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Topics

• magnetic moment of nuclear spins 

• magn. vector/state function/density operator

• equations of motion

• NMR settings

• limitations of „standard“ liquid state NMR

• contributions to quantum computing

• control of spin and pseudo-spin systems





First liquid state NMR spectrum of a protein
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Pulse sequence for 

time-optimal implementation 

of the 

quantum Fourier transform

for n=4 qubits
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and they can be calculated at each time for a given pulse.
Mopt (t) will satisfy the stationary condition of Eq. (7) when
kopt (t) = 0. For a non-optimal pulse, the gradient calculat-
ed in Eq. (7) for each time point of the two trajectories
gives the proportional adjustment to make in the pulse
phase /.

2.2. Numerical algorithm

The procedure for optimizing the cost can be incorpo-
rated in the following algorithm:

(i) Choose an initial RF sequence xð0Þ
e .

(ii) Evolve M forward in time from the initial state ẑ.
(iii) Evolve k backward in time from the target state x̂.
(iv) /(k+1)(t) fi /(k)(t) + !xrf Æ (kMz #Mkz).
(v) Repeat steps (ii)–(iv) until a desired convergence of U

is reached.

Since the optimization is performed over a range of
chemical-shift offsets and variations in the peak RF cali-
bration, the gradient used in step (iv) is averaged over
the entire range. Additional details of the averaging proce-
dure and the choice of stepsize ! for incrementing the phase
in each iteration are described in [14,15].

3. Results and discussion

In our work to date, we have focused on demonstrat-
ing the capabilities of optimal control theory for NMR
pulse design, establishing the effectiveness of the algo-
rithms and the viability of the resulting pulses. The exci-
tation pulse is a simple example that characterizes
optimal control behavior in NMR while minimizing its
convolution with any particular application. This charac-
terization establishes a foundation for pursuing other
applications. We first assess the performance of the cali-
bration-free phase-modulated pulse derived by the new
algorithm, then consider applications to two commonly
used pulse sequences, illustrating the advantages of the
new pulse.

3.1. Pulse performance

Pulse performance, in general, depends on the pulse
duration, with pulses of sufficient length giving the optimal
control algorithm the flexibility to obtain practically ideal
results in many cases. In addition, excitation (and inver-
sion) efficiency undergoes a steep drop in performance
below a minimum pulse length [16], which depends on
the parameters defining the optimization. Increasing pulse
length significantly above this minimum provides only
marginal improvement, so the shortest pulse that provides
acceptable performance is the goal.

Choosing 2 ms for the pulse length initially and opti-
mizing with the new algorithm provided a pulse that
transforms 99.9% of initial z magnetization to within
1.5! of the x-axis over a resonance offset range of
50 kHz for a constant RF amplitude anywhere in the
range 10–20 kHz (results not shown). This nearly ideal
performance can be traded for shorter pulse length. Since
performance drops rapidly for shorter pulses, we find
that overdigitizing the initial waveform used in the opti-
mal control procedure gives the algorithm additional
flexibility in finding the best solution, as discussed in
Ref. [17]. Every other point of the resulting pulse is used
as the initial input for generating a new pulse, and this
procedure is continued until a minimal digitization with
acceptable performance is reached. For a 1 ms pulse
length, 320,000 random phases were input initially
($3 ns per time step). Such a large number of parameters
would be extremely difficult, if not impossible, to opti-
mize using conventional methods. This ‘‘breeder’’ pulse
resulted in the final 625-point pulse shown in Fig. 1.

3.1.1. Comparison to existing pulses
Although adiabatic pulses accommodate a wide range of

peak power levels, the exceptional bandwidth of adiabatic
inversion for a given peak RF amplitude does not translate
to excitation. The orientation of the effective RF field at the
end of an adiabatic excitation pulse, which, ideally gives
the location of the magnetization, is not in the transverse
plane for non-zero chemical-shift offset. Other existing

Fig. 1. Phase modulation of the constant amplitude 1 ms PM-BEBOP pulse. This pulse performs the point-to-point transformation Iz fi Ix over a 50 kHz
range of resonance offsets for constant RF amplitude set anywhere in the range 10–20 kHz (see Figs. 2 and 3).
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Robust broadband excitation pulse

PM-BEBOP

rf amplitude: 15 kHz

bandwidth:   50 kHz



rf amplitude (x)

rf amplitude (y)

Pattern Pulses



NMR comes in many different flavors ...

aggregation state:           liquid, liquid crystal, solid, ...

sample temperature:       high, ..., low

spin temperature:            high (mixed state), ..., low (pure state)

prepared initial state:       pseudo pure, 1 qubit model, ...

control:                             rf, mw, laser, electrical, ...

molecule:                         stable, chemical reaction

detection:                        inductive, SQUID, electrical, optical ....      

        



NMR (Nuclear Magnetic Resonance)

What is NMR?

How do you measure an NMR signal?

Most simple case: a single spin 1/2 -> qubit

More interesting: coupled spins  -> quantum register

Pulse sequences  -> quantum gates and algorithms

Scaling issues: what is holding us back?





How do you measure an NMR signal?



How do you measure an NMR signal?















Isolated quantum system

Density operator! ! !Pure state " =

Measurement:

random eigenvalue of observable

Measurement:

expectation value of observable

(collapse of state function) (no collapse of state functions)

Ensemble of  quantum systems
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Thermal equilibrium density operator for n spins 1/2

3

Computation on off diagonal density operators

Off-diagonal elements of the density operator can
only occur if a subpopulation of the molecules exists
whose state functions are superpositions of the computa-
tional basis states. For example, in an ensemble of two
molecules containing one spin each, the density operator

ρ =
1
2

(
1 1
1 1

)

requires that for each molecule, the state function has
the form |ψ(k)〉 = 1√

2
eiθk(|0〉 + |1〉) with arbitrary phase

factors eiθk for k = 1, 2.
We note that an ensemble of M identical molecules

where each molecule contains n spins has a density op-
erator that is the same size as the density operator of
a single molecule and behaves in the same manner un-
der application of unitary transforms. If it is possible
to prepare a density operator with off diagonal elements
and manipulate these terms, one will have a computer
as powerful as a pure state quantum computer except
for the measurement step which we shall address below.
In contrast to the previous example, we note that what
is important for the size of the available state space is
the number of spins per molecule and not the number of
molecules in the ensemble.

ENSEMBLES OF ISOLATED QUANTUM
SYSTEMS

In NMR implementations, the ensemble consists of M
identical molecules. In every molecule, the nuclear spins
form an isolated quantum system. Here, we assume that
each molecule contains n + 1 spins. (In the following
sections, we will explain why we chose n + 1 rather than
n spins per molecule). The resonance frequency of each
spin is ωl = −γlB0 where γl is the gyromagnetic ratio of
spin l and Bo is the strength of the magnetic field. The
state of the spin system corresponding to molecule k is
given by a wave function

|ψ(k)〉 =
N−1∑

j=0

c(k)
j |j〉 (1)

where |j〉 are the standard basis states used in quantum
computing, c(k)

j are the corresponding amplitudes and
N = 2n+1. The density operator of the ensemble is given
by

ρ =
1
M

M∑

k=1

|ψ(k)〉〈ψ(k)|.

Each matrix element of the density operator is given by

ρrs =
1
M

M∑

k=1

c(k)
r c∗(k)

s . (2)

The diagonal entries of the density matrix, i.e. when
r = s, represent populations of the quantum basis states
[1]. Non-zero off-diagonal elements of the density matrix
represent coherent superpositions of states.

If all the state functions |ψ(k)〉 are basis states, i.e. the
quantum system k is not in a superposition of the basis
states, the product c(k)

r c∗(k)
s must be zero. Hence a nec-

essary (albeit not sufficient) condition for an off-diagonal
element ρrs to be non-zero is that molecules exist whose
individual quantum systems are in a superposition of the
basis states |r〉 and |s〉, i.e. for each of these molecules
the state |ψ(k)〉 is of the form given in equation (2) with
c(k)
r $= 0 and c(k)

s $= 0. The ensemble is said to contain
coherence [1] between the basis states |r〉 and |s〉 if the
sum of the terms c(k)

r c∗(k)
s over all molecules is non-zero,

c.f. (2). This implies that the available state space is
exponential in the number of spins per molecule. One
can compute with the diagonal elements only [14], how-
ever even in the best case when each molecule is in a
different basis state, the size of the state space available
for computation is bounded by the number of molecules
in the sample [15]. Indeed in this case we simply have
computation by classical parallelism. This contrasts to
computing with off-diagonal elements [16] as we shall see
in the following.

THERMAL EQUILIBRIUM

The thermal equilibrium of an ensemble of spin sys-
tems is described by the Boltzmann distribution where
the probability of the system being in state |r〉 is given
by

p(|r〉) =
exp(−Er/kT )

∑N−1
j=0 exp(−Ej/kT )

,

where Er is the energy of the rth eigen state of the Hamil-
tonian of the system, k is Boltzmann’s constant and T is
temperature.

If we assume that there are no coherences at thermal
equilibrium [1] the density operator of the system can be
written as [1]

ρth ≈
exp(−H/kT )

Tr(exp(−H/kT ))
≈ 1

N
(1− H

kT
)

for ‖H‖ ' kT .
In a system where the size of the couplings between

the spins is much less than the resonance frequencies ωl

of the individual spins Il, the thermal density operator
can be approximated by [1]

ρth ≈
1
N

(1−
n+1∑

l=1

αlIlz) (3)
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kT and

Ilz =
1
2
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where the Pauli matrix σz appears as the lth term in the
product.

UNITARY EVOLUTION, MEASUREMENT AND
INITIAL STATE PREPARATION

All the topics of this section are standard in the NMR
literature, see e.g. [1]. Application of a unitary transform
U , whether by application of rf-pulses or by time evolu-
tion of the coupling Hamiltonian, to a density operator
is obtained from

ρ′ = UρU†.

The expectation value of a Hermitian operator A is

〈A〉 = Tr(A ρ).

For example, for the thermal density operator ρth, the
expectation value of Fz =

∑n+1
l=1 Ilz is
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where the facts that Fz is traceless, Tr(1) = N and I2
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41 were used. Note that as the number n of spins per
molecule increases, so will the magnitude of the measured
signal 〈Fz〉th for αl > 0. In contrast, for the density
operator

ρ0 =
1
N

(1 + α1I1z), (4)

the expectation value of Fz is independent of n:

〈Fz〉 = Tr(Fz ρ0) =
α1

4
, (5)

which is identical to 〈I1z〉 = Tr(I1z ρ0). (In NMR, ρ0

can be created from ρth using standard procedures, e.g.
by a combination of unitary transforms and pulsed field
gradients.)

Application of the Hadamard transform (or of a 90◦y
pulse) to ρ0 results in the density operator

ρ1 =
1
N

(1 + α1I1x), (6)

for which the expectation value of Fx (and of I1x) is also
α1/4.

SCALING BEHAVIOR

As discussed in the previous section, for ρ1 the expec-
tation value 〈I1x〉 is independent of the number of spins
per molecule. Hence, the signal-to-noise ratio for a re-
solved resonance line of a molecule containing 3 spins is
the same as for a molecule with 104 spins, assuming the
same number of molecules is in the sample, i.e. if the
molar concentration is the same.

As we saw earlier, there are no scaling problems with
preparation of ρ1 as an initial state for the computation
starting from the thermal density operator ρth. Hence,
a scalable mixed-state based quantum algorithm can be
constructed if the following two conditions hold:

(1) Use of ρ1 as an initial state for the computation.
(2) The decision about the problem being solved is

based upon the expectation value of I1x, where I1x is
either parallel or orthogonal to the traceless part of the
final density operator.

An algorithm meeting these two conditions would over-
come the arguments against scalability of NMR quantum
computing [8]. (However, just as in pure state quantum
computation, still a large number of practical or techno-
logical impediments for realization of large-scale quan-
tum computers would remain, such as losses due to de-
coherence etc.) In the following section we will describe
such an algorithm.

THE ALGORITHM

The starting state for the algorithm is formed by the
density matrix ρ1 (c.f. Eq. (6)), the traceless part of
which is proportional to I1x. As indicated in the previous
sections, ρ1 can be prepared from the thermal density
operator ρth without any loss of signal as a function of
the number of spins per molecule.

The key observation that allows us to use I1x in the
computation is that I1x is the sum of all outer products
which differ only in the state of the first spin:

I1x =
1
2

N ′−1∑

j=0

|0, j〉〈1, j| + |1, j〉〈0, j|

where N ′ = N/2. Note that j runs from 0 to N ′ − 1,
hence the size of the state space available for calcula-
tion is N ′ = 2n which is exponential in the number of
spins per molecule and is independent of the number of
molecules in the sample. We will exploit this structure
and use it to apply unitary transforms to the outer prod-
ucts representing the states where spin 1 is in the state
|1〉 only. Application of a unitary transform U (not con-
trolled by spin 1) to I1x results in a sum of outer products
where the ket and the bra do not contain information
that we can directly use for the Deutsch-Jozsa problem.
Instead we consider the effect of using controlled unitary
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Computation on off diagonal density operators

Off-diagonal elements of the density operator can
only occur if a subpopulation of the molecules exists
whose state functions are superpositions of the computa-
tional basis states. For example, in an ensemble of two
molecules containing one spin each, the density operator

ρ =
1
2

(
1 1
1 1

)

requires that for each molecule, the state function has
the form |ψ(k)〉 = 1√

2
eiθk(|0〉 + |1〉) with arbitrary phase

factors eiθk for k = 1, 2.
We note that an ensemble of M identical molecules

where each molecule contains n spins has a density op-
erator that is the same size as the density operator of
a single molecule and behaves in the same manner un-
der application of unitary transforms. If it is possible
to prepare a density operator with off diagonal elements
and manipulate these terms, one will have a computer
as powerful as a pure state quantum computer except
for the measurement step which we shall address below.
In contrast to the previous example, we note that what
is important for the size of the available state space is
the number of spins per molecule and not the number of
molecules in the ensemble.

ENSEMBLES OF ISOLATED QUANTUM
SYSTEMS

In NMR implementations, the ensemble consists of M
identical molecules. In every molecule, the nuclear spins
form an isolated quantum system. Here, we assume that
each molecule contains n + 1 spins. (In the following
sections, we will explain why we chose n + 1 rather than
n spins per molecule). The resonance frequency of each
spin is ωl = −γlB0 where γl is the gyromagnetic ratio of
spin l and Bo is the strength of the magnetic field. The
state of the spin system corresponding to molecule k is
given by a wave function

|ψ(k)〉 =
N−1∑

j=0

c(k)
j |j〉 (1)

where |j〉 are the standard basis states used in quantum
computing, c(k)

j are the corresponding amplitudes and
N = 2n+1. The density operator of the ensemble is given
by

ρ =
1
M

M∑

k=1

|ψ(k)〉〈ψ(k)|.

Each matrix element of the density operator is given by

ρrs =
1
M

M∑

k=1

c(k)
r c∗(k)

s . (2)

The diagonal entries of the density matrix, i.e. when
r = s, represent populations of the quantum basis states
[1]. Non-zero off-diagonal elements of the density matrix
represent coherent superpositions of states.

If all the state functions |ψ(k)〉 are basis states, i.e. the
quantum system k is not in a superposition of the basis
states, the product c(k)

r c∗(k)
s must be zero. Hence a nec-

essary (albeit not sufficient) condition for an off-diagonal
element ρrs to be non-zero is that molecules exist whose
individual quantum systems are in a superposition of the
basis states |r〉 and |s〉, i.e. for each of these molecules
the state |ψ(k)〉 is of the form given in equation (2) with
c(k)
r $= 0 and c(k)

s $= 0. The ensemble is said to contain
coherence [1] between the basis states |r〉 and |s〉 if the
sum of the terms c(k)

r c∗(k)
s over all molecules is non-zero,

c.f. (2). This implies that the available state space is
exponential in the number of spins per molecule. One
can compute with the diagonal elements only [14], how-
ever even in the best case when each molecule is in a
different basis state, the size of the state space available
for computation is bounded by the number of molecules
in the sample [15]. Indeed in this case we simply have
computation by classical parallelism. This contrasts to
computing with off-diagonal elements [16] as we shall see
in the following.

THERMAL EQUILIBRIUM

The thermal equilibrium of an ensemble of spin sys-
tems is described by the Boltzmann distribution where
the probability of the system being in state |r〉 is given
by

p(|r〉) =
exp(−Er/kT )

∑N−1
j=0 exp(−Ej/kT )

,

where Er is the energy of the rth eigen state of the Hamil-
tonian of the system, k is Boltzmann’s constant and T is
temperature.

If we assume that there are no coherences at thermal
equilibrium [1] the density operator of the system can be
written as [1]

ρth ≈
exp(−H/kT )

Tr(exp(−H/kT ))
≈ 1

N
(1− H

kT
)

for ‖H‖ ' kT .
In a system where the size of the couplings between

the spins is much less than the resonance frequencies ωl

of the individual spins Il, the thermal density operator
can be approximated by [1]

ρth ≈
1
N

(1−
n+1∑

l=1

αlIlz) (3)
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and they can be calculated at each time for a given pulse.
Mopt (t) will satisfy the stationary condition of Eq. (7) when
kopt (t) = 0. For a non-optimal pulse, the gradient calculat-
ed in Eq. (7) for each time point of the two trajectories
gives the proportional adjustment to make in the pulse
phase /.

2.2. Numerical algorithm

The procedure for optimizing the cost can be incorpo-
rated in the following algorithm:

(i) Choose an initial RF sequence xð0Þ
e .

(ii) Evolve M forward in time from the initial state ẑ.
(iii) Evolve k backward in time from the target state x̂.
(iv) /(k+1)(t) fi /(k)(t) + !xrf Æ (kMz #Mkz).
(v) Repeat steps (ii)–(iv) until a desired convergence of U

is reached.

Since the optimization is performed over a range of
chemical-shift offsets and variations in the peak RF cali-
bration, the gradient used in step (iv) is averaged over
the entire range. Additional details of the averaging proce-
dure and the choice of stepsize ! for incrementing the phase
in each iteration are described in [14,15].

3. Results and discussion

In our work to date, we have focused on demonstrat-
ing the capabilities of optimal control theory for NMR
pulse design, establishing the effectiveness of the algo-
rithms and the viability of the resulting pulses. The exci-
tation pulse is a simple example that characterizes
optimal control behavior in NMR while minimizing its
convolution with any particular application. This charac-
terization establishes a foundation for pursuing other
applications. We first assess the performance of the cali-
bration-free phase-modulated pulse derived by the new
algorithm, then consider applications to two commonly
used pulse sequences, illustrating the advantages of the
new pulse.

3.1. Pulse performance

Pulse performance, in general, depends on the pulse
duration, with pulses of sufficient length giving the optimal
control algorithm the flexibility to obtain practically ideal
results in many cases. In addition, excitation (and inver-
sion) efficiency undergoes a steep drop in performance
below a minimum pulse length [16], which depends on
the parameters defining the optimization. Increasing pulse
length significantly above this minimum provides only
marginal improvement, so the shortest pulse that provides
acceptable performance is the goal.

Choosing 2 ms for the pulse length initially and opti-
mizing with the new algorithm provided a pulse that
transforms 99.9% of initial z magnetization to within
1.5! of the x-axis over a resonance offset range of
50 kHz for a constant RF amplitude anywhere in the
range 10–20 kHz (results not shown). This nearly ideal
performance can be traded for shorter pulse length. Since
performance drops rapidly for shorter pulses, we find
that overdigitizing the initial waveform used in the opti-
mal control procedure gives the algorithm additional
flexibility in finding the best solution, as discussed in
Ref. [17]. Every other point of the resulting pulse is used
as the initial input for generating a new pulse, and this
procedure is continued until a minimal digitization with
acceptable performance is reached. For a 1 ms pulse
length, 320,000 random phases were input initially
($3 ns per time step). Such a large number of parameters
would be extremely difficult, if not impossible, to opti-
mize using conventional methods. This ‘‘breeder’’ pulse
resulted in the final 625-point pulse shown in Fig. 1.

3.1.1. Comparison to existing pulses
Although adiabatic pulses accommodate a wide range of

peak power levels, the exceptional bandwidth of adiabatic
inversion for a given peak RF amplitude does not translate
to excitation. The orientation of the effective RF field at the
end of an adiabatic excitation pulse, which, ideally gives
the location of the magnetization, is not in the transverse
plane for non-zero chemical-shift offset. Other existing

Fig. 1. Phase modulation of the constant amplitude 1 ms PM-BEBOP pulse. This pulse performs the point-to-point transformation Iz fi Ix over a 50 kHz
range of resonance offsets for constant RF amplitude set anywhere in the range 10–20 kHz (see Figs. 2 and 3).
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corresponding to RF amplitudes of 10.0, 11.2, 12.6, 14.1,
15.8, 17.8, and 20.0 kHz. The results are shown in Fig. 4.
The experimental data provide an excellent match with the-
ory and represent a considerable improvement over the
maximum attainable performance of a phase-corrected
hard pulse, opening the door to practically calibration-free
excitation pulses.

3.2. 2D applications

The benefits of using PM-BEBOP in practical NMR
applications are well-illustrated by 13C–1H correlated exper-
iments, as e.g., HSQC or HMBC. An important element of
these types of experiment is the sub-sequence 90!–t1–90!
applied to the 13C spins to encode the frequencies for the first
dimension of the 2D spectrum. The linear phase roll of a
hard 90! pulse is commonly eliminated from the first spectral
dimension by subtracting a constant time (equal to 4t90/p)
from t1. Details of themechanism responsible for this ‘‘reph-
asing’’ are straightforward, but it suffices to note merely that
one can expect approximately phase-corrected performance
from hard 90! pulses in HSQC-type sequences, at least in the
absence of RF inhomogeneity.

Two-dimensional spectra were recorded on a Bruker
Avance 500 spectrometer using a !500 mM menthol sam-
ple dissolved in CDCl3. Standard HSQC [28,29] and
HMBC experiments [30,31] were acquired with variations
in offset, RF amplitude, and the kind of pulses applied
on 13C nuclei. The maximum RF amplitude of the Bruker
TXI probehead used corresponds to 14.3 kHz (equivalent
to a 90! pulse of 17.5 ls). To avoid maximum power for
the shaped pulses, we used slightly lower RF amplitudes
of 12 kHz for the nominal power. This scales to a 1.2 ms
PM-BEBOP pulse covering ±20 kHz bandwidth (rather
than the 15 kHz nominal amplitude of the 1 ms pulse
shown in Fig. 1, which has a bandwidth of ±25 kHz).

The total sweep width needed for covering the 13C-spectra
of menthol on a 500 MHz spectrometer is !8 kHz. We
therefore, decided to record three spectra with 0, 8, and
16 kHz offset relative to the center of the 13C-spectral
width, leading to a coverage of offsets corresponding to
"4–4, 4–12, and 12–20 kHz, respectively. Since spectral
width and offsets are matched, no folding artefacts were
observed.

Based on the procedure described in [27], we also con-
structed a 2.4 ms, 180! universal rotation pulse consisting
of the original PM-BEBOP pulse appended to its phase
and time-reversed version, resulting in a pulse with an
active bandwidth identical to the pulse from which it orig-
inates. The performance of the resulting inversion/refocus-
ing pulse with respect to offset and RF amplitude is shown
in Fig. 5 in comparison to a hard 180! pulse. To test the
robustness of the pulse sequences with respect to variation
in RF amplitude, hard and shaped pulses were set to 8, 10,
and 12 kHz RF amplitude.

For each combination of offset and RF amplitude, three
HSQC and three HMBC experiments were acquired using

Fig. 3. The phase behavior of the optimized PM-BEBOP pulse of Fig. 1 is
plotted as a function of RF amplitude m1 and resonance offset m0. Phase
deviations from an ideal excitation pulse are shown in 1! steps in different
shades of gray (see scale to the right). For almost the entire range of offsets
and RF amplitudes, the phase is less than 2–3!, with minor distortions in
the 6–9! range at the lowest RF (10 kHz) in the optimized range.

Fig. 4. Excitation profiles for the residual HDO signal in a sample of
99.96% D2O are displayed as a function of resonance offset (1 kHz
increments) and RF power levels applied using the 1 ms PM-BEBOP pulse
of Fig. 1. The pulse was applied with constant amplitudes of 10 kHz
(+3 dB), 11.2 kHz (+2 dB), 12.6 kHz (+1 dB), 14.1 kHz (0 dB), 15.8 kHz
("1 dB), 17.8 kHz ("2 dB), and 20 kHz ("3 dB). The experimental
performance of the pulse is in excellent agreement with theory, producing
practically perfect excitation, Mx > 0.99M0, over ±25 kHz for RF
variability within ±33.3% (#6 dB) of the nominal value 15 kHz.
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mizing with the new algorithm provided a pulse that
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50 kHz for a constant RF amplitude anywhere in the
range 10–20 kHz (results not shown). This nearly ideal
performance can be traded for shorter pulse length. Since
performance drops rapidly for shorter pulses, we find
that overdigitizing the initial waveform used in the opti-
mal control procedure gives the algorithm additional
flexibility in finding the best solution, as discussed in
Ref. [17]. Every other point of the resulting pulse is used
as the initial input for generating a new pulse, and this
procedure is continued until a minimal digitization with
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length, 320,000 random phases were input initially
($3 ns per time step). Such a large number of parameters
would be extremely difficult, if not impossible, to opti-
mize using conventional methods. This ‘‘breeder’’ pulse
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