Tutorial on TDDFT: Part 2

E. K. U. GROSS Freie Universität Berlin

www: http://users.physik.fu-berlin.de/~ag-gross

Non-perturbative solution of full TDSE required

Weak laser $(v_{laser}(t) \ll v_{en})$:Calculate1. Linear density response $\rho_1(r t)$

2. Dynamical polarizability $\alpha(\omega) = -\frac{e}{E} \int z \rho_1(\vec{r}, \omega) d^3 r$

3. Photo-absorption cross section

$$\sigma(\omega) = -\frac{4\pi\omega}{c} \operatorname{Im} \alpha$$

Photo-absorption in weak lasers

No absorption if ω < lowest excitation energy

Time-dependent density-functional formalism

E. Runge, E.K.U.G., PRL <u>52</u>, 997 (1984)

Basic 1-1 correspondence:

 $v(r t) \xleftarrow{1-1} \rho(r t)$ The time-dependent density determines uniquely the time-dependent external potential and hence all physical observables for fixed initial state.

KS theorem:

The time-dependent density of the <u>interacting</u> system of interest can be calculated as density

$$\rho(\mathbf{r} \mathbf{t}) = \sum_{j=1}^{N} \left| \varphi_{j}(\mathbf{r} \mathbf{t}) \right|^{2}$$

of an auxiliary non-interacting (KS) system

$$i\hbar \frac{\partial}{\partial t} \varphi_{j}(rt) = \left(-\frac{\hbar^{2} \nabla^{2}}{2m} + v_{s}[\rho](rt)\right) \varphi_{j}(rt)$$

with the local potential

$$\overline{v_{S}[\rho(r't')](rt)} = v(rt) + \int d^{3}r' \frac{\rho(r't)}{|r-r'|} + v_{xc}[\rho(r't')](rt)$$

Simplest possible approximation for $v_{xc}[\rho](\vec{r}t)$

Adiabatic Local Density Approximation (ALDA)

$$v_{xc}^{ALDA} \left(\vec{r} t \right) := v_{xc,stat}^{hom} \left(n \right) |_{n=\rho(\vec{r} t)}$$

 $V_{xc,stat}^{hom}$ = xc potential of static homogeneous e-gas

Approximation with correct asymptotic -1/r behavior: time-dependent optimized effective potential (TDOEP)

C. A. Ullrich, U. Gossmann, E.K.U.G., PRL <u>74</u>, 872 (1995)

LINEAR RESPONSE THEORY

t = t₀ : Interacting system in ground state of potential v₀(r) with density $\rho_0(r)$ t > t₀ : Switch on perturbation v₁(r t) (with v₁(r t₀)=0). Density: $\rho(r t) = \rho_0(r) + \delta\rho(r t)$

Consider functional $\rho[v](r t)$ defined by solution of interacting TDSE

Functional Taylor expansion of $\rho[v]$ around v_o :

$$\begin{split} \rho[\mathbf{v}](\mathbf{r} t) &= \rho[\mathbf{v}_0 + \mathbf{v}_1](\mathbf{r} t) & \longrightarrow \rho_o(\mathbf{r}) \\ &= \rho[\mathbf{v}_0](\mathbf{r} t) & \longrightarrow \rho_o(\mathbf{r}) \\ &+ \int \frac{\delta \rho[\mathbf{v}](\mathbf{r} t)}{\delta \mathbf{v} (\mathbf{r}' t')} \Big|_{\mathbf{v}_0} \mathbf{v}_1(\mathbf{r}' t') d^3 \mathbf{r}' dt' & \longrightarrow \rho_1(\mathbf{r} t) \\ &+ \frac{1}{2} \int \int \frac{\delta^2 \rho[\mathbf{v}](\mathbf{r} t)}{\delta \mathbf{v} (\mathbf{r}' t') \delta \mathbf{v} (\mathbf{r}'' t'')} \Big|_{\mathbf{v}_0} \mathbf{v}_1(\mathbf{r}', t') \mathbf{v}_1(\mathbf{r}'', t'') d^3 \mathbf{r}' d^3 \mathbf{r}'' dt' dt'' & \longrightarrow \rho_2(\mathbf{r} t) \\ &\vdots \end{split}$$

 $\rho_1(\mathbf{r},\mathbf{t})$ = linear density response of interacting system

 $\chi(\mathbf{r} t, \mathbf{r}' t') \coloneqq \frac{\delta \rho[\mathbf{v}](\mathbf{r} t)}{\delta \mathbf{v}(\mathbf{r}' t')}\Big|_{\mathbf{v}_0} = \frac{\text{density-density response function of interacting system}}{\delta \mathbf{v}(\mathbf{r}' t')}$

Analogous function $\rho_{s}[v_{s}](r t)$ for <u>non</u>-interacting system

$$\rho_{S}[v_{S}](r t) = \rho_{S}[v_{S,0} + v_{S,1}](r t) = \rho_{S}[v_{S,0}](r t) + \int \frac{\delta \rho_{S}[v_{S}](r t)}{\delta v_{S}(r' t')} \bigg|_{v_{S,0}} v_{S,1}(r' t') d^{3}r' dt' + \cdots$$

 $\chi_{S}(\mathbf{r} \mathbf{t}, \mathbf{r}' \mathbf{t}') \coloneqq \frac{\delta \rho_{S}[\mathbf{v}_{S}](\mathbf{r} \mathbf{t})}{\delta \mathbf{v}_{S}(\mathbf{r}' \mathbf{t}')} \bigg|_{\mathbf{v}_{S0}} = \frac{\text{density-density response function of}}{\underline{non}-\text{interacting system}}$

<u>GOAL</u>: Find a way to calculate $\rho_1(r t)$ without explicitly evaluating $\chi(r t, r't')$ of the <u>interacting</u> system

starting point: Definition of xc potential

$$\mathbf{v}_{xc}[\rho](\mathbf{r} t) \coloneqq \mathbf{v}_{S}[\rho](\mathbf{r} t) - \mathbf{v}_{ext}[\rho](\mathbf{r} t) - \mathbf{v}_{H}[\rho](\mathbf{r} t)$$

- **Notes**:
- v_{xc} is well-defined through non-interacting/ interacting 1-1 mapping.
 - $v_{S}[\rho]$ depends on initial determinant Φ_{0} .
 - $v_{ext}[\rho]$ depends on initial many-body state Ψ_0 .

⇒ In general, $v_{xc} = v_{xc} [\rho, \Phi_0, \Psi_0]$ only if system is initially in <u>ground-state</u> then, via HK, Φ_0 and Ψ_0 are determined by ρ_0 and v_{xc} depends on ρ alone.

$$\frac{\delta v_{xc}[\rho](r t)}{\delta \rho(r' t')}\bigg|_{\rho_0} = \left.\frac{\delta v_s[\rho](r t)}{\delta \rho(r' t')}\bigg|_{\rho_0} - \left.\frac{\delta v_{ext}[\rho](r t)}{\delta \rho(r' t')}\bigg|_{\rho_0} - \left.\frac{\delta(t-t')}{|r-r'|}\right|_{\rho_0}$$

$$f_{xc} + W_C = \chi_S^{-1} - \chi^{-1}$$

$$\chi_{\mathbf{S}} \bullet \left| \mathbf{f}_{\mathbf{x}\mathbf{c}} + \mathbf{W}_{\mathbf{C}} = \chi_{\mathbf{S}}^{-1} - \chi^{-1} \right| \bullet \chi$$

$$\chi_{\mathbf{S}} \bullet \left| \mathbf{f}_{\mathbf{x}\mathbf{c}} + \mathbf{W}_{\mathbf{C}} = \chi_{\mathbf{S}}^{-1} - \chi^{-1} \right| \bullet \chi$$

$$\chi_{\rm S} (f_{\rm xc} + W_{\rm C}) \chi = \chi - \chi_{\rm S}$$

$$\chi = \chi_{\rm S} + \chi_{\rm S} \big(W_{\rm C} + f_{\rm xc} \big) \chi$$

Act with this operator equation on arbitrary $v_1(r t)$ and use $\chi v_1 = \rho_1$:

$$\rho_{1}(\mathbf{r} t) = \int d^{3}\mathbf{r}' dt' \chi_{s}(\mathbf{r} t, \mathbf{r}' t') \left[\mathbf{v}_{1}(\mathbf{r} t) + \int d^{3}\mathbf{r}'' dt'' \{ \mathbf{W}_{C}(\mathbf{r}' t', \mathbf{r}'' t'') + \mathbf{f}_{xc}(\mathbf{r}' t', \mathbf{r}'' t'') \} \rho_{1}(\mathbf{r}'' t'') \right]$$

• Exact integral equation for $\rho_1(r t)$, to be solved iteratively

• Need approximation for
$$f_{xc}(r't', r''t'') = \frac{\delta v_{xc}[\rho](r't')}{\delta \rho(r''t'')}\Big|_{\rho_0}$$

(either for f_{xc} directly or for v_{xc})

Total photoabsorption cross section of the Xe atom versus photon energy in the vicinity of the 4d threshold.

Solid line: self-consistent time-dependent KS calculation [A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980)]; crosses: experimental data [R. Haensel, G. Keitel, P. Schreiber, and C. Kunz, Phys. Rev. 188, 1375 (1969)].

Standard linear response formalism

$H(t_0) = \text{full static Hamiltonian at } t_0$ $H(t_0)|m\rangle = E_m|m\rangle \quad \leftarrow \text{ exact many-body eigenfunctions}$ and energies of system

full response function

$$\chi(\mathbf{r},\mathbf{r}';\omega) = \lim_{\eta \to 0^+} \sum_{\mathbf{m}} \left(\frac{\langle 0|\hat{\rho}(\mathbf{r})|\mathbf{m}\rangle\langle \mathbf{m}|\hat{\rho}(\mathbf{r})|0\rangle}{\omega - (\mathbf{E}_{\mathbf{m}} - \mathbf{E}_{\mathbf{0}}) + i\eta} - \frac{\langle 0|\hat{\rho}(\mathbf{r}')|\mathbf{m}\rangle\langle \mathbf{m}|\hat{\rho}(\mathbf{r}')|0\rangle}{\omega + (\mathbf{E}_{\mathbf{m}} - \mathbf{E}_{\mathbf{0}}) + i\eta} \right)$$

 $\Rightarrow \text{The exact linear density response} \\ \rho_1(\omega) = \hat{\chi}(\omega) v_1(\omega)$

has poles at the exact excitation energies $\Omega = E_m - E_0$

Discrete excitation energies from TDDFT

<u>Goal</u>: Use exact TDDFT representation of linear density response to determine the poles of $\rho_1(\omega)$:

$$\rho_1(\omega) = \hat{\chi}_{s}(\omega) \left(v_1(\omega) + \hat{W}_{c} \rho_1(\omega) + \hat{f}_{xc}(\omega) \rho_1(\omega) \right)$$

"" denotes integral operator, e.g. $\hat{f}_{xc}\rho_1 \equiv \int f_{xc}(\vec{r}, \vec{r}')\rho_1(\vec{r}')d^3r'$

where
$$\hat{\chi}_{s}(\vec{r},\vec{r}';\omega) = \sum_{j,k} \frac{M_{jk}(\vec{r},\vec{r}')}{\omega - (\varepsilon_{j} - \varepsilon_{k}) + i\eta}$$

with $M_{jk}(\vec{r},\vec{r}') = (f_{k} - f_{j})\phi_{j}(\vec{r})\phi_{j}^{*}(\vec{r}')\phi_{k}(\vec{r}')\phi_{k}^{*}(\vec{r})$
 $f_{m} = \begin{cases} 1 \text{ if } \phi_{m} \text{ is occupied in KS ground state} \\ 0 \text{ if } \phi_{m} \text{ is unoccupied in KS ground state} \end{cases}$

 $\varepsilon_j - \varepsilon_k$ KS excitation energy

$$\left(\hat{\mathbf{l}} - \hat{\boldsymbol{\chi}}_{\mathrm{S}}(\boldsymbol{\omega}) \left[\hat{W}_{\mathrm{C}} + \hat{f}_{\mathrm{xc}}(\boldsymbol{\omega}) \right] \right) \boldsymbol{\rho}_{1}(\boldsymbol{\omega}) = \hat{\boldsymbol{\chi}}_{\mathrm{S}}(\boldsymbol{\omega}) \mathbf{v}_{1}(\boldsymbol{\omega})$$

 $\rho_1(\omega) \to \infty$ for $\omega \to \Omega$ (exact excitation energy) but right-hand side remains finite for $\omega \to \Omega$

hence
$$(\hat{l} - \hat{\chi}_{S}(\omega) [\hat{W}_{C} + \hat{f}_{xc}(\omega)]) \xi(\omega) = \lambda(\omega)\xi(\omega)$$

 $\lambda(\omega) \to 0 \text{ for } \omega \to \Omega$

This condition rigorously determines the exact excitation energies, i.e.,

$$\left(\hat{l} - \hat{\chi}_{s}(\Omega) \left[\hat{W}_{c} + \hat{f}_{xc}(\Omega)\right]\right) \xi(\Omega) = 0$$

This leads to the (non-linear) eigenvalue equation

(See T. Grabo, M. Petersilka, E. K. U. G., J. Mol. Struc. (Theochem) 501, 353 (2000))

$$\sum_{q'} \left(A_{qq'}(\Omega) + \omega_q \delta_{qq'} \right) \beta_{q'} = \Omega \beta_q$$

where

$$\begin{aligned} A_{qq'} &= \alpha_{q'} \int d^3 r \int d^3 r' \Phi_q \left(r \right) \left(\frac{1}{|r - r'|} + f_{xc} \left(r, r', \Omega \right) \right) \Phi_{q'} \left(r' \right) \\ q &= (j, a) \text{ double index} \qquad \alpha_q = f_a - f_j \\ \Phi_q \left(r \right) &= \phi_a^* \left(r \right) \phi_j \left(r \right) \qquad \omega_q = \varepsilon_a - \varepsilon_j \end{aligned}$$

Atom	Experimental Excitation Energies ¹ S→ ¹ P (in Ry)	KS energy differences ∆∈ _{KS} (Ry)	$\Delta \in_{\mathrm{KS}} + \mathrm{K}$
Be	0.388	0.259	0.391
Mg	0.319	0.234	0.327
Ca	0.216	0.157	0.234
Zn	0.426	0.315	0.423
Sr	0.198	0.141	0.210
Cd	0.398	0.269	0.391

from: M. Petersilka, U. J. Gossmann, E.K.U.G., PRL <u>76</u>, 1212 (1996)

 $\Delta \mathbf{E} = \underbrace{\Delta \boldsymbol{\epsilon}_{\mathrm{KS}}}_{\boldsymbol{\epsilon}_{\mathrm{j}} - \boldsymbol{\epsilon}_{\mathrm{k}}} + \mathbf{K}$

$$K = \int d^3r \int d^3r' \phi_j(r) \phi_j^*(r') \phi_k(r') \phi_k^*(r) \left(\frac{1}{|r-r'|} + f_{xc}(r,r')\right)$$

Excitation energies of CO molecule

State		Ω_{expt}	KS-transition	$\Delta \in_{\mathrm{KS}}$	$\Delta \in_{\mathrm{KS}} + \mathrm{K}$
A	1Π	0.3127	5Σ →2 Π	0.2523	0.3267
a	³ ∏	0.2323			0.2238
Ι	$1\Sigma^{-1}$	0.3631	1 ∏→2 ∏	0.3626	0.3626
D	$^{1}\Delta$	0.3759			0.3812
a'	$^{3}\Sigma^{+}$	0.3127			0.3181
e	³ Σ ⁻	0.3631			0.3626
d	$^{3}\Delta$	0.3440			0.3404

T. Grabo, M. Petersilka and E.K.U. Gross, J. Mol. Struct. (Theochem) 501, 353 (2000) approximations made: v_{xc}^{LDA} and f_{xc}^{ALDA}

M. Petersilka, U.J. Gossmann and E.K.U. Gross, in: Electronic Density Functional Theory: Recent Progress and New Directions, J.F. Dobson, G. Vignale, M.P. Das, ed(s), (Plenum, New York, 1998), p 177 - 197.

Failures of ALDA in the linear response regime

• H₂ dissociation is incorrect:

$$E(^{1}\Sigma_{u}^{+}) - E(^{1}\Sigma_{g}^{+}) \xrightarrow[R \to \infty]{} 0 \text{ (in ALDA)}$$

(see: Gritsenko, van Gisbergen, Görling, Baerends, J. Chem. Phys. 113, 8478 (2000))

- response of long chains strongly overestimated
 (see: Champagne et al., J. Chem. Phys. <u>109</u>, 10489 (1998) and <u>110</u>, 11664 (1999))
- in periodic solids, $f_{xc}^{ALDA}(q, \omega, \rho) = c(\rho)$ whereas, for insulators, $f_{xc}^{exact} \xrightarrow[q \to 0]{} 1/q^2$ divergent.
- charge-transfer excitations not properly described (see: Dreuw et al., J. Chem. Phys. <u>119</u>, 2943 (2003))

In the ALDA, which problems come from ADIABATIC approximation, and which come from LDA?

→ Investigate EXACT ADIABATIC approximation

E(t) ramped over 27 a.u. (0.65 fs) to the value E=0.14 a.u. and then kept constant

M. Thiele, E.K.U.G., S. Kuemmel, PRL 100, 153004 (2008)

4-cycle pulse with λ = 780 nm, I₁ = 4x10¹⁴W/cm², I₂=7x10¹⁴W/cm²

M. Thiele, E.K.U.G., S. Kuemmel, PRL 100, 153004 (2008)