Attosecond measurements without attosecond pulses

© Yury Ivanov

Phase-stabilized pulses

 $\Delta \phi = 3^{\circ}$ per 10^{7} shots $\Delta I = 3\%$ per 10^{7} shots Shot-to-shot stability is few asec

This constitutes a built-in temporal ruler of incredible precision. We are trying to find a way to use it

Making asec XUV pulses

Temporal stability of asec XUV pulses is much better than its duration: 50-100 asec stability

In principle, we have better time resolution than the XUV pulse duration. Can we use it? How, when, what for?

Examples for attosecond spectroscopy

Two-electron dynamics induced by an XUV photon

Atom + 1 XUV = Atom $^{2+}$ + 2e Removal of the first electron triggers the second

Processes:

- Auger,
- Coster-Kronig,
- Shake-off, etc

Effects:

- non-exponential decay due to non-flat continuum,
- Interaction of many autoionizing states,
- Core rearrangements
- Zeno and Anti-Zeno stages of decay.

A la Carte

- Attosecond metrology for 1 electron:
 - FROG
 - Asec streak camera

- SPIDER
- SPIDER-like streak-camera for long XUV

Down to 0.01 fsec time resolution:
 Correlated Atto-Second
 Two-electron Optical
 Reconstruction

FROG

(Frequency-Resolved Optical Gating)

$$S(\omega,\tau) = \left| \int E(t)G(t-\tau)e^{-i\omega t} dt \right|^{2}$$

Spectrum

Spectrogram

Attosecond streak camera for one electron

Attosecond streak camera for one electron

$\mathbf{k}_{\mathbf{f}} = \mathbf{k} + \mathbf{A}(\mathbf{t}_{0})$

Attosecond streak camera is a FROG

$$\sigma_{A}(v,\tau) = |a_{A}(v,\tau)|^{2} = \left| \int_{-\infty}^{\infty} \chi(v,t) G(t-\tau) e^{i(v^{2}/2)t} dt \right|^{2},$$

$$\text{XUV-} \text{ Effect of absorption amplitude} \text{ the IR}$$

Attosecond streak camera is a FROG

$$\sigma_A(v,\tau) = |a_A(v,\tau)|^2 = \left| \int_{-\infty}^{\infty} \chi(v,t) G(t-\tau) e^{i(v^2/2)t} dt \right|^2,$$

$$G(t-\tau)=e^{i\Theta(t-\tau)}.$$

$$\Theta(t) = -v \int_t^\infty A_L(t') dt' - \frac{1}{2} \int_t^\infty A_L^2(t') dt'$$

SPIDER

SPectral shearing Interfereometry for Direct Electric field Reconstruction

$$E(\omega) = |E(\omega)| e^{i\varphi(\omega)}$$

$$S(\omega, \tau) = |E(\omega) + e^{i\omega\tau} E(\omega + \Omega)|^2 =$$

$$= |E(\omega)|^2 + |E(\omega + \Omega)|^2 + |E(\omega)| |E(\omega + \Omega)| \cos(\omega\tau + \varphi(\omega + \Omega) - \varphi(\omega))$$

$$E(\omega)$$

Attosecond SPIDER

Streak-Camera for LONG XUV: SPIDER-like

A la Carte

- Attosecond metrology for 1 electron:
 - FROG
 - Asec streak camera

- SPIDER
- SPIDER-like streak-camera for long XUV

Down to 0.01 fsec time resolution:
 Correlated Atto-Second
 Two-electron Optical
 Reconstruction

Photo-induced Auger decay

"Conventional" pump-probe approach

Short pump – sets t=0 by removing the green electron

Attosecond streak-camera measures the red electron

M. Drescher et al, Nature

Conventional approach: Time resolution is limited by pump duration and by time resolution of the attosecond streak-camera

We propose: "long" pump – "long" probe + correlated measurement
The process measures itself

Time resolution is limited only by statistics and pump-probe jitter

Photo-induced Auger decay

To get dynamics of the decay, one needs EITHER direct time domain measurement OR the spectral phase $\Phi(E)$

- We use spectral approach
- We need complete (correlated) two-electron spectrum

SPIDER-like Streak-Camera for LONG XUV

For two-electron ionization we need two-electron spectrum

A la Carte

- Down to 0.01 fsec time resolution:
 - CASTOR

Correlated

Atto-Second

Two-electron

Optical

Reconstruction

Correlated two-electron spectra

$$E_{Aug} + E_{XUV} = \Omega - I_p^{++}$$

$$C \propto \tilde{E}_{X} \left[E_{XUV} + E_{Aug} - \Omega_{XUV} + I_{p}^{++} \right] \tilde{F}_{A} \left[E_{Aug} - E_{h} + I_{p}^{++} \right]$$

Auger decay: the spectral amplitude

$$C \propto \tilde{E}_{X} \left[E_{XUV} + E_{Aug} - \Omega_{XUV} + I_{p}^{++} \right] \tilde{F}_{A} \left[E_{Aug} - E_{h} + I_{p}^{++} \right]$$

Decay amplitude

How can we reconstruct the spectral phase of $F_A(E)$, Φ_{Aug} ?

- Reconstruct the phase of $C[E_{XUV}, E_{Aug}]$: $\Phi(E_{Aug}, E_{XUV})$
- Use $\Phi(E_{Aug}, E_{XUV}) = \Phi_{XUV} + \Phi_{Aug}$

The key point is to get $\Phi[E_{XUV}, E_{Aug}]$. How?

Measurement geometry

Detect $\mathbf{k}_{Aug} \parallel \mathbf{E}_{L}$ to ensure sufficient streak by \mathbf{E}_{L}

Detect $\mathbf{p}_{XUV} \perp \mathbf{E}_{L}$ and reduce field so that XUV electron is not streaked

Streaked correlated spectra

If there were no interference between sidebands:

Effect of interference: individual slice

Succession of slices

Using interference of 0, 1, and -1 sidebands, reconstruct spectral phase of $C_{\text{field-free}}$ [E_{xuv} , E_{Aug}] slice by slice

We are using correlated two-electron distribution to reconstruct its phase - use entanglement to reconstruct the entangled wavefunction

Example: decay after core rearrangement

Results of Reconstruction: Frequency domain

Results of Reconstruction: Accuracy

- -XUV pulse: FWHM=1.2 fsec, I=10¹⁰ W/cm²,
- 100 asec jitter, 160 meV energy resolution of electron spectrometer, 10⁵ total counts

Accuracy: 10-20 asec

Conclusions

Correlated measurements enhance temporal resolution in pump-probe measurements

We are using correlated two-electron distribution to reconstruct its phase-

use entanglement to reconstruct entangled wavefunction

Time resolution comes from the fast process itself + temporal stability of XUV relative to IR streaking field