## Tutorial on TDDFT: Part 3



E. K. U. GROSS<br>Freie Universität Berlin

www: http://users.physik.fu-berlin.de/~ag-gross

## Reduced Density Matrix Functional Theory

One-body reduced density matrix (1-RDM)

- for integer particle number N :
$\gamma\left(\vec{r}, \vec{r}^{\prime}\right)=N \cdot \int \ldots \int \Psi^{*}\left(\vec{r}, \overrightarrow{\mathrm{x}}_{2}, \ldots \overrightarrow{\mathrm{x}}_{\mathrm{N}}\right) \Psi\left(\overrightarrow{\mathrm{r}}^{\prime}, \overrightarrow{\mathrm{x}}_{2}, \ldots \overrightarrow{\mathrm{x}}_{\mathrm{N}}\right) \mathrm{d}^{3} \mathrm{x}_{2} \ldots \mathrm{~d}^{3} \mathrm{x}_{\mathrm{N}}$

Diagonalization yields the natural orbitals $\varphi_{j}(\vec{r})$ and their occupation numbers $n_{j}$ :

$$
\int \gamma\left(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{r}}^{\prime}\right) \varphi_{\mathrm{j}}\left(\overrightarrow{\mathrm{r}}^{\prime}\right) \mathrm{d}^{3} \mathrm{r}^{\prime}=\mathrm{n}_{\mathrm{j}} \varphi_{\mathrm{j}}(\overrightarrow{\mathrm{r}})
$$

## Central Theorem by Gilbert (1975): There is a rigorous 1-1 correspondence $\Psi_{\mathrm{gs}}\left(\mathrm{r}_{1}, \mathrm{r}_{2} \ldots, \mathrm{r}_{\mathrm{N}}\right) \longleftrightarrow \gamma\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$

- Total energy is a unique functional $\mathrm{E}[\gamma]$ of the $1-\mathrm{RDM}$
- Ground-state energy can be calculated by minimizing $\mathrm{E}[\gamma]$

Note: For given $\gamma\left(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{r}}^{\prime}\right)$ the $\left\{\varphi_{\mathrm{j}}(\overrightarrow{\mathrm{r}}), \mathrm{n}_{\mathrm{j}}\right\}$ follow from diagonalization, i.e. $\mathrm{n}_{\mathrm{j}}=\mathrm{n}_{\mathrm{j}}[\gamma], \quad \varphi_{\mathrm{j}}=\varphi_{\mathrm{j}}[\gamma]$

Consequence: Any explicit functional $E\left[n_{j}, \varphi_{j}(\overrightarrow{\mathrm{r}})\right]$ is an implicit functional of $\gamma$

## Functional Minimization

## Constraints

$\star \sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}=\mathrm{N}$, where N is the number of electrons.
$\star \int \phi_{\mathrm{i}}^{*}(\mathbf{r}) \phi_{\mathrm{j}}(\mathbf{r}) \mathrm{d}^{3} \mathrm{r}=\delta_{\mathrm{ij}}$, orthonormality constraint.

* $0 \leq \mathrm{n}_{\mathrm{i}} \leq 1$, N-representability constraint, guarantees that $\gamma$ comes from a many-body wavefunction.


## Functional Minimization

## Constraints

$\star \sum_{i} n_{i}=N$, where $N$ is the number of electrons.
$\star \int \phi_{\mathrm{i}}^{*}(\mathbf{r}) \phi_{\mathrm{j}}(\mathbf{r}) \mathrm{d}^{3} \mathrm{r}=\delta_{\mathrm{ij}}$, orthonormality constraint.

* $0 \leq \mathrm{n}_{\mathrm{i}} \leq 1$, N-representability constraint, guarantees that $\gamma$ comes from a many-body wavefunction.
- The first two are enforced through Lagrange multipliers. The quantity to minimize becomes:

$$
\mathcal{F}=\mathrm{E}_{\mathrm{tot}}-\mu\left(\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}-\mathrm{N}\right)-\sum_{\mathrm{ij}} \varepsilon_{\mathrm{ij}}\left(\left\langle\phi_{\mathrm{i}} \mid \phi_{\mathrm{j}}\right\rangle-\delta_{\mathrm{ij}}\right)
$$

$\mu$ : chemical potential.


N-representability condition $0 \leq \mathrm{n}_{\mathrm{j}} \leq 1$ generally leads to border minimum.
i.e. one can still minimize but $\frac{\partial \mathrm{F}}{\partial \mathrm{n}_{\mathrm{j}}} \neq 0$ at minimum

Total-energy functional:

$$
\mathrm{E}_{\text {tot }}[\gamma]=\mathrm{E}_{\text {kin }}[\gamma]+\int \mathrm{v}_{\text {ext }}(\overrightarrow{\mathrm{r}}) \gamma(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{r}}) \mathrm{d}^{3} \mathrm{r}+\mathrm{E}_{\mathrm{H}}[\gamma]+\mathrm{E}_{\mathrm{xc}}[\gamma]
$$

Three major differences to DFT

- Kinetic-energy functional is known exactly

$$
\begin{aligned}
\mathrm{E}_{\mathrm{kin}} & =\int \mathrm{d}^{3} \mathrm{r} \int \mathrm{~d}^{3} \mathrm{r}^{\prime} \delta\left(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{r}}^{\prime}\right)\left(-\frac{\nabla^{2}}{2}\right) \gamma\left(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{r}}^{\prime}\right) \\
& =\sum_{\mathrm{j}=1}^{\infty} \mathrm{n}_{\mathrm{j}}\left\langle\varphi_{\mathrm{j}}\right|-\frac{\nabla^{2}}{2}\left|\varphi_{\mathrm{j}}\right\rangle
\end{aligned}
$$

Hence $\mathrm{E}_{\mathrm{xc}}[\gamma]$ does not contain any kinetic contributions, and therefore there is no coupling-constant formula.

- There exists no variational equation $\frac{\delta \mathrm{F}[\gamma]}{\delta \gamma\left(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{r}}^{\prime}\right)}=0$
$\Rightarrow \frac{\delta F}{\delta \gamma\left(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{r}}^{\prime}\right)}=\sum_{\mathrm{j}} \underbrace{\int \frac{\delta \mathrm{F}}{\delta \varphi_{\mathrm{j}}^{*}(\overrightarrow{\mathrm{x}})}}_{0} \frac{\delta \varphi_{\mathrm{j}}^{*}(\overrightarrow{\mathrm{x}})}{\delta \gamma\left(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{r}}^{\prime}\right)} \mathrm{d}^{3} \mathrm{x}+$ c.c. $+\sum_{\mathrm{j}} \frac{\partial \mathrm{F}}{\partial \mathrm{n}_{\mathrm{j}}} \frac{\delta \mathrm{n}_{\mathrm{j}}}{\delta \gamma\left(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{r}}^{\prime}\right)}$

$$
=\sum_{\mathrm{j}} \frac{\partial \mathrm{~F}}{\partial \mathrm{n}_{\mathrm{j}}} \varphi_{\mathrm{j}}^{*}(\overrightarrow{\mathrm{r}}) \varphi_{\mathrm{j}}\left(\overrightarrow{\mathrm{r}}^{\prime}\right) \neq 0
$$

- There exists no Kohn-Sham system reproducing the interacting $\gamma \overline{\left(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{r}}^{\prime}\right)}$


## Approximations for xc functional

$$
E_{X C}=-\frac{1}{2} \sum_{i, j} f\left(n_{i}, n_{j}\right) \int d^{3} \mathbf{r} \int d^{3} \mathbf{r}^{\prime} \frac{\varphi_{i}^{*}(\mathbf{r}) \varphi_{j}(\mathbf{r}) \varphi_{j}^{*}\left(\mathbf{r}^{\prime}\right) \varphi_{i}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

- Hartree-Fock: $f\left(n_{i}, n_{j}\right)=n_{i} n_{j}$.
- Müller functional [1,2]: $f\left(n_{i}, n_{j}\right)=\sqrt{n_{i} n_{j}}$.
- Gödecker - Umrigar [3]: $f\left(n_{i}, n_{j}\right)=\sqrt{n_{i} n_{j}}$ explicit removal of self-interaction terms.
[1] A. M. K. Müller, Phys. Lett. A 105, 446 (1984).
[2] Buijse, Baerends, Mol. Phys. 100, 401 (2002).
[3] Gödecker, Umrigar, Phys. Rev. Lett. 81, 866 (1998).


## The BBC functionals

- Hierarchy of corrections to the Müller functional
- key idea: Distinction between strongly and weakly occupied orbitals


## The BBC functionals

- Hierarchy of corrections to the Müller functional
- key idea: Distinction between strongly and weakly occupied orbitals
- BBC1: Sign change of $f$, if both orbitals are weakly occupied:

$$
f\left(n_{i}, n_{j}\right)=\left\{\begin{array}{l}
-\sqrt{n_{i} n_{j}}, \quad i, j \text { weakly occupied, } \\
\sqrt{n_{i} n_{j}}, \text { otherwise. }
\end{array}\right.
$$

- BBC2: Additionally, omission the square root if both orbitals are strongly occupied:

$$
f\left(n_{i}, n_{j}\right)=\left\{\begin{aligned}
-\sqrt{n_{i} n_{j}}, & \text { for } i, j \text { weakly occupied } \\
n_{i} n_{j}, & \text { for } i, j \text { strongly occupied } \\
\sqrt{n_{i} n_{j}}, & \text { otherwise. }
\end{aligned}\right.
$$

- BBC3: Inclusion of anti-bonding in the list of strongly occupied orbitals, unless it interacts with bonding. Removal of SI terms.


## Application to stretched $\mathrm{H}_{2}$



## Application to stretched $\mathrm{H}_{2}$



* G2/97 test set of molecules [1]: 148 neutral molecules including 29 radicals, 35 non-hydrogen systems, 22 hydrocarbons, 47 substituted hydrocarbons and 15 inorganic hydrides.
* Cartesian 6-31G* Gaussian basis-set




Error in the correlation energies calculated with a variety of methods. Reference energies ( $E_{c}^{\text {ref }}$ ) were obtained with $\operatorname{CCSD}(T)$. The values in the first, second and last column are in a.u.

| Method | $\bar{\Delta}$ | $\Delta_{\text {max }}$ | $\bar{\delta}$ | $\delta_{\max }$ | $\overline{\bar{\delta}}_{\mathrm{e}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Müller | 0.55 | $1.23\left(\mathrm{C}_{2} \mathrm{Cl}_{4}\right)$ | 135.7 | 438.3 ( $\mathrm{Na}_{2}$ ) | 0.019 |
| GU | 0.26 | $0.79\left(\mathrm{C}_{2} \mathrm{Cl}_{4}\right)$ | 51.63 | 114.2 ( $\mathrm{Si}_{2}$ ) | 0.0072 |
| CGA | 0.22 | $0.55\left(\mathrm{C}_{2} \mathrm{Cl}_{4}\right)$ | 69.11 | $331.9\left(\mathrm{Na}_{2}\right)$ | 0.0077 |
| BBC1 | 0.29 | $0.75\left(\mathrm{C}_{2} \mathrm{Cl}_{4}\right)$ | 69.91 | $159.1\left(\mathrm{Na}_{2}\right)$ | 0.0098 |
| BBC2 | 0.18 | $0.50\left(\mathrm{C}_{2} \mathrm{Cl}_{4}\right)$ | 45.02 | 125.0 ( $\mathrm{Na}_{2}$ ) | 0.0058 |
| BBC3 | 0.068 | $0.27\left(\mathrm{C}_{2} \mathrm{Cl}_{4}\right)$ | 18.37 | $50.8\left(\mathrm{SiH}_{2}\right)$ | 0.0017 |
| MP2 | 0.039 | $0.074\left(\mathrm{C}_{2} \mathrm{Cl}_{4}\right)$ | 11.86 | 35.7 ( $\mathrm{Li}_{2}$ ) | 0.0015 |
| B3LYP | 0.75 | 2.72 ( $\mathbf{S i C l}_{4}$ ) | 305.0 | $2803.7\left(\mathrm{Li}_{2}\right)$ | 0.022 |

## The real challenge of Condensed-Matter

 theory: Ab-initio description Mott insulators
## Towards strongly correlated systems

Mott insulators in paramagnetic phase
prototype: 1D chain of hydrogen atoms

## Towards strongly correlated systems

Mott insulators in paramagnetic phase prototype: 1D chain of hydrogen atoms

DFT: half-filled band

## Towards strongly correlated systems

Mott insulators in paramagnetic phase prototype: 1D chain of hydrogen atoms

DFT: half-filled band
$\Rightarrow$ KS system is metallic (independent of xc functional)

## Towards strongly correlated systems

Mott insulators in paramagnetic phase prototype: 1D chain of hydrogen atoms

DFT: half-filled band
$\Rightarrow$ KS system is metallic (independent of xc functional)
formally no problem:
Totally unnatural

$$
\mathrm{E}_{\text {gap }}=\underbrace{\mathrm{E}_{\text {gap }}^{\mathrm{KS}}}_{0}+\Delta_{\mathrm{xc}}
$$ description

## Towards strongly correlated systems

Mott insulators in paramagnetic phase prototype: 1D chain of hydrogen atoms

DFT: half-filled band
$\Rightarrow$ KS system is metallic (independent of xc functional)
formally no problem:
Totally unnatural

$$
\mathrm{E}_{\text {gap }}=\underbrace{\mathrm{E}_{\text {gap }}^{\mathrm{KS}}}_{0}+\Delta_{\mathrm{xc}}
$$ description

MBPT: Dyson equation for QP amplitudes: half-filled band

## Towards strongly correlated systems

Mott insulators in paramagnetic phase prototype: 1D chain of hydrogen atoms

DFT: half-filled band
$\Rightarrow$ KS system is metallic (independent of xc functional)
formally no problem:
Totally unnatural

$$
\mathrm{E}_{\text {gap }}=\underbrace{\mathrm{E}_{\text {gap }}^{\mathrm{KS}}}_{0}+\Delta_{\mathrm{xc}}
$$ description

MBPT: Dyson equation for QP amplitudes: half-filled band
QP band structure is metallic

## Towards strongly correlated systems

Mott insulators in paramagnetic phase prototype: 1D chain of hydrogen atoms

DFT: half-filled band
$\Rightarrow$ KS system is metallic (independent of xc functional)
formally no problem:
Totally unnatural

$$
\mathrm{E}_{\text {gap }}=\underbrace{\mathrm{E}_{\text {gap }}^{\mathrm{KS}}}_{0}+\Delta_{\mathrm{xc}}
$$ description

MBPT: Dyson equation for QP amplitudes: half-filled band
QP band structure is metallic
To obtain gap: $\Sigma \rightarrow \infty$ for $\omega \rightarrow \mathrm{E}_{\mathrm{F}}$

## Fundamental gap of semiconductors and insulators

S. Sharma, J.K. Dewhurst, N.N. Lathiotakis and E.K.U.G., Phys. Rev. B 78 (Rapid Comm.), 201103 (2008)


## How about time-dependent RDMFT?

$$
\begin{aligned}
& \mathrm{v}(\mathrm{r}, \mathrm{t}) \underset{\mathrm{TDSE}}{\overrightarrow{\mathrm{TDS}}} \Psi\left(\mathrm{r}_{1} \ldots . \mathrm{r}_{\mathrm{N}}, \mathrm{t}\right) \rightarrow \gamma\left(\mathrm{r}, \mathrm{r}^{\prime}, \mathrm{t}\right) \\
& \gamma\left(\mathrm{r}, \mathrm{r}^{\prime}, \mathrm{t} \mathrm{t}_{\substack{\text { diagonal } \\
\mathrm{r}=\mathrm{r}^{\prime}}}^{\rightarrow(\mathrm{r}, \mathrm{t})} \underset{\text { TDDFT }}{\overrightarrow{\mathrm{TD}}(\mathrm{r}, \mathrm{t})}\right.
\end{aligned}
$$

Hence, for fixed initial state, there is a 1-1 correspondence between $\gamma\left(\mathrm{r}, \mathrm{r}^{\prime}, \mathrm{t}\right)$ and $\mathrm{v}(\mathrm{r}, \mathrm{t})$
K. Pernal, O. Gritsenko, and E. J. Baerends, Phys Rev A 75, 012506 (2007)

## How about time-dependent RDMFT?

$$
\begin{aligned}
& \mathrm{v}(\mathrm{r}, \mathrm{t}) \underset{\mathrm{TDSE}}{\overrightarrow{\text { DDS }}} \Psi\left(\mathrm{r}_{1} \ldots . \mathrm{r}_{\mathrm{N}}, \mathrm{t}\right) \rightarrow \gamma\left(\mathrm{r}, \mathrm{r}^{\prime}, \mathrm{t}\right) \\
& \gamma\left(\mathrm{r}, \mathrm{r}^{\prime}, \mathrm{t} \mathrm{t}_{\substack{\text { diagonal } \\
\mathrm{r}=\mathrm{r}^{\prime}}}^{\vec{m}} \rho(\mathrm{r}, \mathrm{t}) \underset{\text { TDDFT }}{\overrightarrow{\mathrm{V}}(\mathrm{r}, \mathrm{t})}\right.
\end{aligned}
$$

Hence, for fixed initial state, there is a 1-1 correspondence between $\gamma\left(\mathrm{r}, \mathrm{r}^{\prime}, \mathrm{t}\right)$ and $\mathrm{v}(\mathrm{r}, \mathrm{t})$
K. Pernal, O. Gritsenko, and E. J. Baerends, Phys Rev A 75, 012506 (2007)

Note: There exists no 1-1 correspondence between $\gamma(\mathrm{r}, \mathrm{r}, \mathrm{t})$ and non-local potentials $v\left(r, r^{\prime}, t\right)$ (integral operators)

## How about xc functionals in time-dependent RDMFT?

Use the known functionals of ground-state RDMFT as adiabatic approximation, i.e. make $n_{k}$ and $\varphi_{k}(r)$ in the Mueller-type expressions time-dependent.

* Upon time-propagation, all these adiabatic RDMFT functionals lead to time-independent occupation numbers
H. Appel, E.K.U.G. arXiv:0807.2712
e- $\mathrm{He}^{+}$scattering (with soft Coulomb potentials in 1D)
$\lambda=$ coupling constant, $\mathrm{k}_{\mathrm{o}}=0.3 \mathrm{a} . \mathrm{u}$.
H. Appel, E.K.U.G. arXiv:0807.2712



## He in 1D with

 soft Coulomb potentials, $\quad \epsilon(t)$ transition from ground state to lowest excited singlet state with optimized pulseH. Appel, E.K.U.G.
arXiv:0807.2712


Thanks !


Lecture Notes in Physics 706 (Springer, August 2006)

