806 (2001).

2 Hegerfeldt and Wilser, in Classical and Quantum Systems, Proceedings of the Second International Wigner Symposium, 1991 (World

Scientific, Singapore, 1992), p. 104 and others



III

Using dissipation to manipulate

decoherence-free states:
The quantum Zeno effect 1−3

1Beige, Braun, Tregenna, and Knight, PRL 85, 1762 (2000).
2Marr, Beige, and Rempe, PRA 68, 033817 (2003).
3Beige, PRA 67, 020301(R) (2004).



Coupling atomic qubits via optical cavities

Atom-cavity setups possess all the necessary ingredients for quantum com-
puting and other applications.

κ g

Γ

g: atom-cavity coupling constant

κ: spontaneous cavity decay rate

Γ: spontaneous atom decay rate

Main problems:

• dissipation due to two different decay channels

• inability to precisely control all experimental parameters



Dissipation-assisted adiabatic passage
into an entangled state

Experimental setup:

atom 1

optical
cavity

(b)(a)

atom 2

Two two-level atoms can be prepared in a maximally entangled state
by moving them slowly into an optical cavity.



The basic idea

If there is initially only one quanta of excitation in the system, then

Hint = ~
[
g1|21; 0〉+ g2|12; 0〉

]
〈11; 1|+ h.c.

Adiabatic theorem:

The system remains constantly in a zero eigenstate.

Relevant eigenstate: |λ1〉 =
[
g1|12; 0〉 − g2|21; 0〉

]
/‖ · ‖

• when atom 2 enters the cavity: |λ1〉 = |12; 0〉

• when both atoms see the same cavity coupling:

|λ1〉 =
[
|12; 0〉 − |21; 0〉

]
/
√

2



Numerical results

Experimental parameters: gi(xi) = g exp
(
− (xi/w0)2

)
v = 5w0g sin2

(
π(x1 + 4w0)/5w0

)
w0 : cavity waist, ∆x = 2w0

Population in the unwanted states: (a)
[
g2 |12; 0〉+ g1 |21; 0〉

]
/‖ · ‖

(b) |11; 1〉
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Fidelity and success rate (Γ = 0)

As a function of κ:
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Interpretation via the quantum Zeno effect

The inverse quantum Zeno effect:

The time evolution of the system is an adiabatic passage (STIRAP) but
the environment measures continuously, whether the system is indeed in
the desired state:

=⇒ high fidelity of prepared state

The quantum Zeno effect:

Aanlogously, the quantum Zeno effect can be used to restrict the time
evolution of a system onto a larger decoherence-free subspace:

=⇒ effective Hamiltonian Heff = IPDFSHInt IPDFS

This Hamiltonian can be entangling even if HInt isn’t.



IV

Entangled state preparation
using macroscopic quantum jumps 1−3

1Metz, Trupke, and Beige, PRL 97, 040503 (2006).
2Metz and Beige, PRA 76, 022331 (2007).
3Metz, Schön, and Beige, PRA 76, 052307 (2007).



Experimental setup to entangle two atoms

The successful generation of a maximally entangled atom pair is triggered
on a macroscopic dark period. The laser should be turned off once the
cavity emission stops.



Effective level scheme

An adiabatic elimination of the excited states due to a large detuning ∆
shows that the atoms remain mainly in their ground states.



Macroscopic quantum jumps
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Here: ∆ = 50κ, Γ = 0.05κ, g = ΩL = κ, ΩM = 0.05κ and η = 1.

Achieving fidelities above 0.9 is possible even when using a relatively modest
cavity with C ≡ g2/κΓ is as low as 10 and when using a real-life single
photon detector with an efficiency as low as η = 0.2.



Entanglement growth using parity measurements

Two entangled qubit pairs:

|ψ〉 = (|01〉 − |10〉)⊗ (|01〉 − |10〉)/2
= (|0101〉 − |1001〉 − |0110〉+ |1010〉)/2

Projection of atom 2 and 3 onto |01〉, |10〉 subspace:

|ψ〉 → (|0101〉+ |1010〉)/
√

2

GHZ-state!



An incomplete parity measurement

Experimental setup:

G
k

W
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D
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(b)(a)

g

The successful completion of the projection onto the {|01〉, |10〉} subspace
is heralded by the emission of photons as if there is only one emitting atom
inside the resonator.

=⇒ ”electron shelving”



Relatively low emission rate

Parameters: Γ = 0.1κ, g = κ, ∆ = 50κ, Ω = κ (C = 10)
Initial state: |ψ〉 = (|00〉+ |01〉+ |10〉+ |11〉)/2



Maximum emission rate

Parameters: Γ = 0.1κ, g = κ, ∆ = 50κ, Ω = κ (C = 10)
Initial state: |ψ〉 = (|00〉+ |01〉+ |10〉+ |11〉)/2



V

Linking distant qubits

via photon measurements 1−4

1Lim, Kwek, and Beige, PRL 95, 030505 (2005).
2Barrett and Kok, PRA 71, 060310(R) (2005)
3Lim, Barrett, Beige, Kok, and Kwek, PRA 73, 012304 (2006).
4Busch, Kyoseva, Trupke, and Beige, PRA 78, 040301(R) (2008).



Generation of a single photon on demand 1,2

atom−cavity
system

emitted
photon

laser pulse

g,0

e,0

u,1 u,0
emission

photon

repumping

gΩ

Reliable single photon source:

• STIRAP process places one photon in the cavity mode
• leakage of photon through cavity mirror yields

|g〉 −→ |g; 1〉

1 Law and Kimble, J. Mod. Opt. 44, 2027 (1997); Kuhn, Hennrich, Bondo, and Rempe, Appl. Phys. B 69, 373 (1999).

2 Kuhn, Hennrich, and Rempe, PRL 89, 067901 (2002).



Generation of an encoded flying qubit 1

photon

0
1 u

e

qubit states

laser photon

like system
atom−cavity

laser pulse

emitted

Generation of an additional time-bin encoded qubit:

• information is stored in stationary qubits like α |0〉+ β |1〉
• generation of a single photon on demand such that

α |0〉+ β |1〉 −→ α |0;E〉+ β |1; L〉

|E〉 and |L〉 denote a single photon created at an early and
a late time, respectively.

1Lim, Beige, and Kwek, PRL 95, 030305 (2005).



Photon pair absorption without erasing qubits

For two photons:

• arbitrary two-qubit state: |ψin〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉

• state after creation of two photons:

|ψenc〉 = α |00;EE〉+ β |01;EL〉+ γ |10; LE〉+ δ |11; LL〉

• measurement outcome: |EE〉+ eiϕ1 |EL〉+ eiϕ2 |LE〉+ eiϕ3 |LL〉

• final state: |ψfin〉 = α |00〉+ e−iϕ1 β |01〉+ e−iϕ2 γ |10〉+ e−iϕ3 δ |11〉

A photon pair measurement in a mutually unbiased basis always
results in a two-qubit phase gate.



A Repeat-Until-Success (RUS) quantum gate

Encoded two-qubit state using the mutually unbiased basis:

|ψenc〉 = 1
2

4∑
i=1

|ψi〉|Φi〉
with |ψ1〉 = e−iπ/4Z1

(
1
2π

)
Z2

(
− 1

2π
)
UCZ |ψin〉 ,

|ψ2〉 = −eiπ/4Z1

(
− 1

2π
)
Z2

(
1
2π

)
UCZ |ψin〉 ,

|ψ3〉 = |ψin〉 , |ψ4〉 = −iZ1(π)Z2(π) |ψin〉
Zi(ϕ) = diag (0, e−iϕ) , UCZ = diag (1, 1, 1,−1)

A measurement of |Φ1,2〉 results in a universal phase gate, while a
measurement of |Φ3,4〉 yields the initial qubits up to local operations.

On average, the whole process has to be repeated twice.



VI

Cooling atoms into entangled states 1−4

1Kraus, Büchler, Diehl, Kantian, Micheli, and Zoller, PRA 78, 042307 (2008).
2Verstraete, Wolf, and Cirac, arXive:0803.0613.
3Ticozzi and Viola, arXive:0809.0613.
4Vacanti and Beige, NJP (submitted); arXive:0901.3909.



Sideband cooling of a single particle

A single two-level atom can be cooled very efficiently using a laser with frequency
ω0 − ωx and spontaneous emission. 1

0

1

ω 0 ω xn=0

n=2
n=3

n=1

... ...

0,n=2

...

0,n=3

1,n=3

1,n=0

0,n=0
0,n=1

1,n=1
1,n=2

spontaneous
emission

laser

1Wineland and Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975).



Setup for entanglement generation

• The qubits: degenerate ground states |g0〉 ≡ |0〉 and |g1〉 ≡ |1〉

with interaction HInt =
∑2N−1

n=0 En |λn〉〈λn|

• The cooling device: excited atomic states |e0〉 and |e1〉
with laser driving of g0–e0 and g1–e1 transitions

• The total Hamiltonian:

HI =
4N−1∑
n=0

En |λn〉〈λn|+
4N−1∑
n=0

∑
m6=n

χnm |λn〉〈λm|+ H.c.

• Aim: preparation of the qubit ground state |λ0〉



Level scheme of a single atom

We consider a system of strongly interacting atomic qubits which is driven by
K laser fields to auxiliary excited states |e0〉 and |e1〉:

Cooling atoms into entangled states 4
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Figure 1. The system consists of a collection of interacting atoms with ground states
|g0〉 and |g1〉 which encode one qubit. Moreover, K laser fields with different frequencies
are applied which couples these states to the excited states |e0〉 and |e1〉 with the
shown spontaneous decay rates. For simplicity we assume that the states |gj〉 and |ej〉,
respectively, are of the same energy. Here Ω(i,k)

j and ∆k denote the Rabi frequency
and the detuning of laser k with respect to the |gj〉 - |ej〉 transition in atom i.

For reasons which become obvious later we do not assume that the newly introduced

|λn〉 states with n ≥ 2N are eigenvectors of HInt. The second term in Eq. (??) therefore

contains non-diagonal terms with the χ̃mn ≡ 〈λm|H|λn〉 being coupling coefficients and

the χ̃nn ≡ 〈λn|H|λn〉 describing energy shifts.

Suppose the state |g0〉 and |g1〉 and the states |e0〉 and |e1〉, respectively, are of the
same energy, i.e.

ω0 = ω1 ≡ ω and ω̃0 = ω̃1 ≡ ω̃ . (7)

In this case, the detunings ∆k of the applied laser fields depend neither on i nor j. In

the following, we denote the Rabi frequency of laser k with respect to the |gj〉 - |ej〉
transition in atom i by Ω(i,k)

j . If K different laser fields are applied, then HLaser equals

in the usual rotating wave approximation

HLaser =
N

∑

i=1

1
∑

j=0

K
∑

k=1

1

2
!Ω(i,k)

j ei(ω̃−ω−∆k)t/! |ej〉ii〈gj| + H.c. (8)

In general it is not possible to find an interaction picture which removes the time

dependence from this Hamiltonian.



Level scheme of the combined system

The detuning we need to cool the system into |λ0〉 comes exactly from the fact
that |λ0〉 is the ground state of the system:

The one-qubit case:
Cooling atoms into entangled states 8

|λ2〉, |λ3〉

|λ0〉

|λ1〉

∆λ

Ω

Ω

Γ

Γ

Figure 3. Level scheme for cooling of a single atom into the eigenstate |λ0〉 of HInt.
The laser drives only the |λ0〉 - |λ2〉 transition with detuning ∆λ and the |λ1〉 - |λ3〉
transitions with zero detuning. The excited states |λ2〉 and |λ3〉 can decay into |λ2〉
and |λ3〉.

as shown in Fig. ??. If ∆λ is large compared to Ω and Γ, then the comparison with

laser sideband cooling (cf. Eq. (??)) suggests that the system reaches |λ0〉 after a certain

transition time with a very high fidelity. Notice that the detuning ∆λ of |λ0〉 which we
need to prepare the target state comes exactly from the fact that |λ0〉 is the ground

state of the system.

3.3. Generalisation to N qubits

Let us now have a closer look at the case of N laser-driven atomic qubits. For N atoms,

the relevant state space is of dimension 4N . Our task now consists of finding laser fields
which couple the eigenstates |λn〉 of HInt with n between 1 and 2N − 1 resonantly to

excited atomic states while |λ0〉 remains off-resonance. Achieving this might require up

to 2N − 1 laser fields since there are 2N atomic ground states. Choosing the right laser

frequencies requires a detailed knowledge of the structure of HInt, since this Hamiltonian

acts also on states with one atom in |e0〉 or |e1〉 and causes level shifts and interactions

among them. Here we do not need to consider states with more than one atom in an
excited state as long as these have sufficiently large spontaneous decay rates. As already

mentioned above, the emission of photons always returns the atoms into states which

have some overlap with |λ0〉.
In the N -qubit case and in the presence of the cooling lasers, the Hamiltonian of

The many-qubit case:
Cooling atoms into entangled states 9

|λ0〉

|λ1〉

|λ2〉

|λ2N
−1〉

|λ2N 〉
|λ2N +1〉
|λ2N +2〉

|λ2N+1
−1〉

2χ/!
2χ/!

Figure 4. Relevant level scheme for a the cooling of N qubits into the ground state of
HInt. The states |λn〉 with 0 ≤ n < 2N are eigenstates of HInt. Moreover, 2N − 1 laser
fields couple |λn〉 with Rabi frequency 2χ/! to |λ2N +n〉 with one atom in an excited
state. The different colors indicate different laser frequencies. These are chosen such
that |λ0〉 is the only state without resonant driving. For simplicity, the figure does not
show the off-resonant driving of the other qubit states. All qubit states are possible
reset states in case of the spontaneous emission of a photon.

the system is given by Eq. (??) with HFree as in Eq. (??), HInt as in Eq. (??), and HLaser

as in Eq. (??). As in the one-qubit case, it is useful to express this Hamiltonian as a

function of the |λn〉-states introduced in Section ??. In analogy to Eq. (??), H can be

written as

H =
4N−1
∑

n=0

En |λn〉〈λn| +
4N−1
∑

n=0

4N−1
∑

m"=n

χmn |λm〉〈λn| (20)

with

En ≡ 〈λn|H|λn〉 and χmn ≡ 〈λm|H|λn〉 . (21)

The En-terms in the Hamiltonian (??) are effective level shifts, while the χmn-terms are

time-dependent since they correspond to laser-driven transitions. In the case of states
with at least one atom in an excited state they also include the effect of the interaction

Hamiltonian HInt.

As mentioned before, the vectors |λn〉 with n between 0 to 2N − 1 are eigenvectors

of HInt. From this one can easily see that

En = !ω + λn and χmn = 0 for 0 ≤ n, m < 2N . (22)



A two-qubit example

Here are numerical results for the spin-spin Heisenberg Hamiltonian
H = ~J~σ1 · ~σ2 = −3~J |λ0〉〈λ0|+

∑3
n=1 ~J |λn〉〈λn|

with |λ0〉 = (|01〉 − |10〉)/
√

2:

Cooling atoms into entangled states 13
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Figure 6. Fidelity F for the preparation of the maximally entangled state of two
qubits as a function of time t for J = 5 Γ and for different Ω’s. The small figures show
F as a function of the coupling constant J/Γ for Ω = Γ and as a function of the Rabi
frequency Ω/Γ for J = 5 Γ.

with

|λ0〉 = (|01〉 − |10〉)/
√

2 ,

|λ1〉 = (|01〉 + |10〉)/
√

2 ,

|λ2〉 = |00〉 ,

|λ3〉 = |11〉 , (36)

and λ0 = −3!J , while λ1 = λ2 = λ3 = !J . In the following, we calculate the stationary

state of the system in the presence of the cooling lasers in order to determine the fidelity

of the state preparation.

As in the one-qubit case in Eq. (??) we assume that the laser Rabi frequencies and

the decay rates are for all transitions the same. In analogy to Eq. (??) we introduce the
states

|λn+4〉 ≡
1√
2

[

∑

i=1,2

∑

j=0,1

|ej〉〈gj|

]

|λn〉 (37)

with one atom in |e0〉 or |e1〉. For simplicity and since it is anyway small, we neglect

population in the states with both atoms excited. In this case, the time evolution of the

system remains restricted onto an eight-dimensional subspace for which the vectors |λn〉
with n between 0 and 7 form a complete basis. In the interaction picture with respect

to H0 = HFree − !J
∑

i=1,2

∑

j=0,1 |ej〉ii〈ej |, the system Hamiltonian including the laser

driving can now be written as

HI =
3

∑

n=0

1

2
!
√

2Ω |λn〉〈λn+4| + H.c. + !(λn − ∆) |λn〉〈λn| . (38)



VII

Conclusions



Final remarks

Measurements and dissipation provide a very useful tool for the
coherent control of open quantum systems:

• state preparation and gate operations via no-photon measurements

• state preparation and gate operations via photon detection

• state preparation via the observation of quantum jumps

• state preparation via cooling

• active feedback

• ...

Motivation for using dissipation is to obtain simple and feasible
entangling schemes which are robust against parameter fluctuations.
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