Attosecond measurements without
attosecond pulses
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Electric field

Phase-stabilized pulses

Time, fs

Ap=3° per 107 shots
Al=3% per 107 shots
Shot-to-shot stability is few asec

This constitutes a built-in temporal ruler of incredible
precision. We are trying to find a way to use it



Making asec XUV pulses
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Temporal stability of asec XUV pulses is much better than its duration:
50-100 asec stability

In principle, we have better time resolution than the XUV pulse
duration. Can we use it? How, when, what for?



Examples for attosecond spectroscopy

Two-electron dynamics induced by an XUV photon

Atom + 1 XUV = Atom 2+ + 2e-
Removal of the first electron triggers the second

Processes:

- Auger,

- Coster-Kronig,
- Shake-off, etc

Effects:

- non-exponential decay due to non-flat continuum,
- Interaction of many autoionizing states,

- Core rearrangements

- Zeno and Anti-Zeno stages of decay.



A la Carte

. Attosecond metrology for 1 electron:

FROG
Asec streak camera

SPIDER
SPIDER-like
streak-camera for long XUV

. Down to 0.01 fsec time resolution:

Correlated Atto-Second
Two-electron Optical
Reconstruction




FROG

(Frequency-Resolved Optical Gating)

S(w,7) = j E(t)G(t—7)e " dt

Spectrogram




Attosecond streak camera for one electron
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Attosecond streak camera for one electron
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Energy, eV

Attosecond streak camera Ls o FROG
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Attosecond streak camera Ls o FROG
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SPIDER

SPectral shearing Interfereometry for Direct
Electric field Reconstruction
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Attosecond SPIDER

Finalelectron
energy, W

Streaking laser field, E (1)
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Streak-Camera for LONG XUV: SPIDER-like
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A la Carte

. Attosecond metrology for 1 electron:

FROG
Asec streak camera

SPIDER
SPIDER-like
streak-camera for long XUV

CASTOR

y Adv 1.50

. Down to 0.01 fsec time resolution:

Correlated Atto-Second &
Two-electron Optical
Reconstruction




Photo-induced Auger decay

q‘ €A  “Conventional” pump-probe approach

e- Short pump — sets t=0 by removing
- the green electron
O o Attosecond streak-camera measures
XUV pum the red electron
M. Drescher et al, Nature
—

Conventional approach: Time resolution is limited by pump duration and
by time resolution of the attosecond streak-camera

We propose: “long” pump — “long” probe + correlated measurement
The process measures itself
Time resolution is limited only by statistics and pump-probe jitter



Photo-induced Auger decay
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To get dynamics of the decay, one needs
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EITHER direct time domain measurement OR the spectral phase ®(E)

» \We use spectral approach
» \We need complete (correlated) two-electron spectrum



SPIDER-like Streak-Camera for LONG XUV
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For two-electron ionization we need two-electron spectrum



A la Carte

. Down to 0.01 fsec time resolution:
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Correlated two-electron spectra
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Auger decay: the spectral amplitude
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Decay amplitude

Exuv) =Pxuv * Dayg

EXUV-EXUV(O), arb. units

How can we reconstruct the spectral phase of F(E), @47
- Reconstruct the phase of C[Ey,\,Eaygl: P(EaugExuy)
- Use CD(EAug,Exuv) =Dyyv + (DAug

The key point is to get @[Eyy,Exq]- HOW?



Measurement geometry

Detect kn, || E|_ to ensure sufficient streak by E;

Detect py,L E, and reduce field so that XUV electron is

not streaked
XUV electron 3
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Streaked correlated spectra

If there were no interference
between sidebands:

T aug=210 asec,
Tyuy=1.77 fsec
|I=101'W/cm?
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Effect of interference: individual slice

1.57 eV
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Succession of slices
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Using interference of 0, 1, and -1 sidebands, reconstruct spectral phase
OF Crietg-free [Exuv:Eaugl Slice by slice

We are using correlated two-electron distribution to reconstruct its
phase - use entanglement to reconstruct the entangled wavefunction



Example: decay after core rearrangement

Fa(t) =[1—-exp(-T't)]exp(=I',t)
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Results of Reconstruction: Frequency domain
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Results of Reconstruction: Accuracy

-XUV pulse: FWHM=1.2 fsec, 1=101° W/cm?,

- 100 asec jitter, 160 meV energy resolution of electron spectrometer, 10° total

counts
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Accuracy: 10-20 asec



Conclusions

Correlated measurements enhance temporal resolution In
pump-probe measurements

We are using correlated two-electron distribution to
reconstruct its phase-

use entanglement to reconstruct entangled
wavefunction

Time resolution comes from the fast process itself +
temporal stability of XUV relative to IR streaking field
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