NMR control overview

Steffen Glaser, TU München

Topics

- magnetic moment of nuclear spins
- magn. vector/state function/density operator
- equations of motion
- NMR settings
- limitations of "standard" liquid state NMR
- contributions to quantum computing
- control of spin and pseudo-spin systems

Nobel Prizes:

1952: Edward Purcell, Felix Bloch (Physics) 1991: Richard Ernst (Chemistry) 2002: Kurt Wüthrich (Chemistry) 2003: Paul Lauterbur, Peter Mansfield (Medicine)

First liquid state NMR spectrum of a protein

Ribonuclease 40 MHz

M. Saunders et al. *J.Amer.Chem.Soc.* **1957**, 79, 3289

frequency dispersion: 10 kHz

Two-dimensional NMR

A square pulse may be completely characterized by the four parameters τ_k , ν_k^{rf} , B_k , and φ_k or, alternatively, by the four parameters α_k , ν_k^{rf} , ν_k^R , and φ_k . If the flip angles, frequencies, amplitudes, and phases of all N

Pulse sequence for time-optimal implementation of the quantum Fourier transform for n=4 qubits

Schulte-Herbrüggen et al. quant-ph/0502104

Robust broadband excitation pulse

bandwidth: 50 kHz rf amplitude: 15 kHz

rf amplitude (x)

NMR comes in many different flavors ...

high, ..., low

aggregation state: liquid, liquid crystal, solid, ...

sample temperature:

spin temperature:

prepared initial state:

control:

molecule:

detection:

high (mixed state), ..., low (pure state)

ate: pseudo pure, 1 qubit model, ...

rf, mw, laser, electrical, ...

stable, chemical reaction

inductive, SQUID, electrical, optical

NMR (Nuclear Magnetic Resonance)

What is NMR?

How do you measure an NMR signal?

Most simple case: a single spin

More interesting: coupled spins

Pulse sequences

How do you measure an NMR signal?

NMR Magnet

Magnetic field: 14 Tesla

¹H resonance frequency: 600 MHz

How do you measure an NMR signal?

"Spin operators"
$$I_x = \frac{1}{2} \delta_x = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 $I_y = \frac{1}{2} \delta_y = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
 $I_z = \frac{1}{2} \delta_z = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
T
Pauli Operators

3

magnetization vector

$$\vec{\mathsf{M}} = \begin{pmatrix} \mathsf{M}_{\mathsf{W}} \\ \mathsf{M}_{\mathsf{Y}} \\ \mathsf{M}_{\mathsf{Y}} \end{pmatrix} \sim \begin{pmatrix} \langle \overline{\mathsf{I}_{\mathsf{W}}} \rangle \\ \langle \overline{\mathsf{I}_{\mathsf{Y}}} \rangle \\ \langle \overline{\mathsf{I}_{\mathsf{Y}}} \rangle \\ \langle \overline{\mathsf{I}_{\mathsf{Y}}} \rangle \end{pmatrix}$$

For example:
$$S(o) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$U = e^{-i \times t} = exp \begin{pmatrix} -i & \frac{1}{0} & 0 \\ 0 & -1 \end{pmatrix}$$

$$U = e^{-i \times t} = exp \begin{pmatrix} -i & \frac{1}{0} & 0 \\ 0 & i & \frac{1}{0} & t \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

$$(1 = 1) \begin{pmatrix} e^{i \cdot \frac{1}{0} t} \\ 0 & e^{i \cdot \frac{1}{0} t} \end{pmatrix}$$

Equation of Motion

$$|\dot{\Psi}\rangle = -iH|\Psi\rangle$$

(time-dependent Schrödinger equation)

Unitary Transformation

$$|\Psi\rangle(0) \xrightarrow{U} |\Psi\rangle(t)$$

with $|\Psi\rangle(t) = U |\Psi\rangle(0)$ and $U U^{\dagger} = 1$

Isolated quantum system

Ensemble of quantum systems

Pure state $|\Psi
angle$

Density operator $\rho = |\Psi\rangle\langle\Psi|$

Measurement:

random *eigenvalue* of observable (collapse of state function)

Measurement:

expectation value of observable (no collapse of state functions)

Single molecule with the spins 1/2

$$I(+) = \begin{pmatrix} c_{1} \\ c_{2} \\ c_{3} \end{pmatrix} = c_{1}I(++) + c_{2}I(++) + c_{3}I(++) + c_{4}I(++)$$

$$I(+) + c_{4}I(++) + c_{4}I(++) + c_{4}I(++) + c_{4}I(++) + c_{4}I(++)$$

$$I(+) = \begin{pmatrix} c_{1} \\ c_{3} \\ c_{4} \end{pmatrix} = c_{1}I(++) + c_{2}I(++) + c_{3}I(++) + c_{4}I(++) + c_{4}I(++)$$

$$I(+) = \begin{pmatrix} c_{1} \\ c_{3} \\ c_{4} \end{pmatrix} = c_{1}I(+) + c_{2}I(++) + c_{3}I(++) + c_{4}I(++) + c_{4}I(++)$$

$$I(+) = \begin{pmatrix} c_{1} \\ c_{4} \\ c_{4} \end{pmatrix} = c_{1}I(+) + c_{2}I(++) + c_{3}I(++) + c_{4}I(++) + c_{4$$

Thermal equilibrium density operator

for one spin 1/2:

$$\mathbf{\rho} \approx \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \alpha_i & 0 \\ 0 & -\alpha_i \end{bmatrix}$$

with $\alpha_i = \hbar \omega_i / 2kT \approx 10^{-5} \ll 1$

Thermal equilibrium density operator

for one spin 1/2:

$$\mathbf{\rho} \approx \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \alpha_i & 0 \\ 0 & -\alpha_i \end{bmatrix}$$

for two spins 1/2:

$$\mathbf{\rho} \approx \frac{1}{4} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} \alpha_1 + \alpha_2 & 0 & 0 & 0 \\ 0 & \alpha_1 - \alpha_2 & 0 & 0 \\ 0 & 0 & -\alpha_1 + \alpha_2 & 0 \\ 0 & 0 & 0 & -\alpha_1 - \alpha_2 \end{bmatrix}$$

with $\alpha_i = \hbar \omega_i / 2kT \approx 10^{-5} \ll 1$

Thermal equilibrium density operator for n spins 1/2

$$\rho_{th} \approx \frac{\exp(-H/kT)}{Tr(\exp(-H/kT))} \approx \frac{1}{N} (\mathbf{1} - \frac{H}{kT}) \qquad \text{for } ||H|| \ll kT.$$

$$\approx \frac{1}{N} (\mathbf{1} - \sum_{l=1}^{n} \alpha_l I_{lz})$$

with
$$\alpha_l = \frac{\hbar \omega_l}{\mathbf{k}T}$$
 $N = 2^n$

Boltzmann's constant k

$$I_{lz} = \frac{1}{2} \mathbf{1} \otimes \ldots \otimes \mathbf{1} \otimes \sigma_z \otimes \mathbf{1} \otimes \ldots \otimes \mathbf{1}$$

where the Pauli matrix σ_z appears as the l^{th} term in the product.

Equation of Motion

$$\dot{\rho} = -i[\mathbf{H},\rho] (+ \hat{\Gamma}\rho)$$

(Liouville-von Neuman Equation)

Unitary Transformation

$$\rho(0) \xrightarrow{\boldsymbol{U}} \rho(t)$$
with $\rho(t) = \boldsymbol{U} \rho(0) \boldsymbol{U}^{\dagger}$ and $\boldsymbol{U} \boldsymbol{U}^{\dagger} = 1$

Control Parameters u_k (t)

 $H_0 + \sum_k u_k(t) H_k$

Design of NMR Pulse Sequences

- Theoretical Tools: Average Hamiltonian Theory
 - Effective Hamiltonian
 - Toggling Frame
 - Multiple Rotating Frame
 - Density Operator Formalism
 - Product Operator Formalism
- Building Blocks: Square Pulses
 - Shaped Pulses (Gaussian, e-SNOB)
 - Heteronuclear Decoupling Sequences (WALTZ-16)

Consider:

- RF Inhomogeneity
 - Miscalibration of Pulses
 - Relaxation
 - Non-Resonant Effect of RF Pulses (Bloch-Siegert-Shift)

Goal:

Short, Robust Pulse Sequences with a Minimum of Pulses

-> Optimal Control Heth.

Optimal control in NMR: band-selective excitation and inversion

S. Conolly, D. Nishimura, A. Macovski, Optimal control solutions to the magnetic resonance selective excitation problem, IEEE Trans. Med. Imaging MI-5 (1986) 106–115.

J. Mao, T.H. Mareci, K.N. Scott, E.R. Andrew, Selective inversion radiofrequency pulses by optimal control, J. Magn. Reson. 70 (1986) 310–318.

D. Rosenfeld, Y. Zur, Design of adiabatic selective pulses using optimal control theory, Magn. Reson. Med. 36 (1996) 401-409.

Larger excitation bandwidths require longer pulses for same performance

max. rf amplitude: 10 kHz

Kobzar, Skinner, Khaneja, Glaser, Luy (2004)

Longer pulse durations 1 allow for more complex phase variations

excitation bandwidth: 20 kHz no rf inhomogeneity

Pulse duration as a function of offset range

(excitation efficiency: 98%, max. rf amplitude: 10 kHz, no rf inhomogeneity)

Robust broadband excitation pulse

GRAPE (Gradient Ascent Pulse Engineering)

Khaneja, Reiss, Kehlet, Schulte-Herbrüggen, Glaser, J. Magn. Reson. 172, 296-305 (2005)

Pattern Pulses

Pattern Pulses

rf amplitude (x)

Kobzar et al., J. Magn. Reson. (2005)