Multiphoton simulator for nonAbelian anyons

Gavin K Brennen

QSciTech, Macquarie University, Sydney

Joint work with: Dominic Berry (IQC, Waterloo)
Miguel Aguado (MPQ, Garching)
Alexei Gilchrist (Macquarie, Sydney)

- " We should try to find out what kinds of quantum mechanical systems are mutually intersimulatable, and try to find a specific class, or character of that class which will simulate everything" Feynman 1982
- Many physical systems have an isomorphic state space, so if we can control the state of one then that simulates another
- one qubit=polarization space of a photon= spin space of an electron= occupation space of a single photon in two orthogonal modes, etc.

Generic Hamiltonian on n qubits

Digital Simulators

- A fault tolerant quantum computer can simulate any dynamics over finite dimensional systems

- Problem: This may not be efficient. General unitaries on n qubits systems require 2^{n} gates (for qudits $d^{2 n}$)
- Some dynamics are efficient

- Is there a constructive approximate method? Yes

Stroboscopic techniques

- Control Hamiltonian $H(t)=H_{\mathrm{ent}}+\sum f_{m}(t) H_{m}$
- System governed by TDSE $\quad i \hbar \dot{U}=\stackrel{m}{H}(t) U(t)$
- Using properties of commutators (Trotterization) we can digitize a simulation.
- Advantage: Digitized circuits can be made fault tolerant

$$
\begin{aligned}
& e^{-i \Delta H_{a}} e^{i \Delta H_{b}} e^{i \Delta H_{a}} e^{-i \Delta H_{b}}=e^{-i\left(i\left[H_{a}, H_{b}\right]\right) \Delta^{2}}+O\left(\Delta^{3}\right) \\
& e^{-i \Delta\left(H_{a}+H_{b}\right)}=\left[e^{-i \Delta H_{a} / k} e^{-i \Delta H_{b} / k}\right]^{k}+O\left(\Delta^{2} / k\right)
\end{aligned}
$$

M. Bremner, D. Bacon, and M.A.

$$
\approx e^{-i \delta\left(\sigma^{z \otimes 5}+\sigma^{x} \sigma^{z} \sigma^{y} \sigma^{z} \sigma^{x}\right)}
$$

k-local Hamiltonians

- Bounded Hamiltonians that can be written as a sum of terms involving tensor products of no more than k terms

- It is frequently the case that k is small for physically relevant Hamiltonian (often $\mathrm{k}=2$)
- Complexity of stroboscopic circuit for k-local Hamiltonians is $O\left(n^{k}\right)$

Analogue simulators

- Engineer an "always on" interaction that mimics a physics you want to simulate
- Ex: Superfluid to Mott insulator phase transition

Mott Insulator

Theory: Jaksch et al. PRL 81, 3108 (1998)

Exp: M. Greiner et al. Nature 415, 39 (2003)

- Analogue simulation of Bose-Hubbard interaction

$$
H_{B H}=-\sum_{<j, k>} J\left(a_{j}^{\dagger} a_{k}+a_{k}^{\dagger} a_{j}\right)+\sum_{j} \frac{U}{2} n_{j}\left(n_{j}-1\right)+\epsilon(j) n_{j}
$$

Pros/Cons

- Analogue simulators:
- Pros: A more direct method, much simpler control
- Cons: Not fault tolerant, architectural limitations, physical limitations on locality and strength of interactions in the simulating system
- Digital simulators:
- Pros: Universality, can be made fault tolerant, no architectural constaints in principle
- Cons: Complicated control pulse sequences, evidence* that fault tolerant simulation has complexity that scales like $1 / \epsilon$ for a tolerated error ϵ

A quantum simulation algorithm

- Problem: Compute the energy gap ΔE between the ground and first excited state of a Hamiltonian H
L.A. Wu, M.S. Byrd, and D.A. Lidar, PRL 89, 057904 (2002).
- Algorithm:
- Map the Hilbert space of the system to be simulated to n qubits
- Prepare QC in the ground state of a local Hamiltonian H_{0}
- e.g. $|\psi(0)\rangle=\left|+{ }_{x}\right\rangle^{\otimes n} \quad H_{0}=-\sum \sigma_{j}^{x}$
- Evolve, using stroboscopic circuits, accórding to the following adiabatic Hamiltonian

$$
H(s)=(1-s) H_{0}+s H \quad s=t / T \quad T \gg \frac{\left\|\frac{\partial H(s)}{\partial s}\right\|}{(\Delta E)^{2}}
$$

- Failure to remain adiabatic results in a final state which has some small admixture of ground and excited states of H

$$
|\psi\rangle_{i}=c_{g}\left|\lambda_{g}\right\rangle+c_{e}\left|\lambda_{e}\right\rangle
$$

- Evolve by simulated H for time t_{i}
- Measure some operator that couples ground and excited states $\left\langle O\left(t_{i}\right)\right\rangle$
- Repeat for a polynomial number of times steps (polynomial number of steps enough to resolve ΔE). Compute Fourier transform of $\left\{\left\langle O\left(t_{i}\right)\right\rangle\right\}$

Caveats

- To estimate of the gap with error \# of digits precision needed is $\log (1 / \epsilon)$
- A good quantum algorithm would have a complexity $O($ poly $\log (1 / \epsilon))$
- Error in trotter approximation of evolution due to a sum of Hamiltonians scales like $O\left(t^{2} / k\right)$. Higher order Trotter expansion has error $O\left(t^{m+1} / k^{m}\right)$ using gates $O\left(2^{m}\right)$
- Total time to implement algorithm is independent of k . If control gates are perfect, then precision improves with larger k .
- If not, then each subcircuit must be replaced with a fault tolerant version.
- But time to implement $e^{-i H t / k}$ is independent of k (for standard control Hamiltonians)! Hence for a fixed error the total time for the simulation is $O(1 / \epsilon)$.
K. Brown, R.J. Clark, I.L. Chuang, PRL 97, 050504 (2006).
- Workarounds:
- Find better gate libraries (maybe global pulses with correlated errors) combined with noiseless subsystems
- Hard wire the Hamiltonian into a system so no Trotterization is needed!

What to simulate?

- Hubbard models
- 2D Fermi-Hubbard Model

$$
H=-\sum_{\left\langle\mathbf{r}, \mathbf{r}^{\prime}\right\rangle, \sigma} t_{\mathbf{r}, \mathbf{r}^{\prime}}\left(c_{\mathbf{r}, \sigma}^{\dagger} c_{\mathbf{r}^{\prime}, \sigma}+H . c .\right)+U \sum_{\mathbf{r}} n_{\mathbf{r}, \uparrow} n_{\mathbf{r}, \downarrow} \quad\left\{c_{\mathbf{r}, \sigma}, c_{\mathbf{r}^{\prime}, \sigma^{\prime}}^{\dagger}\right\}=\delta_{\mathbf{r}, \mathbf{r}^{\prime}} \delta_{\sigma, \sigma^{\prime}}
$$

- Observables: Energy gap, correlation functions
- Proposed model for high Tc superconductivity. A q. simulation could falsify it
- 2D and 3D lattice gauge theory
- Ring exchange model: Emergent U(I) gauge theory

$$
H_{\mathrm{RE}}=K \sum_{\square}\left(b_{1}^{\dagger} b_{2} b_{3}^{\dagger} b_{4}+b_{1} b_{2}^{\dagger} b_{3} b_{4}^{\dagger}-n_{1} n_{3}-n_{2} n_{4}\right)
$$

H.P. Buchler, et al. PRL 95, 040402 (2005)

- Spin lattice models

- Study quantum phase transitions (simulate spin liquids, valence bond solids, etc)
- Resource states for measurement based quantum computation, e.g.AKLT model
- Emergent physics and topological order
- Loop gas models, string net models, discrete gauge models (this talk)
- General idea: prepare a highly entangled state of a spin network that is the vacuum state of a physical theory.

A spin lattice model* of discrete gauge theory

- Pick a finite group G
- spins on each edge: local basis $\{|g\rangle ; g \in G\}$
- Local gauge transformation

$$
T_{g}(v)=\prod_{e_{j} \in[v, *]} L_{g}\left(e_{j}\right) \prod_{e_{j} \in[*, v]} R_{g^{-1}}\left(e_{j}\right)
$$

- Want ground states local gauge invariant

$$
H_{\mathrm{TO}}=-\sum_{v} A(v)-\sum_{f} B(f)
$$

Realizes the quantum double $D(G)$

$$
B(f)|\underbrace{g_{3} \xrightarrow{g_{2}} \overbrace{g_{1}}^{\rightarrow}}_{g_{4}}\rangle=\delta\left(g_{3} g_{2} g_{1}^{-1} g_{4}^{-1}, e\right),|\underbrace{\stackrel{g_{3}}{f} \xrightarrow{f} g_{g_{1}}}_{g_{4}}\rangle
$$

*A. Yu. Kitaev, Annals of

$$
\left[A(v), A\left(v^{\prime}\right)\right]=[A(v), B(f)]=\left[B(f), B\left(f^{\prime}\right)\right]=0
$$ Physics 303, 2 (2003)

- Gauge transformations $T_{g}(v)=\prod_{e_{j} \in[v, *]} L_{g}\left(e_{j}\right) \prod_{e_{j} \in[*, v]} R_{g^{-1}}\left(e_{j}\right)$
- Simplest non-Abelian group $S_{3}=\left\{e, c_{+}, c_{-}, t_{0}, t_{1}, t_{2}\right\}$
cyclic perms transpositions
- Regular rep:

Left multiplication
Right multiplication

- Simplification using semi-direct product structure of group $S_{3} \cong \mathbb{Z}_{3} \rtimes_{\phi} \mathbb{Z}_{2}$

$$
\begin{aligned}
L_{e} & =\mathbf{1}_{3} \otimes \mathbf{1}_{2}, \quad L_{t_{0}}=F(1,2) \otimes \sigma^{x}, \quad L_{t_{1}}=F(0,2) \otimes \sigma^{x}, \quad L_{t_{2}}=F(0,1) \otimes \sigma^{x}, \\
L_{c_{+}} & =X^{-1} \otimes \mathbf{1}_{2}, \quad L_{c_{-}}=X \otimes \mathbf{1}_{2}, \quad R_{e}=\mathbf{1}_{3} \otimes \mathbf{1}_{2}, \quad R_{t_{0}}=\mathbf{1}_{3} \otimes \sigma^{x}, \\
R_{t_{1}} & =X^{-1} \otimes \sigma^{-}+X \otimes \sigma^{+}, \quad R_{t_{2}}=X^{-1} \otimes \sigma^{+}+X \otimes \sigma^{-}, \\
R_{c_{+}} & =X \otimes|0\rangle\langle 0|+X^{-1} \otimes|1\rangle\langle 1|, \quad R_{c_{-}}=X^{-1} \otimes|0\rangle\langle 0|+X \otimes|1\rangle\langle 1|,
\end{aligned}
$$

$$
F(i, j)=(|i\rangle\langle j|+|j\rangle\langle i|) \oplus 1
$$

- Suggests a qutrit/qubit encoding of spins
- Efficient quantum circuit exists for preparing vacuum state of model + manipulation of anyonic excitations*
- works with or without a background Hamiltonian present

Particle spectrum of $D\left(S_{3}\right)$

- Labels

particle type
Vacuum

Pure magnetic charge
Pure electric charge
Dyonic combination
$\Pi_{R_{1}^{+}}^{[e]}$ quantum dimension $=|[\alpha]||R|$ 1

- Particles with quantum dimension >I are non-Abelian anyons

Braid relations

- All excitations come in particle/anti-particle pairs
- Magnetic flux pair $\left|a, a^{-1}\right\rangle$

- Electric charge pairs transform under the irrep R and conjugate R^{*}.

$$
\left|M^{R}\right\rangle=\frac{1}{\sqrt{|R|}} \sum M_{\mu, v}^{R}|\mu\rangle_{R} \otimes|v\rangle_{R^{*}} \quad \sum_{\mu, v}\left|M_{\mu, v}^{R}\right|^{2}=|R|
$$

- Interchanging two fluxes

$$
\mathcal{R}|a\rangle|b\rangle=\sigma|a\rangle\left|a b a^{-1}\right\rangle=\left|a b a^{-1}\right\rangle|a\rangle
$$

- Braiding two fluxes

$$
\mathcal{R}^{2}|a\rangle|b\rangle=\left|a b a b^{-1} a^{-1}\right\rangle\left|a b b b^{-1} a^{-1}\right\rangle=\left|(a b) a(a b)^{-1}\right\rangle\left|a b a^{-1}\right\rangle
$$

- Braiding one flux around flux pair

$$
\mathcal{R}_{1,2}^{2} \otimes \mathcal{R}_{1,3}^{2}|b\rangle\left|a, a^{-1}\right\rangle=|b\rangle\left|b a b^{-1}, b a^{-1} b^{-1}\right\rangle
$$

- action is trivial if pair prepared in chargeless state $\left|0_{[\ell]}\right\rangle=\frac{1}{\sqrt{|[\ell]|}} \sum_{\ell \in[\ell]}\left|\ell, \ell^{-1}\right\rangle$
- Electric charges moving past each other have no effect

- Braiding a flux around one charge in a pair

$$
\mathcal{R}_{1,2}^{2}|h\rangle\left|M^{R}\right\rangle=|h\rangle\left|R(h) M^{R}\right\rangle
$$

- Braiding a flux around the anti-charge in a pair

$$
\mathcal{R}_{1,3}^{2}|h\rangle\left|M^{R}\right\rangle=|h\rangle\left|M^{R} R\left(h^{-1}\right)\right\rangle
$$

- Braiding a flux around the pair acts like conjugation

$$
\mathcal{R}_{1,2}^{2} \otimes \mathcal{R}_{1,3}^{2}|h\rangle\left|M^{R}\right\rangle=|h\rangle\left|R(h) M^{R} R\left(h^{-1}\right)\right\rangle
$$

- For each irrep R, a unique fluxless state invariant under conjugation $\left|\mathbf{1}_{|R|}\right\rangle$

Sketch of proposed interferometry

(a)A spin lattice model of $D\left(S_{3}\right)$, we simulate a single plaquette
(b)Acting on one spin (red) produces a anyonic electric charge pair (diamonds) and also can produce a flux (square)
(c) Braiding the flux around one charge by acting on (red) spins
(d)Fusion of the electric charge pair. Incomplete fusion to vacuum is signature of non-Abelian anyonic statistics

Experimental Simulation of Abelian anyons

- Algorithmic simulation of $D\left(\mathbb{Z}_{2}\right)$ (toric code) with entangled photons
J.K. Pachos, W. Wieczorek, C. Schmid, N. Kiesel, R. Pohlner, H. Weinfurter, arXiv:0710.0895 New J Phys (in press);
Chao-Yang Lu, Wei-Bo Gao, Otfried Gühne, Xiao-Qi Zhou, ZengBing Chen, Jian-Wei Pan, PRL 102, 030502 (2009)

Background Hamiltonian is zero!

Ground state of
$|\xi\rangle=\prod_{s} \frac{1}{\sqrt{2}}\left(\mathbb{1}+\sigma_{s, 1}^{x} \sigma_{s, 2}^{x} \sigma_{s, 3}^{x} \sigma_{s, 4}^{x}\right)|00 \ldots 0\rangle$
Prepare GS on one plaquette

$$
|\xi\rangle=(|0000\rangle+|1111\rangle) / \sqrt{2}\rangle
$$

Building the initial state

- Resources needed:
- 3 type-I SPDC crystals
- 6 photons, 15 modes
- I4 beam splitters + II phase shifters

- Creating 2 qutrit entanglement
- type-I SPDC: strong pulse in, entangled photon in same polarization out

$$
|\mathrm{SPDC}\rangle=\sqrt{1-\lambda^{2}} \sum_{n=0}^{\infty} \lambda^{n}|n n\rangle
$$

- three crystals $\quad \mid$ SPDC $\rangle^{\otimes 3}=\left(1-\lambda^{2}\right)^{3 / 2} \sum_{n_{1}, n_{2}, n_{3}=0}^{\infty} \lambda^{n_{1}+n_{2}+n_{3}}\left|n_{1} n_{1}, n_{2} n_{2}, n_{3} n_{3}\right\rangle$

- probability for one photon per triple above and below is $\lambda^{2}\left(1-\lambda^{2}\right)^{3}$
- Input $\left|\psi_{3}\right\rangle_{1 b, 3 b}=\left(|0\rangle_{1 b}|0\rangle_{3 b}+|1\rangle_{1 b}|1\rangle_{3 b}+|2\rangle_{1 b}|2\rangle_{3 b}\right) / \sqrt{3}$

- Post-select on one photon per triple mode $1,2,3$. Success probability 9/55
- Output $\left\{2|0\rangle_{2 b}\left(|0\rangle_{1 b}|0\rangle_{3 b}+|1\rangle_{1 b}|1\rangle_{3 b}+|2\rangle_{1 b}|2\rangle_{3 b}\right)-|2\rangle_{2 b}\left(|0\rangle_{1 b}|1\rangle_{3 b}+|1\rangle_{1 b}|2\rangle_{3 b}+|2\rangle_{1 b}|0\rangle_{3 b}\right)\right.$

$$
\left.-|1\rangle_{2 b}\left(|0\rangle_{1 b}|2\rangle_{3 b}+|1\rangle_{1 b}|0\rangle_{3 b}+|2\rangle_{1 b}|1\rangle_{3 b}\right)\right\} /(3 \sqrt{2}),
$$

Measuring fusion data (a simple method)

- Braid flux around one charge at vertex $v \quad T_{h}(v)\left|\mathbf{1}_{R_{2}} ;\left(v, v^{\prime}\right)\right\rangle=\left|R_{2}(h) ;\left(v, v^{\prime}\right)\right\rangle$
- Measure projector onto irrep for fluxless charge pair

$$
\langle R(h)| W_{R^{\prime}}|R(h)\rangle=\sum_{a, b, d, e=1}^{|R|} \sum_{c=1}^{\left|R^{\prime}\right|} Q_{a c d, b c e}^{\left[R R^{* *} R^{*}\right]_{a b}^{*}} R_{a b}^{*}(h) R_{d e}(h)
$$

- Projectors onto vacuum fusion channel for three irreps

$$
Q_{a c e, b c f}^{\left[R^{(1)} R^{(2)} R^{(3)}\right]}=\frac{1}{|G|} \sum_{g} R_{a b}^{(1)}(g) R_{c d}^{(2)}(g) R_{e f}^{(3)}(g)
$$

- Just local (non-entangling) operations + measurement on photons in 2 a and 2 b
- signature of non-Abelian statistics

$$
\left\langle R_{2}(h) ;\left(v, v^{\prime}\right)\right| W_{R_{2}}(e)\left|R_{2}(h) ;\left(v, v^{\prime}\right)\right\rangle=\left\{\begin{array}{cc}
1 & h=e \\
-\frac{1}{2} & h=c_{ \pm} \\
0 & h=t_{j} \forall j
\end{array}\right.
$$

Summary

- Good quantum simulation requires good quantum control
- Can simulate emergent physics
- Build highly entangled spin networks corresponding to vacuum states of models with exotic excitations
- Can manipulate these excitations and measure their properties
- Photonic spin networks look promising in the near term for demonstrating prototype models
- Integrated photonics* with waveguides etched into glass is a good platform

> *A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O'Brien, Science 320, 646 (2008).

- Larger simulations become inefficient due to bad scaling of probability to create many spin entangled states. There are work arounds but other systems such as Josephson junctions or trapped atoms/molecules in optical lattices may be better

