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• ``We should try to find out what kinds of quantum mechanical systems are mutually 
intersimulatable, and try to find a specific class, or character of that class which will 
simulate everything” Feynman 1982

• Many physical systems have an isomorphic state space, so if we can control the 
state of one then that simulates another

- one qubit=polarization space of a photon= spin space of an electron= 
occupation space of a single photon in two orthogonal modes, etc.

5/3/07, Santa Fe Institute Computational limits of quantum systems, Michael Bremner

Feynman’s idea:

Take advantage of the inherit complexity of physical systems!

The problem with this idea is the complexity of physical systems!

U = e−iHt

5/3/07, Santa Fe Institute Computational limits of quantum systems, Michael Bremner

What is a quantum computer?
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Generic Hamiltonian on n qubits
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Digital Simulators

5/3/07, Santa Fe Institute Computational limits of quantum systems, Michael Bremner

How can a quantum computer perform 

simulations?
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• A fault tolerant quantum computer can simulate any dynamics over finite 
dimensional systems

- Problem:  This may not be efficient.  General unitaries on    qubits systems 
require       gates    (for qudits      )

- Some dynamics are efficient

- Is there a constructive approximate method? Yes

5/3/07, Santa Fe Institute Computational limits of quantum systems, Michael Bremner

Why this model of quantum computing?
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Stroboscopic techniques

• Control Hamiltonian

- System governed by TDSE

• Using properties of commutators (Trotterization) we can digitize a simulation.

- Advantage:  Digitized circuits can be made fault tolerant

i!U̇ = H(t)U(t)

e−i∆Haei∆Hbei∆Hae−i∆Hb = e−i(i[Ha,Hb])∆
2
+ O(∆3)

e−i∆(Ha+Hb) = [e−i∆Ha/ke−i∆Hb/k]k + O(∆2/k)

5/3/07, Santa Fe Institute Computational limits of quantum systems, Michael Bremner

How can a quantum computer perform 

simulations?
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e−i δ
k σz

e−i δ
k σz

· · ·
k times

≈ e−iδ(σz⊗5+σxσzσyσzσx)

M. Bremner, D. Bacon, and M.A. 
Nielsen,PRA 71, 052312 (2005). 

H(t) = Hent +
∑

m

fm(t)Hm
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k-local Hamiltonians

• Bounded Hamiltonians that can be written as a sum of terms involving 
tensor products of no more than k terms

• It is frequently the case that k is small for physically relevant Hamiltonian 
(often k=2)

• Complexity of stroboscopic circuit for k-local Hamiltonians is  5/3/07, Santa Fe Institute Computational limits of quantum systems, Michael Bremner
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k-local Hamiltonians

O(nk)
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Analogue simulators

 

Theory:  Jaksch et al. PRL 
81, 3108 (1998)

Exp: M.  Greiner et al. 
Nature 415, 39 (2003)

Superfluid BEC Mott Insulator

HBH = −
∑

<j,k>

J(a†
jak + a†

kaj) +
∑

j

U

2
nj(nj − 1) + ε(j)nj

 

J

ε(1)
ε(0)

U

Repulsive 
scattering

• Engineer an “always on” interaction that mimics a physics you want to simulate

• Ex:  Superfluid to Mott insulator phase transition

- Analogue simulation of Bose-Hubbard interaction
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Pros/Cons

• Analogue simulators:

- Pros:  A more direct method, much simpler control

- Cons:  Not fault tolerant, architectural limitations, physical limitations on 
locality and strength of interactions in the simulating system

• Digital simulators:

- Pros:  Universality, can be made fault tolerant, no architectural constaints in 
principle

- Cons:  Complicated control pulse sequences, evidence* that fault tolerant 
simulation has complexity that scales like       for a tolerated error   1/ε ε

*K. Brown, R.J. Clark, I.L. Chuang, 
PRL 97, 050504 (2006).
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A quantum simulation algorithm
• Problem:  Compute the energy gap       between the ground and first excited 

state of a Hamiltonian H

• Algorithm:

- Map the Hilbert space of the system to be simulated to n qubits

- Prepare QC in the ground state of a local Hamiltonian

- e.g.

- Evolve, using stroboscopic circuits, according to the following adiabatic 
Hamiltonian

- Failure to remain adiabatic results in a final state which has some small 
admixture of ground and excited states of H 

- Evolve by simulated H for time   

- Measure some operator that couples ground and excited states

- Repeat for a polynomial number of times steps (polynomial number of steps 
enough to resolve       ).  Compute Fourier transform of          

∆E

H0

|ψ(0)〉 = |+x〉⊗n H0 = −
∑

j

σx
j

ti

H(s) = (1− s)H0 + sH s = t/T T !
||∂H(s)

∂s ||
(∆E)2

|ψ〉i = cg|λg〉 + ce|λe〉

〈O(ti)〉

∆E {〈O(ti)〉}

L.A. Wu, M.S. Byrd, and D.A. Lidar, 
PRL 89, 057904 (2002).
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Caveats
• To estimate of the gap with error    # of digits precision needed is

- A good quantum algorithm would have a complexity 

• Error in trotter approximation of evolution due to a sum of Hamiltonians scales 
like             .  Higher order Trotter expansion has error                       using           
gates   

• Total time to implement algorithm is independent of k.   If control gates are 
perfect, then precision improves with larger k.

• If not, then each subcircuit must be replaced with a fault tolerant version.

• But time to implement              is independent of k (for standard control 
Hamiltonians)!  Hence for a fixed error the total time for the simulation 
is            .

• Workarounds:

- Find better gate libraries (maybe global pulses with correlated errors) 
combined with noiseless subsystems

- Hard wire the Hamiltonian into a system so no Trotterization is needed! 

ε log(1/ε)

O(poly log(1/ε))

O(t2/k) O(tm+1/km)
O(2m)

e−iHt/k

O(1/ε) K. Brown, R.J. Clark, I.L. Chuang, PRL 
97, 050504 (2006).
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What to simulate?
• Hubbard models

- 2D Fermi-Hubbard Model

- Observables:  Energy gap, correlation functions

- Proposed model for high Tc superconductivity.  A q. simulation could falsify it 

- 2D and 3D lattice gauge theory

- Ring exchange model:  Emergent U(1) gauge theory

2

a square lattice

H = −
∑

〈r,r′〉,σ

tr,r′
(

c†
r,σcr′,σ + H.c.

)

+U
∑

r

nr,↑nr,↓, (1)

where 〈r, r′〉 indicates nearest-neighbor sites, and c†
r,σ

creates an electron on site r with spin polarization σ =
±1/2. The term with U > 0 represents the on-site re-
pulsion between electrons and nr,σ = c†

r,σcr,σ. The usual
(homogeneous) limit of this model is obtained by taking,
tr,r′ = t = 1, where the final equality defines our units of
energy. In the inhomogeneous versions of this model we
consider, the lattice is broken up into a set of periodically
repeated disconnected clusters, with tr,r′ = 1 for nearest-
neighbor sites within a single cluster, and tr,r′ = t′ $ 1
for nearest-neighbor sites belonging to distinct clusters.
Even the inhomogeneous version of this model is particle-
hole symmetric; we will discuss the case of a concentra-
tion x of doped holes, but the same results apply for the
same concentration of doped electrons.

To zeroth order in t′, the Hamiltonian can be solved
for arbitrary U by diagonalizing it on a single cluster. We
then use low order (near) degenerate perturbation theory
(in powers of t′) to derive an effective Hamiltonian, Heff ,
which operates in the reduced Hilbert space spanned by
the direct products of the low-energy eigenstates of the
isolated cluster. This is a standard procedure, precisely
analogous to that used to derive the t-J model from the
large U limit of the Hubbard model9. For all the clusters
we consider here, the groundstate of the isolated undoped
cluster (with one electron per site), is a spin singlet with
a finite spin gap ∆s.

For small x, most clusters must still be in their ground-
state, so Heff operates in a very much smaller Hilbert
space than the starting space. Moreover, defining the
unique ground-state with one electron per site to be the
vacuum state of Heff , it is clear that it can typically be
recast as the Hamiltonian of a dilute gas of excitations.
This is the key feature that makes the problem tractable
in the stated limit of small x and small t′.

To construct the low energy Hilbert space, we need
to compute the spectrum of an isolated cluster with dif-
ferent numbers of doped holes. The eigenstates of each
cluster can be identified by their symmetry related quan-
tum numbers: the number of doped holes, Q (Q = 0
refers to the case of one electron per site) the total spin,
S, and those related to the spatial symmetries. For the
dimer, the states are odd or even under reflection. The
isolated square has the same four-fold rotational symme-
try, C4, as the uniform lattice so the states can be labeled
by spectroscopic labels “s” (even under rotation by π/2)
“d” (odd under rotation by π/2) and “px± ipy” (changes
phase by ±π/2 under rotation by π/2). In each charge
sector, so long as there is a “large” (order 1) gap, the ex-
cited states can be safely eliminated from the low energy
sector. Where there is a level crossing within the isolated
cluster, we need to be a bit more careful.

Isolated dimer: For the isolated dimer with Q = 0
or Q = 2, there is a unique S = 0, even parity ground
state separated by a large gap from the first excited state.
The Q = 1 ground-state is a S = 1/2 even parity doublet
again with a large gap.
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FIG. 2: (a) Zero-temperature phase diagram of the dimerized Hub-
bard model for small x, and (b) phase diagram of Heff on the
dimerized lattice as functions of ∆p/τ and g/τ . Two phases, the
Fermi liquid phase (FL) and the singlete superconducting phase
(s+d SC), can be obtained in the effective thoery. However, as
shown by the dotted curve with arrows in (b), the trajectory of the
Hubbard model with fixed t′/t (=0.005) as a function of increasing
U only passes through FL. As a result, only FL can be seen in (a).

Isolated square: For the isolated square with Q = 2,
there is a unique S = 0 ground state with s-wave sym-
metry separated by a large gap from the first excited
state. For Q = 0 and with U = 0, there is a large
(6-fold) ground-state degeneracy. This degeneracy is
lifted2 at non-zero U , and the resulting ground-state is an
S = 0 singlet with d-wave symmetry. However, for small
enough U the gap to the excited states is small – the
splitting between the lowest lying singlet and triplet state
(the “spin-gap”) is O(U2) for small U . In the present pa-
per, when dealing with the checkerboard lattice, we will
assume U %

√
t′ so that the gap can be treated as “big”,

but the small U limit is probably worth revisiting in the
future. As pointed out by Trugman and Scalapino10, an
important consequence of the distinct spatial symmetries
of the Q = 0 and Q = 2 ground states is that the pair cre-
ation operator that connects these two-states has d-wave
symmetry. The Q = 1 spectrum of the isolated square
is a bit more complex: For U < UT = 18.6, the ground-
state is a spin and orbital doublet, with S = 1/2 and
px ± ipy symmetry. This has the consequence that the
quasiparticles carry an orbital “flavor” index, λ = ±1, in
addition to the usual spin polarization index, σ = ±1/2.
For U > UT , the ground state, in accordance with Na-
gaoka’s theorem11, is a S = 3/2 s-wave state. Except in
the vicinity of U = UT (where the gap is O(|U − UT |),
the gap to excited states is again large.

Other than the stated level crossings, the precise de-
pendence of the energies of the various states is not im-
portant for present purposes. The energy of the Q = 0
groundstate can be absorbed into an overall constant con-
tribution to the effective Hamiltonian, E0, and the energy

{cr,σ, c†r′,σ′} = δr,r′δσ,σ′

particle states created by byi are called bosonic or atomic
states to distinguish them from the molecular two-particle
states. Depending on the setup, the atomic states reside
either in the corners or on the edges of each plaquette (see
Fig. 1), and are numbered counterclockwise. The energy !
corresponds to the detuning from resonance, while g is the
coupling strength determined by the Rabi frequency of the
Raman transition. While the Hamiltonian (2) is interesting
in its own right, the connection to ring exchange is appar-
ent upon integrating out the molecular field perturbatively
in g=!, which leads to the effective Hamiltonian

HRE!K
X

!

"by1b2by3b4#b1by2b3by4 $n1n3$n2n4%; (3)

with K ! g2=!. Note that the structure of the coupling in
Eq. (2) also produces a next-nearest-neighbor interaction.
The bosonic system turns metastable for large negative
detuning. However, the decay time easily exceeds typical
experimental time scales of atomic gases. Then, the per-
turbative expansion is again valid and allows for the real-
ization of a system with negative ring exchange
interaction.

In the following, we present the microscopic design of
the ring exchange interaction within atomic gases. This
design combines standard tools for manipulating and con-
trolling cold atomic gases [5,17]. Our starting point is a
system of bosonic atoms with two internal states coupled
via a Raman transition. These different internal states can
be trapped by independent optical lattices; such indepen-
dent trapping has been realized recently using spin-
dependent optical lattices [18,19]. An alternative approach
is the trapping of alkaline earth metals, e.g., 88Sr, where the
first excited state 3P1 exhibits a long lifetime with a differ-
ent polarizability than the lowest energy state 1S0 [20]. We
introduce the notation  a"x% and  b"x% for the field opera-
tors describing the two internal states, and the microscopic
Hamiltonians then take the form (" ! a; b)

H"!
Z

dx
!

 y
"

"$@2r2

2m
#V"#e"

#

 "#
g"
2
 y
" y

" " "

$

;

with g" ! 4#@2a"=m the interaction strength for scatter-
ing lengths a". The interaction strengths between the
atoms can be tuned independently by using magnetic or
optical Feshbach resonances [5]. The e" are the homoge-
neous energy shifts between the internal states. The poten-
tial V""x% accounts for an optical lattice driven by lasers
with wave vector k ! 2#=$, with the strength v" in units
of the recoil energy Er ! @2k2=2m. The two internal states
are coupled via a Raman transition. Transforming away the
optical frequencies within a rotating frame, the coupling
takes the form

HR ! @!
Z

dx& y
b a #  y

a  b'; (4)

with ! the Rabi frequency of the transition.
We focus first on the two-dimensional setup shown in

Fig. 1(a). Confinement to two dimensions is achieved by a
strong transverse optical lattice, which quenches hopping
between different planes. The remaining optical lattice
provides the square lattice structure for the atomic state
 b and takes the form Vb=Er ! vb&cos2"kx=2% #
cos2"ky=2%'. For vb * 1, the mapping to the Bose-
Hubbard model is well justified. The optical lattice for
the second internal state  a, which is localized at the
plaquette centers, takes the form

Va

Er
! vaf&coskx$ cosky'2 # sin2"kx=2% # sin2"ky=2%g:

The first term is obtained by interference between standing
laser waves along the x and y directions, while the other
terms represent a standard square lattice. The different
lattice spacing of the two contributions is easily achieved
by a finite angle 2#=3 between the interfering beams. We
are interested in a strong optical lattice Va, where tunneling
between different wells is quenched, and focus on the
energy states within a single well. Then the structure of
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FIG. 2. (a) Single-particle energies %l of the states ayl;!j0i for
va ! 30. (b) Energy levels of the two-particle states with sym-
metry B2 and E. The frequency ! ! "%0 # %2 #U02 # !%=2@ of
the Raman transition is chosen near resonance with the molecu-
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FIG. 1. (a) Two-dimensional setup: the bosons (black dots) are
on the square lattice with the molecules (gray dots) in the center
of each plaquette. (b) Three-dimensional setup: the bosons
(black dots) are on the links of the cubic lattice. Within each
face there are four bosonic sites, which establish a plaquette
(dashed square). The molecules (gray dots) are in the center of
each plaquette.
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particle states created by byi are called bosonic or atomic
states to distinguish them from the molecular two-particle
states. Depending on the setup, the atomic states reside
either in the corners or on the edges of each plaquette (see
Fig. 1), and are numbered counterclockwise. The energy !
corresponds to the detuning from resonance, while g is the
coupling strength determined by the Rabi frequency of the
Raman transition. While the Hamiltonian (2) is interesting
in its own right, the connection to ring exchange is appar-
ent upon integrating out the molecular field perturbatively
in g=!, which leads to the effective Hamiltonian
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with K ! g2=!. Note that the structure of the coupling in
Eq. (2) also produces a next-nearest-neighbor interaction.
The bosonic system turns metastable for large negative
detuning. However, the decay time easily exceeds typical
experimental time scales of atomic gases. Then, the per-
turbative expansion is again valid and allows for the real-
ization of a system with negative ring exchange
interaction.

In the following, we present the microscopic design of
the ring exchange interaction within atomic gases. This
design combines standard tools for manipulating and con-
trolling cold atomic gases [5,17]. Our starting point is a
system of bosonic atoms with two internal states coupled
via a Raman transition. These different internal states can
be trapped by independent optical lattices; such indepen-
dent trapping has been realized recently using spin-
dependent optical lattices [18,19]. An alternative approach
is the trapping of alkaline earth metals, e.g., 88Sr, where the
first excited state 3P1 exhibits a long lifetime with a differ-
ent polarizability than the lowest energy state 1S0 [20]. We
introduce the notation  a"x% and  b"x% for the field opera-
tors describing the two internal states, and the microscopic
Hamiltonians then take the form (" ! a; b)
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with g" ! 4#@2a"=m the interaction strength for scatter-
ing lengths a". The interaction strengths between the
atoms can be tuned independently by using magnetic or
optical Feshbach resonances [5]. The e" are the homoge-
neous energy shifts between the internal states. The poten-
tial V""x% accounts for an optical lattice driven by lasers
with wave vector k ! 2#=$, with the strength v" in units
of the recoil energy Er ! @2k2=2m. The two internal states
are coupled via a Raman transition. Transforming away the
optical frequencies within a rotating frame, the coupling
takes the form

HR ! @!
Z

dx& y
b a #  y

a  b'; (4)

with ! the Rabi frequency of the transition.
We focus first on the two-dimensional setup shown in

Fig. 1(a). Confinement to two dimensions is achieved by a
strong transverse optical lattice, which quenches hopping
between different planes. The remaining optical lattice
provides the square lattice structure for the atomic state
 b and takes the form Vb=Er ! vb&cos2"kx=2% #
cos2"ky=2%'. For vb * 1, the mapping to the Bose-
Hubbard model is well justified. The optical lattice for
the second internal state  a, which is localized at the
plaquette centers, takes the form

Va

Er
! vaf&coskx$ cosky'2 # sin2"kx=2% # sin2"ky=2%g:

The first term is obtained by interference between standing
laser waves along the x and y directions, while the other
terms represent a standard square lattice. The different
lattice spacing of the two contributions is easily achieved
by a finite angle 2#=3 between the interfering beams. We
are interested in a strong optical lattice Va, where tunneling
between different wells is quenched, and focus on the
energy states within a single well. Then the structure of
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FIG. 1. (a) Two-dimensional setup: the bosons (black dots) are
on the square lattice with the molecules (gray dots) in the center
of each plaquette. (b) Three-dimensional setup: the bosons
(black dots) are on the links of the cubic lattice. Within each
face there are four bosonic sites, which establish a plaquette
(dashed square). The molecules (gray dots) are in the center of
each plaquette.

PRL 95, 040402 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
22 JULY 2005

040402-2

b†j

m†
i

H.P. Buchler, et al. PRL 95, 040402 (2005) 

A. Auerbach, 1994
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• Spin lattice models

- Study quantum phase transitions (simulate spin liquids, valence bond solids, 
etc)

- Resource states for measurement based quantum computation, e.g. AKLT 
model

- Emergent physics and topological order

- Loop gas models, string net models, discrete gauge models (this talk)

- General idea:  prepare a highly entangled state of a spin network that is the 
vacuum state of a physical theory.
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A spin lattice model* of discrete gauge theory

• Pick a finite group

- spins on each edge: local basis

• Local gauge transformation

• Want ground states local gauge invariant

-

{|g〉; g ∈ G}
G

the ground states of HTO are invariant under local gauge transformations

Tg(v) = !
e j∈[v,∗]

Lg(e j) !
e j∈[∗,v]

Rg−1(e j), (1)

where Lg(e),Rg(e) ∈U(d), the d dimensional unitary group, are the permutation representations of the
left and right action of multiplication by the group element g∈G on the particle e. For the particle states
we make the identification | j〉 ≡ |gj〉, where by convention |0〉 ≡ |g0〉 ≡ |e〉, with e the identity element.
The action of left and right group multiplication on the basis states is then Lh| j〉 = |hgj〉, Rh| j〉 = |gjh〉.

A suitable spin lattice model was introduced by Kitaev [2]:

HTO = −"
v

A(v)−"
f

B( f ) (2)

where
A(v) = 1

|G| "g∈G Tg(v),

B( f ) = "
{!ek∈# f h

−o f (ek)
k =e}

⊗ek∈# f |h
−of (ek)
k 〉ek〈h

−of (ek)
k | (3)

In the definition of B( f ), the sum is taken over all products of group elements hk acting on a connected
counterclockwise cycle of edges on the boundary of f such that the product is the identity element e∈G.
The function of (e j) = ±1 according to whether the orientation of the edge is the same as(opposite to)
the face orientation. By construction [A(v),A(v′)] = [B( f ),B( f ′)] = [A(v),B( f )] = 0. Furthermore, it is

straightforward to verify that since A(v) is a symmetrized gauge transformation it is a projection as is
B( f ). The ground states of HTO are then manifestly gauge invariant states. Excited states are described
by violations of the local constraints A(v),B( f ) and are particle-like corresponding to the irreps of D(G)

labeled by $
[%]
R(N[%])

where [%] denotes a conjugacy class of G which labels the magnetic charge, and

R(N[%]) denotes a unitary irrep R of the normalizer of an element in the conjugacy class [%] which labels
the electric charge.

We focus on a two-complex & which is represented by a square lattice with boundary. For a two

complex with boundary and without holes, there exists a ground state |GS〉 such thatHTO|GS〉=−(|V |+
|F |)||GS〉 and it is unique (for the argument see e.g. [15]). The convention for edge and face orientations
is shown in Fig. 1. We slightly abuse notation by labeling the particles according to location relative to

a face index f j and vertex index v j (see Fig. 1a). For instance, a vertex ancillary particle at vertex vi, j
will be labeled vi, j and a face ancillary particle at face fi, j will be labeled fi, j. The system particle on

edge e = [vi, j,vk,l ] will be labeled ei, j;k,l . When we are referring to the actual spatial locations f and v
this will be made clear.

In Table 1 we give an algorithmic procedure to prepare the ground state of the Hamiltonian HTO
for an arbitrary finite group G. We begin with all system particles and face ancillae in state |e〉 = |0〉.
This guarantees that the initial system state satisfies the zero flux condition, i.e. B( f )|'〉S = |'〉S∀ f .
All vertex ancillae are prepared in the state |0̃〉 where | j̃〉 = 1√

|G "
|G|−1
k=0 e2(i jk/|G||k〉. In the case G= Z2,

this algorithm produces the ground state of the planar version of Kitaev’s toric code [2]. For that model

all operations can be done with qubits, and the permutation rep of the group is Le = Re = 12 and Lg1 =
Rg1 = )x. Controlled operations involve only CNOT gates and the correction gates Z j = ()z) j.

3 Implementation of D(S3)

Henceforth we work with the smallest non-Abelian group S3: the group of permutations on three objects.

The conjugacy classes and the permutation rep of group multiplication in S3 are given in previous notes
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the ground states of HTO are invariant under local gauge transformations

Tg(v) = !
e j∈[v,∗]

Lg(e j) !
e j∈[∗,v]

Rg−1(e j), (1)

where Lg(e),Rg(e) ∈U(d), the d dimensional unitary group, are the permutation representations of the
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HTO = −"
v

A(v)−"
f

B( f ) (2)

where
A(v) = 1

|G| "g∈G Tg(v),

B( f ) = "
{!ek∈# f h

−o f (ek)
k =e}

⊗ek∈# f |h
−of (ek)
k 〉ek〈h

−of (ek)
k | (3)

In the definition of B( f ), the sum is taken over all products of group elements hk acting on a connected
counterclockwise cycle of edges on the boundary of f such that the product is the identity element e∈G.
The function of (e j) = ±1 according to whether the orientation of the edge is the same as(opposite to)
the face orientation. By construction [A(v),A(v′)] = [B( f ),B( f ′)] = [A(v),B( f )] = 0. Furthermore, it is

straightforward to verify that since A(v) is a symmetrized gauge transformation it is a projection as is
B( f ). The ground states of HTO are then manifestly gauge invariant states. Excited states are described
by violations of the local constraints A(v),B( f ) and are particle-like corresponding to the irreps of D(G)

labeled by $
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R(N[%])

where [%] denotes a conjugacy class of G which labels the magnetic charge, and

R(N[%]) denotes a unitary irrep R of the normalizer of an element in the conjugacy class [%] which labels
the electric charge.

We focus on a two-complex & which is represented by a square lattice with boundary. For a two

complex with boundary and without holes, there exists a ground state |GS〉 such thatHTO|GS〉=−(|V |+
|F |)||GS〉 and it is unique (for the argument see e.g. [15]). The convention for edge and face orientations
is shown in Fig. 1. We slightly abuse notation by labeling the particles according to location relative to

a face index f j and vertex index v j (see Fig. 1a). For instance, a vertex ancillary particle at vertex vi, j
will be labeled vi, j and a face ancillary particle at face fi, j will be labeled fi, j. The system particle on

edge e = [vi, j,vk,l ] will be labeled ei, j;k,l . When we are referring to the actual spatial locations f and v
this will be made clear.

In Table 1 we give an algorithmic procedure to prepare the ground state of the Hamiltonian HTO
for an arbitrary finite group G. We begin with all system particles and face ancillae in state |e〉 = |0〉.
This guarantees that the initial system state satisfies the zero flux condition, i.e. B( f )|'〉S = |'〉S∀ f .
All vertex ancillae are prepared in the state |0̃〉 where | j̃〉 = 1√

|G "
|G|−1
k=0 e2(i jk/|G||k〉. In the case G= Z2,

this algorithm produces the ground state of the planar version of Kitaev’s toric code [2]. For that model

all operations can be done with qubits, and the permutation rep of the group is Le = Re = 12 and Lg1 =
Rg1 = )x. Controlled operations involve only CNOT gates and the correction gates Z j = ()z) j.

3 Implementation of D(S3)

Henceforth we work with the smallest non-Abelian group S3: the group of permutations on three objects.

The conjugacy classes and the permutation rep of group multiplication in S3 are given in previous notes

2

• gapped ground level,

• ground level degeneracy dependent on spatial topology, and

• excitations with anyonic statistics (in this case, non-Abelian.)

Moreover, the Hamiltonian is a sum of mutually commuting local projectors, which means the ground level is a

stabiliser code. This model can be interpreted as a (non-Abelian, discrete) gauge theory.

The quantum double D(S3) is a quantum group, in this case a quasi-triangular Hopf algebra, whose irreducible
representations are in one-to-one correspondence with the topological charges, constituents of the elementary

excitations of the model we are about to define. In particular, ‘electric’ and ‘magnetic’ particles are treated on

the same footing, while from a field-theoretical point of view they would correspond to pointlike charges and

soliton-like objects, respectively.

We will not need to delve in the intricacies of the quantum group construction: only the crucial elements of the

D(S3) model will be described.
The Hamiltonian is

HD(S3) = −!
v

Av−!
p

Bp, (13)

where v runs over the set of vertices of the lattice, while p runs over the set of plaquettes, and the operators in the

rhs are defined as follows:

Vertex operators Av represent four-body interactions, corresponding to S3 gauge transformations, acting on the

four sites adjacent to vertex v. In a convention where all four edges are oriented towards v, Av reads

Av

∣

∣

∣

∣

∣

g1

g2

g3

g4

〉

=
1

6
!
h∈S3

∣

∣

∣

∣

∣

g1h

g2h

g3h

g4h

〉

. (14)

Ket labels show only affected vertex and links, all other parts of the lattice remain untouched by Av. The nor-

malising factor 1/6 comes from the order of the group. The ‘right multiplication convention’ is related to the

‘counterclockwise convention’ for plaquette operators, to be introduced below. It is immediate to check that Av is

a projector: surviving eigenstates are ‘gauge invariant’ configurations.

We wish to interpret operators Bp as projectors onto ‘trivial magnetic flux’ plaquette states. In the quantum

double setting, the magnetic flux around a plaquette ket in the computational basis is the conjugacy class of the

product of group elements along the sites around the plaquette, taken along an oriented, anticlockwise loop:

flux

∣

∣

∣

∣

∣

g1

g2

g3

g4

〉

= [g1g2g3g4] (15)

(This definition is independent of the starting point of the loop, but not of its orientation; we always choose the

counterclockwise orientation to define fluxes, which ensures that Bps commute with the Avs defined in the right

multiplication convention.) Trivial flux corresponds to the conjugacy class [e] = {e} of the unit element. The
plaquette operator is then

Bp

∣

∣

∣

∣

∣

g1

g2

g3

g4

〉

= "(g1g2g3g4, e)

∣

∣

∣

∣

∣

g1

g2

g3

g4

〉

. (16)

In order to compare the actions of vertex and plaquette operators, we work with a fiducial orientation of the

lattice: horizontal edges are oriented from left to right, vertical edges point upwards. With this choice,

Av

∣

∣

∣

∣

∣

g1

g2

g3

g4

〉

=
1

6
!
h∈S3

∣

∣

∣

∣

∣

h−1g1

h−1g2
g3h

g4h

〉

(17)
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and

Bp

∣

∣

∣

∣

∣

g1

g2

g3

g4

〉

= !(g1g
−1
2 g−13 g4, e)

∣

∣

∣

∣

∣

g1

g2

g3

g4

〉

. (18)

It is easy to prove that vertex and plaquette operators defined with these conventions commute with each other.

They are stabilisers for the code defined as the ground level of Hamiltonian (13), characterised by the constraints

Av = 1, Bp = 1 for all vertices and plaquettes.

There is also a gap "E ≥ 1 for excitations (its value depends on the boundary conditions.)

3.3 Structure of excitations

The elementary excitations of the system on a boundaryless surface consist of strings with defects (topological

charges) at their ends, like in Kitaev’s code, but the structure of strings and of defects is more involved. There

are six different topological charges (including the trivial one, the vacuum) corresponding to irreps of the quantum

double D(S3). Nontrivial charges can be classified into three groups: magnetic, electric and dyonic.

3.3.1 Magnetic charges

Magnetic charges correspond to broken plaquettes, i.e., states in the kernel of a plaquette operator Bp.

A ket in the computational basis is always an eigenstate of all Bps. Define a map from such kets to S3 by

gp = g+,SE
p

(

g1

g2

g3

g4

)

= g1g2g3g4, (19)

where superscripts mean that this group element is associated with a counterclockwise circuit of the plaquette’s

edges starting from the south-eastern vertex.

If gp #= e then the state is a broken plaquette and lies in the kernel of Bp. To compute the topological charge,

the configuration of the vertices surrounding the plaquette should be taken into account.

Assume the state is such that the four vertex operators talking to qubits of the plaquette assume value 1, i.e.,

they are unfrustrated. This means that the state actually contains gauge equivalent kets with equal weights,

#
h1,h2,h3,h4∈S3

∣

∣

∣

∣

∣

h−11 g1h2

h−12 g2h3

h−13 g3h4

h−14 g4h1

〉

⊗ |$h1,h2,h3,h4〉 (20)

where |$h1,h2,h3,h4〉 are kets in the computational basis for the rest of the lattice.
Since the hi cover the whole of S3, gp visits the whole of its conjugacy class during the sum. In this situation

we say that the plaquette has purely magnetic topological charge [gp]. In S3 there are thus two nontrivial magnetic
charges, [t] and [c].

Note that for a non-Abelian group, the set of its conjugacy classes under composition (note that [gh] = [hg] in
all groups) is not itself a group (if gh #= hg, then ghg−1h−1 #= e, i.e., g composed with representatives of [g−1] does
not always yield e.) This implies non-Abelianity of the anyonic model. For Abelian groups, the result of fusion of

two magnetic charges [g][h] = [gh] is uniquely determined. Here, however, there is a non-uniqueness giving rise to
non-Abelian statistics:

t0t0 = e, t0t1 = c+ =⇒ [t]× [t]→ [e]+ [c],

t0c+ = t1 =⇒ [t]× [c]→ [t],

c+c+ = c−, c+c− = e =⇒ [c]× [c]→ [e]+ [c], (21)

which are the fusion rules of the purely magnetic sector of D(S3). Note that there is a particle-antiparticle duality
at work: each class is its own antiparticle, in the sense that it is the only class which, composed with it, gives the

vacuum [e] as a possible outcome.
(In particular: the magnetic sector is non-Abelian on its own, so if we increase the gap of electric defects

the anyon model would probably reduce to it. On the other hand, the {[e], [c]} sector has Fibonacci fusion rules;

8

f

G
|G| v

f f

v

δ(g3g2g
−1
1 g−1

4 , e)

A(v)

B(f)

[A(v), A(v′)] = [A(v), B(f)] = [B(f), B(f ′)] = 0

f

v

Realizes the quantum 
double D(G)
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• Gauge transformations

• Simplest non-Abelian group

• Regular rep:

Left multiplication Right multiplication

(choosing a basis of CS3 in the order {e | t0, t1, t2 | c+, c−}),

Le =





1
1

1
1

1
1




, Lt0 =





1
1

1
1

1
1




,

Lt1 =





1
1

1
1

1
1




, Lt2 =





1
1

1
1

1
1




,

Lc+ =





1
1

1
1

1
1




, Lc− =





1
1

1
1

1
1




, (11)

and its character is χL(g) = 6 δ(g, e) as it must for the regular representation
(δ is the Kronecker delta.)

4.2 The D(S3) lattice model

We consider a lattice model with the geometry of Kitaev’s toric code described
in 3.1: a square lattice Λ with discrete physical degrees of freedom (site) along
edges, with boundary conditions as yet unspecified. In this case, each oriented
edge b = (i, j) =i−→j from vertex i to one of its nearest neighbour vertices
j carries a 6-dimensional Hilbert space hb. We choose for each such space an
orthonormal basis

Bb = { |g〉b | g ∈ S3 }. (12)

So far we have two Hilbert spaces associated with the different orientations
of each bond, namely hb and hbT , with b = (i, j) and bT = (j, i). We identify
these pairs of spaces by the isomorphism defined by

Bb −→ BbT ,

|g〉b %−→ |g−1〉bT . (13)

This is consistent with an interpretation of oriented links as propagation of
several types of particles labelled by g ∈ S3 (including the absence of particles,
corresponding to e), where g−1 labels the particle of g.

We will carelessly refer to a basis as ‘the computational basis’ for a region
R ⊆ Λ if it is the tensor product of Bbs for a given assignment of orientations
to the edges in R.

In the quantum double-based model for S3 this lattice system has the usual
properties associated with topologically ordered phases, namely:

• gapped ground level,

7

φ e

O

|e〉
|φ−1〉

R−1

R−1

R

R

R

Figure 5: Transport of a nontrivial flux between neighbouring plaquettes. The initial

configuration has nontrivial flux φ across the left plaquette, and trivial flux e across

the right plaquette, as measured counterclockwise from O. The ancilla is initialised in

state |e〉. Green arrows stand for controlled right multiplication in the group algebra:

R multiplies by the control group element, R−1 by its inverse. In the final configura-

tion, the fluxes have been interchanged. This construction respects superpositions: In

particular, charge-neutral fluxes are propagated without charge generation.

starting from a pair created as above, we can propagate fluxes at will without
creating electric charge.

For interference experiments, we need fluxes with well-defined internal state
as measured from some origin. This may be achieved from a flux belonging to
an electrically neutral pair, by means of an ancilla initialised in state |e〉. This
ancilla is acted upon by the edges around a plaquette with pure flux [φ] as in
figure 5, ending at state |[φ−1]〉 = |[φ]〉. The ancilla is measured in the basis of
the conjugacy class: if the result is the inverse of the desired internal flux state,
the procedure has succeeded. Otherwise, the pair can be discarded, a new pair
produced, and the measurement repeated. Since the number of group elements
per conjugacy class is always less than four, this is affordable.

The operators for left multiplications are the regular representation matrices
of (11), and those for right multiplication are

Re =





1
1

1
1

1
1




, Rt0 =





1
1

1
1

1
1




,

Rt1 =





1
1

1
1

1
1




, Rt2 =





1
1

1
1

1
1




,

Rc+ =





1
1

1
1

1
1




, Rc− =





1
1

1
1

1
1




(30)
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the ground states of HTO are invariant under local gauge transformations

Tg(v) = !
e j∈[v,∗]

Lg(e j) !
e j∈[∗,v]

Rg−1(e j), (1)

where Lg(e),Rg(e) ∈U(d), the d dimensional unitary group, are the permutation representations of the
left and right action of multiplication by the group element g∈G on the particle e. For the particle states
we make the identification | j〉 ≡ |gj〉, where by convention |0〉 ≡ |g0〉 ≡ |e〉, with e the identity element.
The action of left and right group multiplication on the basis states is then Lh| j〉 = |hgj〉, Rh| j〉 = |gjh〉.

A suitable spin lattice model was introduced by Kitaev [2]:

HTO = −"
v

A(v)−"
f

B( f ) (2)

where
A(v) = 1

|G| "g∈G Tg(v),

B( f ) = "
{!ek∈# f h

−o f (ek)
k =e}

⊗ek∈# f |h
−of (ek)
k 〉ek〈h

−of (ek)
k | (3)

In the definition of B( f ), the sum is taken over all products of group elements hk acting on a connected
counterclockwise cycle of edges on the boundary of f such that the product is the identity element e∈G.
The function of (e j) = ±1 according to whether the orientation of the edge is the same as(opposite to)
the face orientation. By construction [A(v),A(v′)] = [B( f ),B( f ′)] = [A(v),B( f )] = 0. Furthermore, it is

straightforward to verify that since A(v) is a symmetrized gauge transformation it is a projection as is
B( f ). The ground states of HTO are then manifestly gauge invariant states. Excited states are described
by violations of the local constraints A(v),B( f ) and are particle-like corresponding to the irreps of D(G)

labeled by $
[%]
R(N[%])

where [%] denotes a conjugacy class of G which labels the magnetic charge, and

R(N[%]) denotes a unitary irrep R of the normalizer of an element in the conjugacy class [%] which labels
the electric charge.

We focus on a two-complex & which is represented by a square lattice with boundary. For a two

complex with boundary and without holes, there exists a ground state |GS〉 such thatHTO|GS〉=−(|V |+
|F |)||GS〉 and it is unique (for the argument see e.g. [15]). The convention for edge and face orientations
is shown in Fig. 1. We slightly abuse notation by labeling the particles according to location relative to

a face index f j and vertex index v j (see Fig. 1a). For instance, a vertex ancillary particle at vertex vi, j
will be labeled vi, j and a face ancillary particle at face fi, j will be labeled fi, j. The system particle on

edge e = [vi, j,vk,l ] will be labeled ei, j;k,l . When we are referring to the actual spatial locations f and v
this will be made clear.

In Table 1 we give an algorithmic procedure to prepare the ground state of the Hamiltonian HTO
for an arbitrary finite group G. We begin with all system particles and face ancillae in state |e〉 = |0〉.
This guarantees that the initial system state satisfies the zero flux condition, i.e. B( f )|'〉S = |'〉S∀ f .
All vertex ancillae are prepared in the state |0̃〉 where | j̃〉 = 1√

|G "
|G|−1
k=0 e2(i jk/|G||k〉. In the case G= Z2,

this algorithm produces the ground state of the planar version of Kitaev’s toric code [2]. For that model

all operations can be done with qubits, and the permutation rep of the group is Le = Re = 12 and Lg1 =
Rg1 = )x. Controlled operations involve only CNOT gates and the correction gates Z j = ()z) j.

3 Implementation of D(S3)

Henceforth we work with the smallest non-Abelian group S3: the group of permutations on three objects.

The conjugacy classes and the permutation rep of group multiplication in S3 are given in previous notes

2

S3 = {e, c+, c−, t0, t1, t2}} }

cyclic perms transpositions
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• Simplification using semi-direct product structure of group

• Suggests a qutrit/qubit encoding of spins

• Efficient quantum circuit exists for preparing vacuum state of model + 
manipulation of anyonic excitations* 

- works with or without a background Hamiltonian present

31

The characters χR(g) = tr [R(g)] are all equal to ±1 for the 1D reps and

χR2(e) = 2, χR2(t j) = 0, χR2(cρ) = −1. (B.2)

The permutation representation for S3 is a set of 6 × 6 matrices that faithfully represent
group left action on the basis {|e〉, |t0〉, |t1〉, |t2〉, |c+〉, |c−〉}, i.e. Lh|g〉 =| hg〉. Similarly, we have
unitaries for right multiplication Rh|g〉 =| gh〉. The unitary matrices satisfy [Lh, Rh′] = 0 and
are given by

Le =





1
1

1
1

1
1




, Lt0 =





1
1

1
1

1
1




, Lt1 =





1
1

1
1

1
1




,

Lt2 =





1
1

1
1

1
1




, Lc+ =





1
1

1
1

1
1




, Lc− =





1
1

1
1

1
1




,

Re =





1
1

1
1

1
1




, Rt0 =





1
1

1
1

1
1




, Rt1 =





1
1

1
1

1
1




,

Rt2 =





1
1

1
1

1
1




, Rc+ =





1
1

1
1

1
1




, Rc− =





1
1

1
1

1
1




.

Actually, g %→ Lg and g %→ Rg−1 determine the left and right regular representations of G,
respectively. This is because right multiplication inverts the order of group multiplication
Rg Rg′ = Rg′g, whereas R̃g = Rg−1 defines a representation.

Finally, we point out that the group S3 has a semi-direct product structure, which may
be exploited to simplify physical realizations. Recall the definition of the semi-direct product.
Suppose that we are given a group G with a normal subgroup N , a subgroup H , and the property
that any g ∈ G can be written g = nh for n ∈ N and h ∈ H . Let φ be the homomorphism φ :
H → Aut(N ), where φh(n) = hnh−1. Then G is isomorphic to the semi-direct product N !φ H
and the isomorphism identifies the product nh ∈ G with the pair (n, h) ∈ N !φ H . We have
S3

∼= Z3!φ Z2 = 〈a, b|a3 = e, b2 = e, bqab−q = a2q 〉. Here the homomorphism is specified by
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φb(a) = bab−1 = a2. Using the notation above we can choose Z3 = {e, c+, c−} and Z2 = {e, t0},
and any element g ∈ S3 can be written g = cr

+t s
0 for r ∈ {0, 1, 2}, s ∈ {0, 1}. Introducing the basis

for group elements {|r〉|s〉 ≡ |cr
+t s

0〉}, i.e. a product basis for a qutrit and a qubit, we have compact
representation of the left and right action operators:

Le = 13 ⊗ 12, Lt0 = F(1, 2) ⊗ σ x , Lt1 = F(0, 2) ⊗ σ x , Lt2 = F(0, 1) ⊗ σ x ,

Lc+ = X−1 ⊗ 12, Lc− = X ⊗ 12, Re = 13 ⊗ 12, Rt0 = 13 ⊗ σ x ,
(B.3)

Rt1 = X−1 ⊗ σ− + X ⊗ σ +, Rt2 = X−1 ⊗ σ + + X ⊗ σ−,

Rc+ = X ⊗ |0〉〈0| + X−1 ⊗ |1〉〈1|, Rc− = X−1 ⊗ |0〉〈0| + X ⊗ |1〉〈1|,

where F(i, j) = (|i〉〈 j | + | j〉〈i |) ⊕ 1 flips two basis states of the qutrit. The electric charge
creation operators of equation (27) assume a particularly simple form: WR1− = 13 ⊗ σ z and
WR2 = diag(2, −1, −1) ⊗ |0〉〈0|, as do the dyonic projectors: WR1

1
= diag(1

3 ,
ξ

3 ,
ξ∗

3 ) ⊗ |0〉〈0|,
WR2

1
= W ∗

R1
1
, WR4

1
= |0〉〈0| ⊗ σ z.
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Particle spectrum of 

• Labels

• Particles with quantum dimension >1 are non-Abelian anyons
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Pure electric charge
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irrep of  centralizer of  conjugacy class------> electric charge 
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Braid relations
• All excitations come in particle/anti-particle pairs 

- Magnetic flux pair

- Electric charge pairs transform under the irrep R and conjugate R*. 

• Interchanging two fluxes

• Braiding two fluxes

• Braiding one flux around flux pair

- action is trivial if pair prepared in chargeless state

where PRµ,! labels an irrep of G as above and g is the flux at face f , evaluated taking a counterclockwise

cycle with base point at v. For example, the state of magnetic flux ! particle located at face f and its
anti-particle pair located at face f ′ (with magnetic flux evaluated with respect to the origin v) is

|(PR
1
+,!);(v, f )〉|(PR

1
+ ,!−1);(v, f ′)〉.

For our model most excitations created in the bulk of the lattice appear as particle anti-particle pairs

(such that the total charge of the pair is zero). Although single particle excitations can be made by

creating them at the boundary. We will describe digital simulations of braiding of pure charges and pure

fluxes.

3.3 Anyonic dynamics

Before deriving a sequence of operations to create and move anyons in the spin lattice let’s review the

rules for braiding charges and fluxes in anyonic models. We will write |a〉 to represent a magnetic flux of
value a and |a,a−1〉 for a flux anti-flux pair. For electric charge pairs we have one charge that transforms
under the irrep R and the anti-charge which transforms under the complex conjugate representation R∗.

Following the notation of Mochon [3] we introduce the bases {|µ〉R}
|R|−1
i=0 ,{|!〉R∗}

|R|−1
j=0 on which the

representations act and write a generic state of an electric charge anti-charge pair as a |R|× |R| matrix:

|MR〉 =
1

√

|R|"
MR
µ,!|µ〉R⊗ |!〉R∗

with the normalization chosen such that "µ,! |MR
µ,!|2 = |R|.

Interchanging two fluxes, a left flux a and a right flux b in a counterclockwise sense is described by

the action of the monodromy operator R :

R |a〉|b〉 = #|a〉|aba−1〉 = |aba−1〉|a〉

where # is the particle interchange operator. Squaring the monodromy operator gives the action of

braiding two fluxes

R 2|a〉|b〉 = |abab−1a−1〉|abbb−1a−1〉 = |(ab)a(ab)−1〉|aba−1〉 (13)

Braiding a flux b around a flux anti-flux pair (a,a−1) is equivalent to braiding first around one then
around the other (we can order the particles left to right (1,2,3))

R 21,2⊗R 21,3|b〉|a,a−1〉 = |b〉|bab−1,ba−1b−1〉

If |bab−1,ba−1b−1〉 '= |a,a−1〉 then we say that |a,a−1〉 has magnetic charge. For each conjugacy class
[!], there is one unique vacuum state defined:

|0[!]〉 =
1

√

|[!]| "!∈[!]

|!,!−1〉 (14)

Electric charges moving past each have no effect, only the braiding of fluxes around charges have an

effect. Specifically, if we braid a flux |h〉 around one electric charge in the pair |MR〉 we obtain:

R 21,2|h〉|MR〉 = |h〉|R(h)MR〉 (15)

10
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• Electric charges moving past each other have no effect

• Braiding a flux around one charge in a pair

• Braiding a flux around the anti-charge in a pair

• Braiding a flux around the pair acts like conjugation

• For each irrep R, a unique fluxless state invariant under conjugation
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and if we braid around the anti-charge we obtain:

R 21,3|h〉|MR〉 = |h〉|MRR(h−1)〉 (16)

where R(h) is the matrix representation R of the group element h. Braiding around both charges is a
conjugation

R 21,2⊗R 21,3|h〉|MR〉 = |h〉|R(h)MRR(h−1)〉

For each irrep R there is one unique vacuum state that is invariant under conjugation:

|1|R|〉 (17)

3.3.1 Magnetic charges in D(S3)

Consider the creation of the vacuum magnetic charge pair for the conjugacy class [!]

|0[!];(vi, j , fi, j),(vi, j, fi, j+1)〉 =
1

√

|[!]| !!∈[!]

|(PR
+
1 ,!−1);(vi, j, fi, j)〉|(PR

+
1 ,!);(vi, j, fi, j+1)〉 (18)

This state can be created by staring in the ground state |GS〉 and acting on one edge which is a shared
boundary of the two faces:

|0[!];(vi, j, fi, j),(vi, j , fi, j+1)〉 =
1

√

|[!]| !!∈[!]

R!(ei−1, j;i, j)|GS〉

Note that the operator R!(ei−1, j;i, j) commutes with all vertex operators except A(vi, j). However, the sum
of R! over all elements of the conjugacy class does commute with it:

!!∈[!]A(vi, j)R!A(vi, j) = 1
|G|2 !g,g′ T̃g(vi, j)T̃g′(vi, j)⊗ [!!∈[!]Rg−1(ei−1, j;i, j)R!(ei−1, j;i, j)Rg′−1(ei−1, j;i, j)]

= 1
|G|2 !g,g′ T̃g(vi, j)T̃g′(vi, j)⊗ [!!∈[!]Rg−1(ei−1, j;i, j)Rg−1!g(ei−1, j;i, j)Rg′−1(ei−1, j;i, j)]

= 1
|G|2 !g,g′ T̃g(vi, j)T̃g′(vi, j)⊗ [!!∈[!]R!(ei−1, j;i, j)Rg−1(ei−1, j;i, j)Rg′−1(ei−1, j;i, j)]

= 1
|G|2 !!∈[!]R!(ei−1, j;i, j)!g,g′ Tg(vi, j)Tg′(vi, j)

= !!∈[!]R!(ei−1, j;i, j)A(vi, j)2

= !!∈[!]R!(ei−1, j;i, j)A(vi, j)

where T̃g(vi, j)Rg−1(ei−1, j;i, j) ≡ Tg(vi, j), since A(v)|GS〉 = |GS〉. Therefore, the state only violates the
face constraints B( fi, j),B(vi, j+1). Starting from the vacuum (ground) state |GS〉, this state is created by
preparing the ancilla fi, j in the state |0[!]〉 fi, j where |0[!]〉 = 1√

[!]
!!∈[!] |!〉, applying the two qudit unitary

F[!]( fi, j) = 1|G|−|[!]|⊗1|G| + !
!∈[!]

|!〉 fi, j〈!|⊗R!(ei−1, j;i, j)

and measuring the face ancilla in the basis {|k[!]〉= Zk|[!]||0[!]〉}
|[!]|−1
k=0 , where Zk[!] =!!m∈[!] e

i2"km/|[!]| |!m〉〈!m|
(where we have labeled the group elements in [!] = {l0, . . . ,!|[!]|−1}). For the outcome 0[!] the target mag-

netic charge state is created. Otherwise for outcome k[!], we need a correction step. To do this prepare

the ancilla fi, j in the state |e〉 fi, j . Apply the controlled operation #(vi, j, fi, j) where

#(v, f ) = !
g∈G

Bg(v, f )⊗Lg( f ).
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Sketch of proposed interferometry

(a)A spin lattice model of          ,  we simulate a single plaquette

(b)Acting on one spin (red) produces a anyonic electric charge pair (diamonds) 
and also can produce a flux (square)

(c)Braiding the flux around one charge by acting on (red) spins

(d)Fusion of the electric charge pair.  Incomplete fusion to vacuum is signature 
of non-Abelian anyonic statistics

D(S3)
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• Algorithmic simulation of           (toric code)  with entangled photons
J.K. Pachos, W. Wieczorek, C. Schmid, N. Kiesel, R. Pohlner, H. 
Weinfurter, arXiv:0710.0895 New J Phys (in press);
Chao-Yang Lu, Wei-Bo Gao, Otfried Gühne, Xiao-Qi Zhou, Zeng-
Bing Chen, Jian-Wei Pan, PRL 102, 030502 (2009) 

Ground state of   

Prepare GS on one plaquette

Measure interference of  two processes

Create charge pair, braid flux pair around charge, 
annihilate

σx
1σx

2σx
3σx

4 |ξ〉 = |ξ〉

Create flux pair braid around plaquette, annihilate

σz
3 [σx

1σx
2σx

3σx
4 ]σz

3 |ξ〉 = −[σx
1σx

2σx
3σx

4 ]|ξ〉 = −|ξ〉

e−i π
4 σz

1 [σx
1σx

2σx
3σx

4 ]ei π
4 σz

1 |ξ〉 = (|0000 > −|1111 >)/
√

2

Background Hamiltonian is zero!

Experimental Simulation of Abelian anyons
D(Z2)
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Building the initial state
• Resources needed:  

- 3 type-I SPDC crystals

- 6 photons, 15 modes

- 14 beam splitters + 11 phase shifters

• Creating 2 qutrit entanglement

- type-I SPDC:  strong pulse in, entangled photon in same polarization out

- three crystals

- probability for one photon per triple above and below is 

Non-Abelian anyonic interferometry with a multi-photon spin lattice simulator 8

4. Linear optics implementation

Next we consider how this scheme can be achieved using a linear optics implementation. The core component of

the linear optical demonstration is the linear optical CNOT of the type demonstrated in Ref. [22]. Such a CNOT

is based on dual-rail qubits — a single photon in a pair of optical modes. For this gate to function correctly it is

necessary to ensure that each pair of output modes contains a single photon. This can make it problematic to chain

these gates together, as it at first appears necessary to perform quantum nondemolition measurements of the photon

number. However, it is still possible provided it can be inferred that a single photon was present in the intermediate

steps. For example, that is the approach used in Ref. [23].

To encode the qutrits we can simply extend the dual-rail encoding to a tri-rail encoding with a single photons

in three optical modes. This has the advantage that arbitrary unitaries can be performed on these qutrits using

linear optics [24].

Note that for a subset of the fusion rules, we do not need to implement the controlled Tj operations which

substantially simplifies the experiment. This process is detailed in section 4.3.

4.1. Initial state preparation

A possible way to create the three qutrit entangled state required for |1R2;(v1,v3)〉,

{2|0〉2b
(

|0〉1b|0〉3b+ |1〉1b|1〉3b+ |2〉1b|2〉3b
)

− |2〉2b
(

|0〉1b|1〉3b+ |1〉1b|2〉3b+ |2〉1b|0〉3b
)

−|1〉2b
(

|0〉1b|2〉3b+ |1〉1b|0〉3b+ |2〉1b|1〉3b
)

}/(3
√
2),

(21)

is to prepare the initial state |0〉2b|!3〉1b,3b where

|!3〉1b,3b = (|0〉1b|0〉3b+ |1〉1b|1〉3b+ |2〉1b|2〉3b)/
√
3 (22)

is a maximally entangled two qutrit state, and to propagate this state through the circuit in Fig. 3. The phase angles

" and # in the circuit are given by

#= arcsin

[

10√
247

]

, "= arcsin

[

7+
√
3

2
√
26

]

−
$

4
.

Each of the beam splitters depicted acts in a symmetric way, transforming two optical modes described by the

boson creation operators a† and b†, as a† → i
√
R a†+

√
1−R b† and b† → i

√
R b†+

√
1−R a†, where R is the

reflectivity indicated. The circuit relies on a final postselection to ensure only one photon is present in each qutrit,

which happens with a probability of 9/55. The remaining time, invalid qutrit states are produced such as having
two photons in three modes and these can be postselected out.

Although the circuit in Fig. 3 looks daunting, each CNOT gate of the type in reference [22] takes 5 beam

splitter transformations to implement, so the circuit is the same order in complexity as three such gates. In fact,

the transformation implemented by this circuit is equivalent to a single qutrit transformation on qutrit 2 followed

by a ternary adder gate between qutrits 2 and 3 (|x,y〉 → |x,x⊕ y〉). The single qubit transformation would take at
least two beam splitters and the ternary adder gate can be implemented by four qubit CNOT gates acting between

pairs of qutrit levels. If such a naive application of qubit gates were used to synthesise the transformation, the

circuit would already require 22 beam splitters. The circuit in Fig. 3 has been optimised in comparison but it may

be possible to optimise it further.

There are potentially a number of ways to prepare the entangled state (22). A fairly direct way, that can

make use of the same final postselection as the circuit, is to use the output of three type-I spontaneous parametric
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Figure 5. The sequence of linear optical CNOTs to perform the controlled Tt0 operation. The pair of modes 4 is the

ancilla, and is initially in a superposition state. The qubit 2a is initially in the state |1〉, so the CNOT just simplifies to a
NOT operation.

Let us consider first the case where R = R′ = R2, the two-dimensional irrep of S3. In this case, we do

not need to perform controlled operations Tti or Tc± , and just need the corresponding unconditional operations.

To see how this works we compute the outcome of the measurement of WR2 in the gauge transformed state

Th(v)|1R2 ;(v,v′)〉 = |R2(h);(v,v′)〉,

〈R2(h);(v,v′)|WR2(e)|R2(h);(v,v′)〉 = 〈1R2;(v,v′)|T
†
h WR2(e)Th(v)|1R2 ;(v,v′)〉〉

= 〈GS|WR2(e)W
h−1
R2

(e)WR2(e)|GS〉
= 1

6
tr{(WR2(e))

2Wh−1
R2

(e)}.
(23)

We find

〈R2(h);(v,v′)|WR2(e)|R2(h);(v,v
′)〉 =







1 h= e

− 1
2

h= c±
0 h= t j ∀ j

. (24)

This reproduces the fusion amplitudes computed before, but this is just an accident. In fact, such an expectation

value probes the fusion rules of the theory:

〈R(h)|WR′ |R(h)〉 =
|R|

!
a,b,d,e=1

|R′|

!
c=1

Q
[RR′∗R∗]
acd,bce R

∗
ab(h)Rde(h) , (25)

where Q[R(1)R(2)R(3)] are the projectors onto the vacuum fusion channel for three irreducible representations, that is,

Q
[R(1)R(2)R(3)]
ace,bc f =

1

|G|!g
R

(1)
ab (g)R(2)

cd (g)R(3)
e f (g) =!

"

q
[R(1)R(2)R(3)],"
ace q

[R(1)R(2)R(3)],"∗
bc f ,

where the q[R(1)R(2)R(3)]," are an orthonormal basis for the +1 eigenspace of Q[R∗R′∗R]; they are more familiar as 3 j

symbols in the case of angular momentum.

Measurements for 〈R2(h);(v,v′)|WR2(e)|R2(h);(v,v′)〉 can easily be performed deterministically. Tc± is just a
permutation of the three modes on the qutrit. The operation Tt0 gives the change in the encoded states

|1〉a|0〉b ↔ |0〉a|0〉b, |0〉a|1〉b ↔ |1〉a|2〉b, |0〉a|2〉b ↔ |1〉a|1〉b.
This can be achieved by a NOT gate on the qubit, and swapping states 1 and 2 for the qutrit. Then operation Tt0
is the same, except swapping states 0 and 1 for the qutrit, and Tt0 is the same except swapping states 0 and 2.

These are all operations that can be performed deterministically. Then the operatorWR2 can just be measured by

measuring the qubits and qutrits in their computational basis.

In particular, with the operation Tc+ the unnormalised state becomes

|1〉2a
(

|0〉1a|0〉3a+ |1〉1a|1〉3a
)

[2|2〉2b
(

|2〉1b|0〉3b+ |0〉1b|1〉3b+ |1〉1b|2〉3b
)

−|1〉2b
(

|2〉1b|1〉3b+ |0〉1b|2〉3b+ |1〉1b|0〉3b
)

− |0〉2b
(

|2〉1b|2〉3b+ |0〉1b|0〉3b+ |1〉1b|1〉3b
)

].
(26)
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These are all operations that can be performed deterministically. Then the operatorWR2 can just be measured by

measuring the qubits and qutrits in their computational basis.

In particular, with the operation Tc+ the unnormalised state becomes
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(
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NOT operation.

Let us consider first the case where R = R′ = R2, the two-dimensional irrep of S3. In this case, we do

not need to perform controlled operations Tti or Tc± , and just need the corresponding unconditional operations.

To see how this works we compute the outcome of the measurement of WR2 in the gauge transformed state

Th(v)|1R2 ;(v,v′)〉 = |R2(h);(v,v′)〉,

〈R2(h);(v,v′)|WR2(e)|R2(h);(v,v′)〉 = 〈1R2;(v,v′)|T
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


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Summary

• Good quantum simulation requires good quantum control

• Can simulate emergent physics

- Build highly entangled spin networks corresponding to vacuum states of 
models with exotic excitations

- Can manipulate these excitations and measure their properties

• Photonic spin networks look promising in the near term for demonstrating 
prototype models

- Integrated photonics* with waveguides etched into glass is a good platform

• Larger simulations become inefficient due to bad scaling of probability to create 
many spin entangled states.  There are work arounds but other systems such as 
Josephson junctions or trapped atoms/molecules in optical lattices may be 
better

*A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, 
and J. L. O’Brien, Science 320, 646 (2008).
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