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Many-Body Schrödinger Equation
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ESSENCE OF DENSITY-FUNTIONAL THEORY

•
 

Every observable quantity of a 
quantum system can be calculated 
from the ground-state density of the 
system ALONE

 
•

 
The ground-state density of particles 
interacting with each other can be 
calculated as the ground-state density 
of an auxiliary system of non-

 interacting particles
 

•
 

Every observable quantity of a 
quantum system can be calculated 
from the ground-state density of the 
system ALONE
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The ground-state density of particles 
interacting with each other can be 
calculated as the ground-state density 
of an auxiliary system of non-

 interacting particles



compare ground-state densities  ρ(r)
 

resulting from different 
external potentials  v(r).

QUESTION:
 

Are the ground-state densities coming from 
different potentials always different?
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v(r)
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single-particle
potentials having
nondegenerate

 ground state

ground-state
wavefunctions

ground-state
densities

Hohenberg-Kohn-Theorem (1964)

G: v(r)  → ρ (r)   is invertibleG: v(r)  → ρ (r)   is invertible
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Proof

Step 1:  Invertibility
 

of map A

Solve many-body Schrödinger equation for the external potential:

This is manifestly the inverse map:    A given Ψ
 

uniquely yields the 
external potential.
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Step 2:  Invertibility
 

of map Ã

Given: two (nondegenerate) ground states Ψ, Ψ’
 

satisfying 

Ψ=Ψ EĤ

''E''Ĥ Ψ=Ψ
with

V̂ŴT̂Ĥ ++=

'V̂ŴT̂'Ĥ ++=

to be shown: '    ' ρ≠ρ⇒Ψ≠Ψ

Ψ

Ψ’
ρ = ρ’

cannot happen



Use Rayleigh-Ritz principle:
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'Ĥ''Ĥ''E
3

Reductio
 

ad absurdum:
Assumption ρ

 
= ρ’.   Add and ⇒ E + E’ < E + E’



Every quantum mechanical observable is completely 
determined by the ground state density.

Proof:  [ ] [ ]ρΦ⎯⎯⎯ →⎯ρ⎯→⎯ρ
−
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operator

e.g. excitation spectrum: Ei
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What is a FUNCTIONAL?

E[ρ]

functional

set of functions set of real numbers

ρ(r) R

Generalization of terminology:

[ ] [ ]( )rvv r ρ=ρ

[ ] [ ]( )N1r...r r...r
N1

ρψ=ρψ ( )N1 r...r

functional depending parametrically on r

depending parametrically on



Explicit construction of the HK map vs

 

ρ
for non-interacting particles  

Iterative procedure

ρ0
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given (e.g. from experiment) 
Start with an initial guess for vs

 

(r)      (e.g. GGA potential) 
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solve SE with  vs
new

 

and iterate, keeping ρ0

 

(r) fixed
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QUESTION:

How to calculate ground state density of a given
 

system 
(characterized by the external potential  ) 
without recourse to the Schrödinger Equation?

Theorem:

( )roρ
( )∑= rV oo v

There exists a density functional  EHK

 

[ρ]  with properties 
i)   EHK

 

[ρ] > Eo

 

for  ρ ≠ ρo
ii)   EHK

 

[ρo

 

] = Eo
where  Eo

 

= exact ground state energy of the system 

Thus, Euler equation

yields exact ground state density ρo

 

.
( ) [ ] 0E
r HK =ρ

δρ
δ



proof:

formal construction of EHK

 

[ρ] :  

for arbitrary ground state density         

define: [ ] [ ] [ ]ρΨ++ρΨ≡ρ oHK V̂ŴT̂ E

( ) [ ]ρΨ⎯→⎯ρ
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for  ρ
 

≠
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= Eo

 

for  ρ
 

= ρo

EHK

 

[ρ] = d3r ρ(r) vo

 

(r) [ ] [ ]ρΨ+ρΨ ŴT̂ +

F[ρ]  is    universal

q.e.d.



HOHENBERG-KOHN THEOREMHOHENBERG-KOHN THEOREM

1.
 

v(r)                  ρ(r)
one-to-one correspondence between external potentials v(r) and ground-state 
densities ρ(r)

2.
 

Variational
 

principle
Given a particular system characterized by the external potential v0

 

(r).  Then the 
solution of the Euler-Lagrange equation

yields the exact ground-state energy E0

 

and ground-state density ρ0

 

(r)
 

of this 
system 

3.
 

EHK

 

[ρ]
 

= F [ρ]
 

+    ρ(r) v0

 

(r)
 

d3r

F[ρ]

 
is  UNIVERSAL.

 
In practice,  F[ρ]

 
needs to be approximated

1—1

( ) [ ] 0E
r HK =ρ

δρ
δ



Can one approximate the functional F[ρ]
in a systematic (controlled) way?

YES!



Expansion of  F[ρ]
 

in powers of e2

F[ρ]

 
= F(0)[ρ]

 
+ e2 F(1)[ρ]

 
+ e4 F(2)[ρ]

 
+ ···

where: F(0)[ρ]

 
= Ts

 

[ρ]

 
(kinetic energy of non-interacting particles)

⇒
 

F[ρ]
 

= Ts

 

[ρ]
 

+                                d3r d3r' +  Ex [ρ]
 

+ Ec

 

[ρ]
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[ρ]  =  sum of all higher-order diagrams in terms of the Green’s 
function

⇒
 

The exact
 

Exc

 

[ρ] is an 
orbital functional
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Systematic approach to construct Exc

 

using KS-MBPT
HKS

 

unperturbed system

H = HKS

 

+  λ
 

H1

 

,

where    H1

 

= Wee

 

– d3r ρ(r)(vH

 

(r) + vxc

 

(r) )



TOWARDS THE EXACT FUNCTIONAL 

1st

 
generation of DFT:

 
Use approximate functionals

 
(LDA/GGA) for Ts

 

, Ex

 and Ec

 

e.g.

⇒ Thomas-Fermi-type equation has to be solved

2nd

 
generation of DFT:

 
Use exact

 
functional Ts

exact[ρ]
 

and LDA/GGA for Ex

 and Ec

⇒ KS equations have to be solved

3rd

 
generation of DFT:

 
Use Ts

exact[ρ], and an orbital functional Exc

 

[ϕ1

 

, ϕ2

 

, ...]
 e.g.

⇒ KS equations have to be solved self-consistently with OEP integral equation
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[ ]( )rρvext ( )rρ [ ]( )rρvs

HK 1-1 mapping for 
interacting particles

HK 1-1 mapping for 
non-interacting particles

Kohn-Sham Theorem

Let ρo

 

(r) be the ground-state density of interacting
 

electrons moving in the external 
potential vo

 

(r). Then there exists a unique local potential vs,o

 

(r) such that non-
 interacting particles exposed to vs,o

 

(r) have the ground-state density ρo

 

(r), i.e. 
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proof:

Uniqueness follows from HK 1-1 mapping
Existence follows from V-representability

 
theorem

( ) [ ]( )rρvrv osos, =

,



By construction, the HK mapping is well-defined for all those functions ρ(r) 
that are ground-state densities of some potential (so called V-representable

 functions ρ(r)).

QUESTION:  Are all “reasonable”
 

functions ρ(r) V-representable?

V-representability
 

theorem
 

(Chayes, Chayes, Ruskai, J Stat. Phys. 38, 497 (1985))
On a lattice (finite or infinite), any normalizable

 
positive function ρ(r), that 

is compatible with the Pauli
 

principle, is (both interacting and non-
 interacting) ensemble-V-representable.

In other words: For any given
 

ρ(r) (normalizable, positive, compatible with 
Pauli

 
principle) there exists a potential, vext

 

[ρ](r), yielding ρ(r) as interacting 
ground-state density, and there exists another potential, vs

 

[ρ](r), yielding 
ρ(r) as non-interacting ground-state density.

In the worst case, the potential has degenerate ground states such that the 
given ρ(r) is representable

 
as a linear combination of the degenerate 

ground-state densities (ensemble-V-representable).



Define
 

vxc

 

[ρ](r)  by the equation

[ ]( ) [ ]( ) ( ) [ ]( )rρvrρvrρv xcexts +
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[ ]( )rρvH

vs

 

[ρ] and vext

 

[ρ] are well 
defined through HK.

KS equations

Note:  The KS equations do not
 

follow from the variational
 

principle. 
They follow from the HK 1-1 mapping and the V-representability

 theorem.
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(E. Runge, E.K.U.G., PRL 52, 997 (1984))
Basic 1-1 correspondence:

The time-dependent density determines uniquely 
the time-dependent external potential and hence all 
physical observables for fixed initial state.

( ) ( )v rt rt1-1←⎯→ ρ

Time-dependent density-functional formalism
(first: electrons only, nuclei are fixed or treated classically)

KS theorem:
The time-dependent density of the interacting

 
system of interest can 

be calculated as density

of an auxiliary non-interacting
 

(KS) system

with the local
 

potential
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define maps ( ) ( )F : v r t t  Ψ ( ) ( )F : t r t  Ψ ρ

densities

( )r tρ

wave 
functions 

( )tΨ

potentials

( )v r t
F ˜ F 

solve tdSE
 with fixed

Ψ t o( ) = Ψo

( )
( ) ( ) ( )

r t

ˆt r t

ρ =

Ψ ρ Ψ

( ) ( ) ( )s s
s

ˆ ˆ ˆr r r+ρ = ψ ψ∑

G

( ) ( )G : v r t r t  ρ

Proof of basic 1-1 correspondence between             and( )v r t ( )ρ r t



i.
 

the basic 1-1 mapping and 
ii.

 
the TD V-representability

 
theorem (R. van 

Leeuwen, PRL 82, 3863 (1999)). 

The TDKS equations follow (like in the static case)   
from:

A TDDFT variational
 

principle exists as well, but 
this is more tricky (R. van Leeuwen, PRL 80, 1280 
(1998)).



complete
 

1 -
 

1 correspondence not
 

to be expected!

( ) ( )( ) ( )ˆ ˆ ˆi t T V t W t
t

∂
Ψ = + + Ψ

∂

( ) ( )( ) ( )ˆ ˆ ˆi ' t T V ' t W ' t
t

∂
Ψ = + + Ψ

∂

( )o otΨ = Ψ

( )o o' tΨ = Ψ

( ) ( ) ( ) ( ) ( ) ( )i tˆ ˆV ' t V t C t ' t e t− α= + ⇔ Ψ = Ψ

with

( ) ( )' r t r t⇒ ρ = ρ

( ) ( ){ } ( )V̂ t C t r t    + → ρi.e.

“no operator”

( ) ( )t C tα =



If G invertible  up to within
 

time-dependent function C(t)

1FG−⇒ Ψ = ρ fixed up to within time-dependent phase

i.e. ( ) [ ]i te− αΨ = Ψ ρ

For any observable Ô

[ ] [ ] [ ]ˆ ˆO O OΨ Ψ = Ψ ρ Ψ ρ = ρ

is functional of the density



THEOREM
 

(time-dependent analogue of Hohenberg-Kohn theorem)

The map

( ) ( )G : v r t r t  ρ

defined for all single-particle potentials            which 
can be expanded into a Taylor series with respect to 
the time coordinate around to

is invertible up to within an additive merely 
time-dependent function in the potential.

( )v r t



Proof:
to be shown: ( )r tρ

( )v ' r t

( )v r t

cannot happen

i.e. ( ) ( ) ( ) ( ) ( )ˆ ˆv r t v ' r t c t r t ' r t    ≠ + ⇒ ρ ≠ ρ

potential expandable into Taylor series

( ) ( )j r t j ' r t≠

( ) ( )r t ' r tρ ≠ ρ
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step 2
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Step 1: Current densities

( ) ( ) ( ) ( )ˆj r t t j r t= Ψ Ψ

with ( ) ( ) ( ) ( ) ( )( )s s s s
s

1ˆ ˆ ˆ ˆ ˆj r r r r r
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Use equation of motion:
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( ) ( ) ( ) ( ) ( )ˆ ˆi j r t t j r , H t t
t

    ∂ ⎡ ⎤⇒ = Ψ Ψ⎢ ⎥⎣ ⎦∂

( ) ( ) ( ) ( ) ( )ˆ ˆi j ' r t ' t j r , H ' t ' t
t

∂ ⎡ ⎤= Ψ Ψ⎢ ⎥⎣ ⎦∂

note: ( ) ( ) ( ) ( )o o o o o
ˆj r t j ' r t j r j r= = Ψ Ψ ≡

( ) ( ) ( ) ( )o o o o oˆr t ' r t r rρ = ρ = Ψ ρ Ψ ≡ ρ
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( ) ( ) ( )o o o oĵ r , V t V ' t⎡ ⎤= Ψ − Ψ⎢ ⎥⎣ ⎦

( ) ( ) ( )( )o o oi r v r t v ' r t= ρ ∇ −
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( ) ( )j r t j ' r t   ⇒ ≠ q.e.d.
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∂
⎡ ⎤− ≠⎣ ⎦∂if holds for k>0

use equation of motion k+1 times:
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Step 2: densities

( ) ( ) ( ) ( )r t ' r t div j r t j ' r t
t

∂ ⎡ ⎤⎡ ⎤ρ − ρ = − −⎣ ⎦ ⎣ ⎦∂
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o o

k 2 k 1
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+ +
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≠ constant

Use continuity equation:

remains to be shown:

( ) ( )odiv r u r 0⎡ ⎤ρ ∇ ≠⎣ ⎦ if ( )u r constant≠



Proof: by reductio
 

ad absurdum

Assume: ( ) ( )odiv r u r 0⎡ ⎤ρ ∇ =⎣ ⎦ with ( )u r constant≠

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

23
o

3
o o

dr ρ r u r

dr u r  div ρ r u r ρ r u r u r dS 0

 ∇

⎡ ⎤= − ∇ + ∇ ⋅ =⎣ ⎦

∫
∫ ∫

0 0

( ) ( )( )2

o    ρ r u r 0⇒ ∇ ≡ contradiction to
( )u r constant≠
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