Ground-state DFT, an unconventional overview

E. K. U. GROSS
 Freie Universität Berlin

Web: http://users.physik.fu-berlin.de/~ag-gross

Many-Body Schrödinger Equation

$$
\hat{H} \Psi\left(r_{1}, r_{2}, \ldots, r_{N}\right)=E \Psi\left(r_{1}, r_{2}, \ldots, r_{N}\right)
$$

$$
\hat{H}=\hat{T}+\hat{V}+\hat{W}
$$

$$
\hat{\mathrm{T}}=\sum_{\mathrm{j}=1}^{\mathrm{N}}-\frac{\hbar^{2} \nabla_{\mathrm{j}}^{2}}{2 \mathrm{~m}}
$$

$$
\hat{\mathrm{V}}=\sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{v}\left(\mathrm{r}_{\mathrm{j}}\right)
$$

$$
\hat{\mathrm{W}}=\frac{1}{2} \sum_{\substack{\mathrm{j}, \mathrm{k}=1 \\ \mathrm{j} \neq \mathrm{k}}}^{\mathrm{N}} \frac{\mathrm{e}^{2}}{\left|\mathrm{r}_{\mathrm{j}}-\mathrm{r}_{\mathrm{k}}\right|}
$$

ESSENCE OF DENSITY-FUNTIONAL THEORY

- Every observable quantity of a quantum system can be calculated from the ground-state density of the system ALONE
- The ground-state density of particles interacting with each other can be calculated as the ground-state density of an auxiliary system of noninteracting particles
compare ground-state densities $\rho(\mathrm{r})$ resulting from different external potentials $\mathrm{v}(\mathrm{r})$.

QUESTION:
Are the ground-state densities coming from different potentials always different?

Hohenberg-Kohn-Theorem (1964)

$\mathrm{G}: \mathrm{v}(\mathrm{r}) \rightarrow \rho(\mathrm{r})$ is invertible

Proof

Step 1: Invertibility of map A

Solve many-body Schrödinger equation for the external potential:

$$
\begin{aligned}
& \hat{\mathrm{V}}=\frac{\left(\mathrm{E}-\hat{\mathrm{T}}-\hat{\mathrm{W}}_{\mathrm{ee}}\right) \Psi}{\Psi} \\
& \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{v}\left(\mathrm{r}_{\mathrm{j}}\right)=-\frac{\hat{\mathrm{T}} \Psi}{\Psi}-\mathrm{W}_{\mathrm{ee}}\left(\overrightarrow{\mathrm{r}}_{1} \ldots \overrightarrow{\mathrm{r}}_{\mathrm{N}}\right)+\mathrm{constant}
\end{aligned}
$$

This is manifestly the inverse map: A given Ψ uniquely yields the external potential.

Step 2: Invertibility of map Ã

Given: two (nondegenerate) ground states Ψ, Ψ ' satisfying

$$
\begin{array}{lll}
\hat{\mathrm{H}} \Psi=\mathrm{E} \Psi & \text { with } & \hat{\mathrm{H}}=\hat{\mathrm{T}}+\hat{\mathrm{W}}+\hat{\mathrm{V}} \\
\hat{\mathrm{H}}^{\prime} \Psi^{\prime}=\mathrm{E}^{\prime} \Psi^{\prime}
\end{array} \quad \begin{aligned}
& \mathrm{H}^{\prime}=\hat{\mathrm{T}}+\hat{\mathrm{W}}+\hat{\mathrm{V}}^{\prime}
\end{aligned}
$$

to be shown: $\quad \Psi \neq \Psi^{\prime} \Rightarrow \rho \neq \rho^{\prime}$

cannot happen

Use Rayleigh-Ritz principle:

$$
\begin{aligned}
\lambda \mathrm{E}= & \langle\Psi| \hat{\mathrm{H}}|\Psi\rangle<\left\langle\Psi^{\prime}\right| \hat{\mathrm{H}}\left|\Psi^{\prime}\right\rangle=\left\langle\Psi^{\prime}\right| \mathrm{H}^{\prime}+\mathrm{V}-\mathrm{V}^{\prime}\left|\Psi^{\prime}\right\rangle \\
& =\mathrm{E}^{\prime}+\int \mathrm{d}^{3} \mathrm{r} \rho^{\prime}(\mathrm{r})\left[\mathrm{v}(\mathrm{r})-\mathrm{v}^{\prime}(\mathrm{r})\right] \\
* \mathrm{E}^{\prime} & =\left\langle\Psi^{\prime}\right| \hat{\mathrm{H}}^{\prime}\left|\Psi^{\prime}\right\rangle<\langle\Psi| \hat{\mathrm{H}}^{\prime}|\Psi\rangle \\
& =\mathrm{E}+\int \mathrm{d}^{3} \mathrm{r} \rho(\mathrm{r})\left[\mathrm{v}^{\prime}(\mathrm{r})-\mathrm{v}(\mathrm{r})\right]
\end{aligned}
$$

Reductio ad absurdum:
Assumption $\rho=\rho^{\prime}$. Add $\lambda^{\text {and }} * \Rightarrow \mathrm{E}+\mathrm{E}^{\prime}<\mathrm{E}+\mathrm{E}^{\prime} \quad$ 〈

Consequence

Every quantum mechanical observable is completely determined by the ground state density.

$$
\text { Proof: } \quad \rho \xrightarrow{\mathrm{G}^{-1}} \mathrm{v}[\rho] \xrightarrow{\text { solve S.E. }} \Phi_{\mathrm{i}}[\rho]
$$

Hermitian operator \hat{B}

$$
\mathrm{B}_{\mathrm{i}}[\rho]=\left\langle\Phi_{\mathrm{i}}[\rho]\right| \hat{\mathrm{B}}\left|\Phi_{\mathrm{i}}[\rho]\right\rangle
$$

e.g. excitation spectrum: $\mathrm{E}_{\mathrm{i}}[\rho]$

What is a FUNCTIONAL?

Generalization of terminology:
$\mathrm{V}_{\mathrm{r}}[\rho]=\mathrm{v}[\rho](\overrightarrow{\mathrm{r}}) \quad$ functional depending parametrically on $\overrightarrow{\mathrm{r}}$
$\psi_{\overrightarrow{\mathrm{r}}_{1} \ldots \overrightarrow{\mathrm{r}}_{\mathrm{N}}}[\rho]=\psi[\rho]\left(\overrightarrow{\mathrm{r}}_{1} \ldots \overrightarrow{\mathrm{r}}_{\mathrm{N}}\right)$ depending parametrically on $\left(\overrightarrow{\mathrm{r}}_{1} \ldots \overrightarrow{\mathrm{r}}_{\mathrm{N}}\right)$

Explicit construction of the HK map $\mathbf{v}_{s} \longleftrightarrow \rho$ for non-interacting particles

$$
\begin{aligned}
& \left.\left(-\frac{h^{2} \nabla^{2}}{2 \mathrm{~m}}+\mathrm{v}_{\mathrm{s}}(\mathrm{r})\right) \varphi_{\mathrm{i}}=\epsilon_{\mathrm{i}} \varphi_{\mathrm{i}} \quad \right\rvert\, \sum_{\mathrm{i}} \varphi_{\mathrm{i}}^{*} . \\
& \sum_{\mathrm{i}=1}^{\mathrm{N}} \varphi_{\mathrm{i}}^{*}{ }^{*}\left(-\frac{\mathrm{h}^{2} \nabla^{2}}{2 \mathrm{~m}}\right) \varphi_{\mathrm{i}}+\mathrm{v}_{\mathrm{s}}(\mathrm{r}) \rho(\mathrm{r})=\sum_{\mathrm{i}=1}^{\mathrm{N}} \epsilon_{\mathrm{i}}\left|\varphi_{\mathrm{i}}(\mathrm{r})\right|^{2} \\
& \Rightarrow \mathrm{v}_{\mathrm{s}}(\mathrm{r})=\frac{1}{\rho(\mathrm{r}) \cdot \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\epsilon_{\mathrm{i}}\left|\varphi_{\mathrm{i}}(\mathrm{r})\right|^{2}-\varphi_{\mathrm{i}}^{*}\left(-\frac{\mathrm{h}^{\delta} \nabla^{2}}{2 \mathrm{~m}}\right) \varphi_{\mathrm{i}}\right)}
\end{aligned}
$$

Iterative procedure

$\rho_{0}(\mathrm{r})$ given (e.g. from experiment)
Start with an initial guess for $\mathrm{v}_{\mathrm{s}}(\mathrm{r}) \quad$ (e.g. GGA potential)

$$
\begin{aligned}
\text { solve }\left(-\frac{\hat{h}^{2} \nabla^{2}}{2 \mathrm{~m}}+\mathrm{v}_{\mathrm{s}}(\mathrm{r})\right) \varphi_{\mathrm{i}}=\epsilon_{\mathrm{i}} \varphi_{\mathrm{i}} \\
\mathrm{~V}_{\mathrm{s}}^{\text {new }}(\mathrm{r})=\frac{1}{\rho_{0}(\mathrm{r})} \cdot \sum_{i=1}^{\mathrm{N}}\left(\epsilon_{\mathrm{i}}\left|\varphi_{\mathrm{i}}(\mathrm{r})\right|^{2}-\varphi_{\mathrm{i}}^{*} *\left(-\frac{\mathfrak{h}^{2} \nabla^{2}}{2 \mathrm{~m}}\right) \varphi_{\mathrm{i}}\right)
\end{aligned}
$$

solve $S E$ with $\mathrm{V}_{\mathrm{s}}{ }^{\text {new }}$ and iterate, keeping $\rho_{0}(\mathrm{r})$ fixed

QUESTION:

How to calculate ground state density $\rho_{\mathrm{o}}(\overrightarrow{\mathrm{r}})$ of a given system (characterized by the external potential $\mathrm{V}_{\mathrm{o}}=\sum v_{\mathrm{o}}(\overrightarrow{\mathrm{r}})$) without recourse to the Schrödinger Equation?

Theorem:
There exists a density functional $\mathrm{E}_{\mathrm{HK}}[\rho]$ with properties

$$
\text { i) } \mathrm{E}_{\mathrm{HK}}[\rho]>\mathrm{E}_{\mathrm{o}} \text { for } \rho \neq \rho_{\mathrm{o}}
$$

$$
\text { ii) } \mathrm{E}_{\mathrm{HK}}\left[\rho_{\mathrm{o}}\right]=\mathrm{E}_{\mathrm{o}}
$$

where $E_{0}=$ exact ground state energy of the system
Thus, Euler equation $\frac{\delta}{\delta \rho(\overrightarrow{\mathrm{r}})} \mathrm{E}_{\mathrm{HK}}[\rho]=0$
yields exact ground state density ρ_{o}.
proof:
formal construction of $\mathbf{E}_{\mathrm{HK}}[\rho]$:
for arbitrary ground state density $\rho(\overrightarrow{\mathrm{r}}) \xrightarrow{\widetilde{\mathrm{A}}^{-1}} \Psi[\rho]$
define: $\quad \mathrm{E}_{\mathrm{HK}}[\rho] \equiv\langle\Psi[\rho]| \hat{\mathrm{T}}+\hat{\mathrm{W}}+\hat{\mathrm{V}}_{\mathrm{o}}|\Psi[\rho]\rangle$
$>\mathbf{E}_{\mathbf{0}}$ for $\rho \neq \rho_{\mathrm{o}}$
$=\mathbf{E}_{\mathbf{0}}$ for $\rho=\rho_{\mathrm{o}} \quad$ q.e.d.

$$
\mathbf{E}_{\mathbf{H K}}[\rho]=\int \mathbf{d}^{3} \mathbf{r} \rho(\mathbf{r}) v_{\mathbf{0}}(\mathbf{r})+\underbrace{\langle\Psi[\rho]| \hat{\mathrm{T}}+\hat{\mathrm{W}}|\Psi[\rho]\rangle}_{\mathbf{F}[\rho] \text { is } \text { universal }}
$$

HOHENBERG-KOHN THEOREM

1. $\mathrm{V}(\mathrm{r}) \xrightarrow{\xrightarrow{l-1} \rho(\mathrm{r})}$
one-to-one correspondence between external potentials $\mathrm{v}(\mathrm{r})$ and ground-state densities $\rho(\mathrm{r})$
2. Variational principle

Given a particular system characterized by the external potential $\mathbf{v}_{0}(\mathbf{r})$. Then the solution of the Euler-Lagrange equation

$$
\frac{\delta}{\delta \rho(\mathrm{r})} \mathrm{E}_{\mathrm{HK}}[\rho]=0
$$

yields the exact ground-state energy \mathbf{E}_{0} and ground-state density $\rho_{0}(\mathbf{r})$ of this system
3. $E_{H K}[\rho]=F[\rho]+\int \rho(r) v_{0}(r) d^{3} r$
$\mathrm{F}[\rho]$ is UNIVERSAL. In practice, $\mathrm{F}[\rho]$ needs to be approximated

Can one approximate the functional $F[\rho]$ in a systematic (controlled) way?

YES!

Expansion of $\mathrm{F}[\rho]$ in powers of e^{2}

$F[\rho]=F^{(0)}[\rho]+e^{2} F^{(1)}[\rho]+e^{4} F^{(2)}[\rho]+\cdots$
where: $\mathrm{F}^{(0)}[\rho]=\mathrm{T}_{\mathrm{s}}[\rho] \quad$ (kinetic energy of $\underline{\text { non-interacting particles) }}$

$$
\begin{aligned}
& \mathrm{e}^{2} \mathrm{~F}^{(1)}[\rho]=\frac{\mathrm{e}^{2}}{2} \iint \frac{\rho(\mathrm{r}) \rho\left(\mathrm{r}^{\prime}\right)}{\left|\mathrm{r}-\mathrm{r}^{\prime}\right|} \mathrm{dr}^{3} \mathrm{~d}^{3} \mathrm{r}^{\prime}+\mathrm{E}_{\mathrm{x}}[\rho] \quad \text { (Hartree + exchange energies) } \\
& \sum_{\mathrm{i}=2}^{\infty}\left(\mathrm{e}^{2}\right)^{\mathrm{i}} \mathrm{~F}^{(\mathrm{i})}[\rho]=\mathrm{E}_{\mathrm{c}}[\rho] \quad \text { (correlation energy) } \\
& \Rightarrow \quad \mathbf{F}[\rho]=\mathbf{T}_{\mathbf{s}}[\rho]+\frac{\mathbf{e}^{2}}{2} \iint \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \mathbf{d}^{3} \mathbf{r} \mathbf{d}^{3} \mathbf{r}^{\prime}+\mathbf{E}_{\mathbf{x}}[\rho]+\mathbf{E}_{\mathbf{c}}[\rho]
\end{aligned}
$$

Systematic approach to construct E_{xc} using KS-MBPT

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{KS}} \longrightarrow \text { unperturbed system } \\
& \mathrm{H}=\mathrm{H}_{\mathrm{KS}}+\lambda \mathrm{H}_{\mathbf{1}}, \\
& \text { where } \quad H_{1}=W_{\text {ee }}-\int d^{3} r \rho(r)\left(v_{H}(r)+v_{x c}(r)\right) \\
& \mathrm{E}_{\mathrm{x}}^{\text {exact }}[\rho]=\underset{\rightarrow-\mathbf{3}}{\mathbf{\rightarrow}} \\
& =-\frac{1}{2} \sum_{\sigma=\uparrow \downarrow \mathrm{j}, \mathrm{k}} \sum^{\mathrm{N}_{\sigma}} \int \frac{\varphi_{\mathrm{k} \mathrm{\sigma}}^{*}\left(\mathrm{r}^{\prime}\right) \varphi_{\mathrm{k} \mathrm{\sigma}}(\mathrm{r}) \varphi_{\mathrm{j} \mathrm{\sigma}}^{*}(\mathrm{r}) \varphi_{\mathrm{j} \mathrm{\sigma}}\left(\mathrm{r}^{\prime}\right)}{\left|\mathrm{r}-\mathrm{r}^{\prime}\right|} \mathrm{d}^{3} \mathrm{rd}^{3} \mathrm{r}^{\prime}
\end{aligned}
$$

$\mathrm{E}_{\mathrm{c}}[\rho]=$ sum of all higher-order diagrams in terms of the Green's function

$$
\mathrm{G}_{\mathrm{s} \mathrm{\sigma}}\left(\mathrm{r}, \mathrm{r}^{\prime}\right)=\sum_{\mathrm{k}} \frac{\varphi_{\mathrm{k} \mathrm{\sigma}}(\mathrm{r}) \varphi_{\mathrm{k} \mathrm{\sigma}}^{*}\left(\mathrm{r}^{\prime}\right)}{\omega-\varepsilon_{\mathrm{k} \mathrm{\sigma}}} \Rightarrow \begin{aligned}
& \text { The exact } \mathrm{E}_{\mathrm{xc}}[\rho] \text { is an } \\
& \text { orbital functional }
\end{aligned}
$$

TOWARDS THE EXACT FUNCTIONAL

$$
F[\rho]=T_{s}[\rho]+\frac{1}{2} \int d^{3} r \int d^{3} r^{\prime} \frac{\rho(r) \rho\left(r^{\prime}\right)}{\left|r-r^{\prime}\right|}+E_{x}[\rho]+E_{c}[\rho]
$$

$1^{\text {st }}$ generation of DFT: Use approximate functionals (LDA/GGA) for $\mathrm{T}_{\mathrm{s}}, \mathrm{E}_{\mathrm{x}}$ and E_{c} e.g.

$$
\mathrm{T}_{\mathrm{s}}[\rho]=\int \mathrm{d}^{3} \mathrm{r}\left(\mathrm{a} \mathrm{\rho}(\mathrm{r})^{5 / 3}+\mathrm{b} \frac{(\nabla \rho)^{2}}{\rho}+\cdots\right)
$$

\Rightarrow Thomas-Fermi-type equation has to be solved
$2^{\text {nd }}$ generation of DFT: Use exact functional $T_{\mathrm{s}}{ }^{\text {exact }}[\rho]$ and LDA/GGA for E_{x} and E_{c}
\Rightarrow KS equations have to be solved

$$
\mathrm{T}_{\mathrm{s}}^{\text {cxact }}[\rho]=\sum_{\mathrm{j}_{\text {cec }}} \int \mathrm{d}^{3} \mathrm{r} \varphi_{\mathrm{j}}^{*}[\rho](\mathrm{r})\left(-\frac{\nabla^{2}}{2}\right) \varphi_{\mathrm{j}}[\rho](\mathrm{r})
$$

 e.g.
\Rightarrow KS equations have to be solved self-consistently with OEP integral equation

Kohn-Sham Theorem

Let $\rho_{0}(r)$ be the ground-state density of interacting electrons moving in the external potential $v_{0}(r)$. Then there exists a unique local potential $v_{s, 0}(r)$ such that noninteracting particles exposed to $\mathbf{v}_{\mathrm{s}, \mathbf{0}}(\mathrm{r})$ have the ground-state density $\rho_{\mathbf{0}}(\mathrm{r})$, i.e.

$$
\left(-\frac{\nabla^{2}}{2}+\mathbf{V}_{\mathbf{s}, \mathbf{0}}(\mathbf{r})\right) \varphi_{\mathbf{j}}(\mathbf{r})=\epsilon_{\mathbf{j}} \varphi_{\mathbf{j}}(\mathbf{r}), \quad \boldsymbol{\rho}_{\mathbf{0}}(\mathbf{r})=\sum_{\substack{\mathbf{j}\left(\mathbf{w i t h} \\ \text { lowest } \epsilon_{\mathbf{j}}\right)}}^{\mathbf{N}}\left|\varphi_{\mathbf{j}}(\mathbf{r})\right|^{\mathbf{2}}
$$

proof: $\quad \mathbf{V}_{\mathrm{s}, \mathbf{0}}(\mathbf{r})=\mathrm{V}_{\mathrm{s}}\left[\rho_{\mathrm{o}}\right](\mathrm{r})$
Uniqueness follows from HK 1-1 mapping
Existence follows from V-representability theorem

By construction, the HK mapping is well-defined for all those functions $\rho(\mathrm{r})$ that are ground-state densities of some potential (so called V-representable functions $\rho(\mathbf{r})$).

QUESTION: Are all "reasonable" functions $\rho(\mathrm{r})$ V-representable?

V-representability theorem (Chayes, Chayes, Ruskai, J Stat. Phys. 38, 497 (1985)) On a lattice (finite or infinite), any normalizable positive function $\rho(\mathbf{r})$, that is compatible with the Pauli principle, is (both interacting and noninteracting) ensemble-V-representable.

In other words: For any given $\rho(\mathbf{r})$ (normalizable, positive, compatible with Pauli principle) there exists a potential, $\mathbf{v}_{\text {ext }}[\rho](\mathbf{r})$, yielding $\rho(\mathbf{r})$ as interacting ground-state density, and there exists another potential, $\mathrm{v}_{\mathrm{s}}[\rho](\mathrm{r})$, yielding $\rho(r)$ as non-interacting ground-state density.

In the worst case, the potential has degenerate ground states such that the given $\rho(r)$ is representable as a linear combination of the degenerate ground-state densities (ensemble-V-representable).

Define $\mathbf{v}_{\mathrm{xc}}[\rho](\mathrm{r})$ by the equation

$$
\mathbf{v}_{\mathbf{s}}[\boldsymbol{\rho}](\mathbf{r})=: \mathbf{v}_{\text {ext }}[\boldsymbol{\rho}](\mathbf{r})+\underbrace{\int \frac{\rho\left(\mathrm{r}^{\prime}\right)}{\left|\mathbf{r}-\mathrm{r}^{\prime}\right|} \mathrm{d}^{3} \mathrm{r}^{\prime}}_{\mathbf{v}_{\mathbf{H}}[\rho](\mathbf{r})}+\mathbf{v}_{\mathbf{x c}}[\boldsymbol{\rho}](\mathbf{r})
$$

KS equations

$$
\begin{array}{cc}
\text { fixed } \\
\text { to be solved selfconsistently with } & \boldsymbol{\rho}_{\mathbf{o}}(\mathbf{r})=\sum\left|\varphi_{\mathrm{j}}(\mathbf{r})\right|^{2}, ~
\end{array}
$$

Note: The KS equations do not follow from the variational principle. They follow from the HK 1-1 mapping and the V-representability theorem.

Time-dependent density-functional formalism

 (first: electrons only, nuclei are fixed or treated classically)(E. Runge, E.K.U.G., PRL 52, 997 (1984))

Basic 1-1 correspondence:

$\mathrm{v}(\mathrm{rt}) \stackrel{\mathrm{l}-1}{\longleftrightarrow} \rho(\mathrm{rt})$
The time-dependent density determines uniquely the time-dependent external potential and hence all physical observables for fixed initial state.

KS theorem:

The time-dependent density of the interacting system of interest can be calculated as density

$$
\rho(\mathrm{rt})=\sum_{\mathrm{j}=1}^{\mathrm{N}}\left|\varphi_{\mathrm{j}}(\mathrm{rt})\right|^{2}
$$

of an auxiliary non-interacting (KS) system

$$
\mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}} \varphi_{\mathrm{j}}(\mathrm{rt})=\left(-\frac{\hbar^{2} \nabla^{2}}{2 \mathrm{~m}}+\mathrm{v}_{\mathrm{s}}[\rho](\mathrm{rt})\right) \varphi_{\mathrm{j}}(\mathrm{rt})
$$

with the local potential

$$
v_{S}\left[\rho\left(r^{\prime} t^{\prime}\right)\right](r t)=v(r t)+\int d^{3} r^{\prime} \frac{\rho\left(r^{\prime} t\right)}{\left|r-r^{\prime}\right|}+v_{x c}\left[\rho\left(r^{\prime} t^{\prime}\right)\right](r t)
$$

Proof of basic 1-1 correspondence between $v(\vec{r} t)$ and $\rho(\vec{r} t)$

define maps
 $$
\mathrm{F}: \quad \mathrm{v}(\overrightarrow{\mathrm{r}} \mathrm{t}) \mapsto \Psi(\mathrm{t})
$$
 $$
\tilde{\mathrm{F}}: \Psi(\mathrm{t}) \mapsto \rho(\overrightarrow{\mathrm{r}} \mathrm{t})
$$

$$
\mathrm{G}: \mathrm{v}(\overrightarrow{\mathrm{r}} \mathrm{t}) \mapsto \rho(\overrightarrow{\mathrm{r}} \mathrm{t})
$$

The TDKS equations follow (like in the static case) from:
i. the basic 1-1 mapping and
ii. the TD V-representability theorem (R. van Leeuwen, PRL 82, 3863 (1999)).

A TDDFT variational principle exists as well, but this is more tricky (R. van Leeuwen, PRL 80, 1280 (1998)).
complete 1-1 correspondence not to be expected!

$$
\begin{aligned}
& \mathrm{i} \frac{\partial}{\partial \mathrm{t}} \Psi(\mathrm{t})=(\hat{\mathrm{T}}+\underline{\underline{\mathrm{V}(\mathrm{t})}}+\hat{\mathrm{W}}) \Psi(\mathrm{t}) \quad \Psi\left(\mathrm{t}_{\mathrm{o}}\right)=\Psi_{\mathrm{o}} \\
& \mathrm{i} \frac{\partial}{\partial \mathrm{t}} \Psi^{\prime}(\mathrm{t})=\left(\hat{\mathrm{T}}+\underline{\underline{\hat{\mathrm{V}}^{\prime}(\mathrm{t})}}+\hat{\mathrm{W}}\right) \Psi^{\prime}(\mathrm{t}) \quad \Psi^{\prime}\left(\mathrm{t}_{\mathrm{o}}\right)=\Psi_{\mathrm{o}} \\
& \hat{\mathrm{~V}}^{\prime}(\mathrm{t})=\hat{\mathrm{V}}(\mathrm{t})+\underset{\hat{C}}{\mathrm{C}}(\mathrm{t}) \Leftrightarrow \Psi^{\prime}(\mathrm{t})=\mathrm{e}^{-\mathrm{i} \alpha(\mathrm{t})} \Psi(\mathrm{t}) \\
& \text { "no operator" } \\
& \text { with } \dot{\alpha}(\mathrm{t})=\mathrm{C}(\mathrm{t}) \\
& \Rightarrow \underline{\underline{\rho^{\prime}(\overrightarrow{\mathrm{r} t})=\rho(\overrightarrow{\mathrm{r} t})}} \\
& \text { i.e. }\{\hat{\mathrm{V}}(\mathrm{t})+\mathrm{C}(\mathrm{t})\} \rightarrow \rho(\overrightarrow{\mathrm{r}} \mathrm{t})
\end{aligned}
$$

If G invertible up to within time-dependent function $\mathrm{C}(\mathrm{t})$

$$
\begin{gathered}
\Rightarrow \Psi=\mathrm{FG}^{-1} \rho \quad \text { fixed up to within time-dependent phase } \\
\text { i.e. } \Psi=\mathrm{e}^{-\mathrm{i} \alpha(t)} \Psi[\rho]
\end{gathered}
$$

For any observable \hat{O}

$$
\begin{gathered}
\langle\Psi| \hat{O}|\Psi\rangle=\langle\Psi[\rho]| \hat{O}|\Psi[\rho]\rangle=O[\rho] \\
\text { is functional of the density }
\end{gathered}
$$

THEOREM (time-dependent analogue of Hohenberg-Kohn theorem)

The map

$$
G: \quad v(\overrightarrow{\mathrm{r}} \mathrm{t}) \mapsto \rho(\overrightarrow{\mathrm{r}} \mathrm{t})
$$

defined for all single-particle potentials $\mathrm{v}(\overrightarrow{\mathrm{r} t})$ which can be expanded into a Taylor series with respect to the time coordinate around t_{o}
is invertible up to within an additive merely time-dependent function in the potential.

Proof:

to be shown:

$$
\text { i.e. } \quad \frac{\hat{\mathrm{v}}(\overrightarrow{\mathrm{r}} \mathrm{t}) \neq \hat{\mathrm{v}}^{\prime}(\overrightarrow{\mathrm{r} t})+\mathrm{c}(\mathrm{t})}{\square} \stackrel{!}{\Rightarrow} \rho(\overrightarrow{\mathrm{r} t}) \neq \rho^{\prime}(\overrightarrow{\mathrm{r} t})
$$

potential expandable into Taylor series

$$
\exists \mathrm{k} \geq 0 \quad: \quad \frac{\partial^{\mathrm{k}}}{\partial \mathrm{t}^{\mathrm{k}}}\left[\mathrm{v}(\overrightarrow{\mathrm{r} t})-\mathrm{v}^{\prime}(\overrightarrow{\mathrm{r} t})\right]_{\mathrm{t}=\mathrm{t}_{\mathrm{o}}} \neq \text { constant }
$$

$$
\begin{aligned}
& \text { step } 1 \\
& \overrightarrow{\mathrm{j}}(\overrightarrow{\mathrm{r}} \mathrm{t}) \neq \mathrm{j}^{\prime}(\overrightarrow{\mathrm{r}} \mathrm{t}) \\
& \text {, step } 2 \\
& \rho(\overrightarrow{\mathrm{r}}) \neq \rho^{\prime}(\overrightarrow{\mathrm{r} t})
\end{aligned}
$$

Step 1: Current densities

$$
\begin{aligned}
\overrightarrow{\mathrm{j}}(\overrightarrow{\mathrm{r}} \mathrm{t})= & \langle\Psi(\mathrm{t})| \hat{\mathrm{j}}(\overrightarrow{\mathrm{r}})|\Psi(\mathrm{t})\rangle \\
& \text { with } \hat{\mathrm{j}}(\overrightarrow{\mathrm{r}})=-\frac{1}{2 \mathrm{i}} \sum_{\mathrm{s}}\left(\left[\left(\vec{\nabla} \hat{\Psi}_{s}^{+}(\overrightarrow{\mathrm{r}})\right] \hat{\Psi}_{\mathrm{s}}(\overrightarrow{\mathrm{r}})-\hat{\Psi}_{\mathrm{s}}^{+}(\overrightarrow{\mathrm{r}})\left[\vec{\nabla} \hat{\Psi}_{\mathrm{s}}(\overrightarrow{\mathrm{r}})\right]\right)\right.
\end{aligned}
$$

Use equation of motion:

$$
\begin{aligned}
& \mathrm{i} \frac{\partial}{\partial \mathrm{t}}\langle\Psi(\mathrm{t})| \hat{\mathrm{O}}(\mathrm{t})|\Psi(\mathrm{t})\rangle=\langle\Psi(\mathrm{t})| \mathrm{i} \frac{\partial}{\partial \mathrm{t}} \hat{\mathrm{O}}(\mathrm{t})+[\hat{\mathrm{O}}(\mathrm{t}), \hat{\mathrm{H}}(\mathrm{t})]|\Psi(\mathrm{t})\rangle \\
& \Rightarrow \quad \mathrm{i} \frac{\partial}{\partial \mathrm{t}} \overrightarrow{\mathrm{j}}(\overrightarrow{\mathrm{r}} \mathrm{t})=\langle\Psi(\mathrm{t})\lfloor[\hat{\mathrm{j}}(\overrightarrow{\mathrm{r}}), \hat{\mathrm{H}}(\mathrm{t})] \Psi(\mathrm{t})\rangle \\
& \mathrm{i} \frac{\partial}{\partial \mathrm{t}} \overline{\mathrm{j}}^{\prime}(\overrightarrow{\mathrm{r}} \mathrm{t})=\left\langle\Psi^{\prime}(\mathrm{t})\left[\left[\hat{\mathrm{j}}(\overrightarrow{\mathrm{r}}), \hat{\mathrm{H}}^{\prime}(\mathrm{t})\right] \Psi^{\prime}(\mathrm{t})\right\rangle\right. \\
& \text { note: } \quad \overrightarrow{\mathrm{j}}\left(\underline{\mathrm{r}} \underline{\underline{t_{\mathrm{t}}}}\right)=\overrightarrow{\mathrm{j}^{\prime}}\left(\overrightarrow{\mathrm{r}} \underline{\underline{t_{0}}}\right)=\left\langle\Psi_{0}\right| \hat{\mathrm{j}}(\overrightarrow{\mathrm{r}})\left|\Psi_{0}\right\rangle \equiv \overrightarrow{\mathrm{j}}_{0}(\overrightarrow{\mathrm{r}}) \\
& \rho(\underline{\underline{\mathrm{r}}} \underline{\underline{\mathrm{t}}})=\rho^{\prime}(\overrightarrow{\mathrm{r}} \underline{\underline{\mathrm{t}}})=\left\langle\Psi_{\mathrm{o}}\right| \hat{\rho}(\overrightarrow{\mathrm{r}})\left|\Psi_{\mathrm{o}}\right\rangle \equiv \rho_{\mathrm{o}}(\overrightarrow{\mathrm{r}})
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{i} \frac{\partial}{\partial \mathrm{t}}\left[\overrightarrow{\mathrm{j}}(\overrightarrow{\mathrm{r} t})-\overrightarrow{\mathrm{j}}^{\prime}(\overrightarrow{\mathrm{r}})\right]_{\mathrm{t}=\mathrm{t}_{0}} & =\left\langle\Psi_{\mathrm{o}} \|\left[\hat{\mathrm{j}}(\overrightarrow{\mathrm{r}}), \hat{\mathrm{H}}\left(\mathrm{t}_{\mathrm{o}}\right)-\hat{\mathrm{H}}^{\prime}\left(\mathrm{t}_{\mathrm{o}}\right)\right] \Psi_{\mathrm{o}}\right\rangle \\
= & \left\langle\Psi_{\mathrm{o}}\left[\left[\hat{\hat{\mathrm{j}}}(\overrightarrow{\mathrm{r}}), \mathrm{V}\left(\mathrm{t}_{\mathrm{o}}\right)-\mathrm{V}^{\prime}\left(\mathrm{t}_{\mathrm{o}}\right)\right] \Psi_{\mathrm{o}}\right\rangle\right. \\
& =\mathrm{i} \rho_{\mathrm{o}}(\overrightarrow{\mathrm{r}}) \overrightarrow{\mathrm{V}}\left(\mathrm{v}\left(\overrightarrow{\mathrm{r}} \mathrm{t}_{\mathrm{o}}\right)-\mathrm{v}^{\prime}\left(\overrightarrow{\mathrm{r}} \mathrm{t}_{\mathrm{o}}\right)\right)
\end{aligned}
$$

if $\quad \frac{\partial^{k}}{\partial \mathrm{t}^{k}}\left[\mathrm{v}(\overrightarrow{\mathrm{r} t})-\mathrm{v}^{\prime}(\overrightarrow{\mathrm{r}})\right]_{\mathrm{t}=t_{0}} \neq$ constant \quad holds for $\mathrm{k}=0$
then $i \frac{\partial}{\partial \mathrm{t}}\left[\overline{\mathrm{j}}(\overrightarrow{\mathrm{r} t})-\overline{\mathrm{j}}^{\prime}(\mathrm{r} \mathrm{r})\right]_{\mathrm{t}=\mathrm{t}_{0}} \neq 0$

if $\quad \frac{\partial^{\mathrm{k}}}{\partial \mathrm{t}^{\mathrm{k}}}\left[\mathrm{v}(\mathrm{T} \mathrm{t})-\mathrm{v}^{\prime}(\mathrm{r} \mathrm{r} t)\right]_{\mathrm{Et=0}} \neq$ constant \quad holds for $\mathrm{k}>0$

\rightarrow use equation of motion $\mathrm{k}+1$ times:

$$
\begin{aligned}
\left(\mathrm{i} \frac{\partial}{\partial \mathrm{t}}\right)^{2} \dot{\mathrm{j}}(\overrightarrow{\mathrm{r} t}) & \left.=\mathrm{i} \frac{\partial}{\partial \mathrm{t}}\langle\Psi(\mathrm{t})| \hat{\mathrm{j}}, \hat{\mathrm{H}}(\mathrm{t})\right]|\Psi(\mathrm{t})\rangle \\
& =\langle\Psi(\mathrm{t})| \mathrm{i} \frac{\partial}{\partial \mathrm{t}}[\hat{\mathrm{j}}, \hat{\mathrm{H}}(\mathrm{t})]+[[\overrightarrow{\mathrm{j}}, \hat{\mathrm{H}}(\mathrm{t})], \hat{\mathrm{H}}(\mathrm{t})]|\Psi(\mathrm{t})\rangle \\
\left(\mathrm{i} \frac{\partial}{\partial \mathrm{t}}\right)^{3} \overrightarrow{\mathrm{j}}(\overrightarrow{\mathrm{r}} \mathrm{t}) & =\mathrm{i} \frac{\partial}{\partial \mathrm{t}}\langle\Psi(\mathrm{t})| \mathrm{i} \frac{\partial}{\partial \mathrm{t}}[\overrightarrow{\mathrm{j}}, \hat{\mathrm{H}}(\mathrm{t})]+[[\overrightarrow{\mathrm{j}}, \mathrm{H}(\mathrm{t})], \hat{\mathrm{H}}(\mathrm{t})]|\Psi(\mathrm{t})\rangle
\end{aligned}
$$

$$
\left(\mathrm{i} \frac{\partial}{\partial \mathrm{t}}\right)^{k+1}\left[\overrightarrow{\mathrm{j}}(\overrightarrow{\mathrm{r} t})-\overrightarrow{\mathrm{j}}^{\prime}(\overrightarrow{\mathrm{r} t})\right]_{\mathrm{t}=\mathrm{t}_{\mathrm{o}}}=\mathrm{i} \rho_{\mathrm{o}}(\overrightarrow{\mathrm{r}}) \overrightarrow{\mathrm{V}}(\underbrace{\left(\mathrm{i} \frac{\partial}{\partial \mathrm{t}}\right)^{\mathrm{k}}\left[\mathrm{v}(\overrightarrow{\mathrm{r} t})-\mathrm{v}^{\prime}(\overrightarrow{\mathrm{r} t})\right]_{\mathrm{t}}}_{\neq \text {constant }}) \neq 0
$$

$$
\Rightarrow \quad \underline{\overline{\mathrm{j}}(\overrightarrow{\mathrm{r} t}) \neq \overrightarrow{\mathrm{j}}^{\prime}(\overrightarrow{\mathrm{rt}})} \quad \text { q.e.d. }
$$

Step 2: densities

Use continuity equation:

$$
\begin{aligned}
& \frac{\partial}{\partial \mathrm{t}}\left[\rho(\overrightarrow{\mathrm{r} t})-\rho^{\prime}(\overrightarrow{\mathrm{r} t})\right]=-\operatorname{div}\left[\overrightarrow{\mathrm{j}}(\overrightarrow{\mathrm{r} t})-\overrightarrow{\mathrm{j}} \overrightarrow{\mathrm{j}}^{\prime}(\overrightarrow{\mathrm{r} t})\right] \\
& \Rightarrow \quad \frac{\partial^{\mathrm{k}+2}}{\partial \mathrm{t}^{\mathrm{k}+2}}\left[\rho(\overrightarrow{\mathrm{r} t})-\rho^{\prime}(\overrightarrow{\mathrm{r} t})\right]_{\mathrm{t}=\mathrm{t}_{\mathrm{o}}}=-\operatorname{div} \frac{\partial^{\mathrm{k}+1}}{\partial \mathrm{t}^{\mathrm{k}+1}}\left[\overrightarrow{\mathrm{j}}(\overrightarrow{\mathrm{r} t})-\overrightarrow{\mathrm{j}}^{\prime}(\overrightarrow{\mathrm{r} t})\right]_{\mathrm{t}=\mathrm{t}_{\mathrm{o}}} \\
&=-\operatorname{div} \rho_{\mathrm{o}}(\overrightarrow{\mathrm{r}}) \vec{\nabla}(\underbrace{\frac{\partial^{k}}{\partial \mathrm{t}^{k}}\left[\mathrm{v}(\overrightarrow{\mathrm{r} t})-\mathrm{v}^{\prime}(\overrightarrow{\mathrm{r} t})\right]_{\mathrm{t}=\mathrm{t}_{o}}}_{\neq \text {constant }})
\end{aligned}
$$

remains to be shown:

$$
\operatorname{div}\left[\rho_{\mathrm{o}}(\overrightarrow{\mathrm{r}}) \vec{\nabla} \mathrm{u}(\overrightarrow{\mathrm{r}})\right] \neq 0 \quad \text { if } \quad \mathrm{u}(\overrightarrow{\mathrm{r}}) \neq \text { constant }
$$

Proof: by reductio ad absurdum

Assume: $\quad \operatorname{div}\left[\rho_{\mathrm{o}}(\overrightarrow{\mathrm{r}}) \vec{\nabla} \mathrm{u}(\overrightarrow{\mathrm{r}})\right]=0$ with $\quad \mathrm{u}(\overrightarrow{\mathrm{r}}) \neq$ constant

$$
\Rightarrow \quad \rho_{\mathrm{o}}(\overrightarrow{\mathrm{r}})(\vec{\nabla} \mathrm{u}(\overrightarrow{\mathrm{r}}))^{2} \equiv 0 \quad \longrightarrow \begin{gathered}
\text { contradiction to } \\
\mathrm{u}(\overrightarrow{\mathrm{r}}) \neq \text { constant }
\end{gathered}
$$

$$
\begin{aligned}
& \int \mathrm{dr}^{3} \mathrm{p}_{\mathrm{o}}(\overrightarrow{\mathrm{r}})(\overrightarrow{\mathrm{V}} \mathrm{u}(\overrightarrow{\mathrm{r}}))^{2} \\
& =-\int \operatorname{dr}^{3} u(\vec{r}) \operatorname{div}[\underbrace{\rho_{o}(\vec{r}) \vec{\nabla} u(\vec{r})}_{0}]+\underbrace{\oint \rho_{o}(\vec{r}) u(\vec{r}) \vec{\nabla} u(\vec{r})}_{0} \cdot d \vec{S}=0
\end{aligned}
$$

Thanks !

