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1 Variation yields a classical Hamiltonian system

Suppose that we have a system that is described by the following equations of motion,

ẋ = f(x, u, t) x ∈ Rn , u ∈ Ω ⊂ Rm , (1)

where x denotes the state vector, u the controls, and t time. We can include t in the state
vector with

ṫ = 1 .

Eq. (1) is then reduced to

ẋ = f(x, u) x ∈ Rn+1 , u ∈ Ω ⊂ Rm . (2)

The cost function for the optimization problem is typically written as a sum of two terms,

J = φ(xf ) +
∫ T

0
L(x, u)dt , (3)

where φ(xf ) denotes the terminal cost, with xf = x(T ) the state vector at final time T . The
second term in Eq. (3) corresponds to the running cost. Adding zero, J can be rewritten

J = φ(xf ) +
∫ T

0
L(x, u)dt+

∫ T

0
λT
(
f(x, u)− ẋ

)
dt

= φ(xf ) +
∫ T

0

{
L(x, u) + λT f(x, u) + (λ̇T )x

}
dt− λT (T )x(T ) + λT (0)x(0) .

The second line is obtained by integrating -
∫ T
0 λT ẋ dt by parts.

In order to search for the optimum, we vary J ,

δJ =
∂φ

∂x

∣∣∣∣
xf

δxf

+
∫ T

0

{
∂L

∂x
δx(t) +

∂L

∂u
δu(t) + λT

[
∂f

∂x
δx(t) +

∂f

∂u
δu(t)

]
+ λ̇T δx(t)

}
dt

−λT (T )δx(T ) , (4)
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where we have assumed that the initial state is fixed, δx(0) = 0, and δx(T ) = δxf . Regrouping
terms, we obtain

δJ =

[
∂φ

∂x

∣∣∣∣
xf

− λT
]
δxf (5)

+
∫ T

0

{(
∂L

∂x
+ λT

∂f

∂x

)
δx(t) +

(
∂L

∂u
+ λT

∂f

∂u

)
δu(t) + (λ̇T )δx(t)

}
dt

We are looking for an optimum of J , i.e. the variations should vanish. The variation with
respect to x(t) and xf , respectively, determine the equation of motion for the adjoint state,
λT (t), and its ’initial’ condition: The term inside the square brackets in Eq. (5) is zero if

λ(T ) =
(
∂φ

∂x

)T ∣∣∣∣
xf

,

and the terms inside the integral in Eq. (5) that are multiplied with δx(t) vanish if

λ̇ = −
(
∂L

∂x
+ λT

∂f

∂x

)T
.

We are then left with

δJ =
∫ T

0

(
∂L

∂u
+ λT

∂f

∂u

)
δu(t) dt .

We can introduce a (Hamiltonian) function

H(x, λ, u) = L(x, u) + λT f(x, u) . (6)

We then see that

λ̇ = −
(
∂H

∂x

)T
,

and the variation of J becomes

δJ =
∫ T

0

∂H

∂u
δu(t) dt .

A small variation of u can be written as

δu = −ε
(
∂H

∂u

)T
.

If u is optimal, then at least
∂H

∂u
= 0

such that δJ = 0. We then obtain the following set of 1st order necessary conditions,

ẋ = f(x, u) =
(
∂H

∂λ

)T
with x(0) (7)

λ̇ = −
(
∂H

∂x

)T
with λ(T ) =

∂φ

∂x

∣∣∣∣
xf

(8)

∂H

∂u

∣∣∣∣
(x(t),λ(t),u(t))

= 0 (9)
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This set of equations looks like a classical Hamiltonian system, where the state vector x takes
the role of the coordinates and the adjoint state λ that of the conjugate momenta.

2 The maximum principle

Let us first state Pontryagin’s maximum principle [1] before proving it: Along the optimal
trajectory, we have

u∗(t) = arg min
u

H
(
x∗(t), λ∗(t), u) . (10)

Note that in our context it is rather a minimum than a maximum principle since we seek to
minimize the cost. The claim is that if u∗(t) is an optimal control, then it minimizes H along
the optimal trajectory globally at each instant of time. This is a very strong statement since
we have only used first order variation.

To prove this1, let us first recast J such that it represents a final-time cost only. This
can be done by defining, in Eq. (3), L(x, u) in terms of a state variable. That is, if our state
vector is x = (x1, x2, . . . , xn) ∈ Rn, we add xn+1 with

ẋn+1 = L(x, u) . (11)

We can then write a cost functional that depends on the final time only,

J = φ(xf ) + xn+1(T ) . (12)

Now suppose that we know the optimal control u∗(t) which determines the optimal x∗(t).
During a very short time interval, [τ − dτ, τ ], let us change the control drastically from u∗ to
v:

�
�
�
�

�
�
�
�

�
�
�
� �

�
�
�Ω

u

v v

u(t)

x(t)

t tττ −dτ

x(τ) fx

This leads to the following change in x,

δx(τ) =
[
f
(
x∗(τ), v

)
− f

(
x∗(τ), u∗(τ)

)]
dτ . (13)

We thus obtain a change of initial condition at time t = τ for the evolution of x(t) at times
t > τ . We can write

˙(x+ δx) = f(x+ δx, u+ δu) ,
1Note that we will show the proof only for regular extrema. Pontryagin’s proof covers also abnormal

extrema [1] but is much more difficult to follow. Roughly speaking, abnormal extrema are those where the
final state xf can be reached only for a single T .
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which leads to

δx =
∂f

∂x

∣∣∣∣
(x∗(t),u∗(t))︸ ︷︷ ︸
A(t)

δx+
∂f

∂u

∣∣∣∣
(x∗(t),u∗(t))︸ ︷︷ ︸
B(t)

δu

δx = A(t)δx(t) +B(t)δu(t) . (14)

This can be expressed in terms of a propagator (or Green’s function), Φ,

δxf = δx(T ) = Φ(T, τ) δx(τ) .

Our claim is now
∂φ

∂x

∣∣∣∣
xf

δxf ≥ 0 ,

or, equivalently,
∂φ

∂x

∣∣∣∣
xf

Φ(T, τ) δx(τ) ≥ 0 . (15)

Using the ’initial’ condition, λ(T ), cf. Eq. (8), we can write for λ at time τ ,

λ(τ) =

[
∂φ

∂x

∣∣∣∣
xf

Φ(T, τ)

]T
=
(
Φ(T, τ)

)T
λ(T ) (16)

Inserting Eq. (16) and Eq. (13) into Eq. (15), we obtain

λT (τ)
[
f
(
x∗(τ), v

)
− f

(
x∗(τ), u∗(t)

)]
δτ ≥ 0

or, equivalently,
λT (τ) f

(
x∗(τ), u∗(t)

)
≤ λT (τ) f

(
x∗(τ), v

)
Since Eq. (6) for a final-time only cost becomes

H(x, λ, u) = λT f(x, u) , (17)

we obtain for all v ∈ Ω
H(x∗, λ∗, u∗) ≤ H(x∗, λ∗, v) , (18)

which proves that indeed u∗(t) minimizesH globally along the optimal trajectory, i.e. Eq. (10).
This necessary condition is stronger than just the first order variation being zero. In fact, it
is so restrictive that often it allows to determine the optimal solution. In conclusion, if
u∗(t) is the global optimum, then there is a canonical way to define H with the
necessary condition, Eq. (18) and generate the state x(t) and co-state λ(t).

Eq. (17) implies
∂H

∂x
= λT

∂f

∂x
,

which, together with the definition of A(t), cf. Eq. (14), leads to

λ̇ = −
(
∂H

∂x

)T
= −A(t)λ . (19)
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An example: Controlling the force on a particle [1]
The equation of motion is given by

ẍ = u with |u| ≤ 1

which can be rewritten

ẋ1 = x2 ,

ẋ2 = u .

The goal is to drive the system from any initial point in phase space, (x1(0), x2(0)), to the
origin in minimal time. We therefore have to formulate time as a cost,

ṫ = ẋ3 = 1 .

Evaluating Eq. (17), the equations of motion lead to the Hamiltonian function for this opti-
mization problem,

H = λ1x2 + λ2u+ λ3 .

The λj are found from the Hamiltonian equations, cf. Eq. (8),

λ̇1 = −∂H
∂x1

= 0 → λ1 = c = const

λ̇2 = −λ1 → λ2 = c t+ d

λ̇3 = 0

We can now determine the control from Eq. (9), or, more specifically from the condition to
maximize H. Taking the restriction, |u| ≤ 1, into account, H takes its maximum value for

u = −sgn(λ2) .

This corresponds to using the maximum allowed force, i.e. bang-bang control. Since λ2 is a
linear function, it changes sign only once. We therefore obtain four possibilities for u:

tt t t

u u u u

−1

+1+1

−1

Evaluating the Hamiltonian function, Eq. (7), we can also obtain the evolution of the state
variables. For u = 1, ẋ2 = u, yields

x2(t) = t+ c

x1(t) =
t2

2
+ c t+ d =

x2
2

2
+ d1 ,

and for u = −1, we get correspondingly

x1(t) = −x
2
2

2
+ d1 .
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That is, we obtain parabolas in phase space:

x

x

2

1

B(t)

A(t) I

II

If the controls are not switched, our initial point must be on either curve A(t) or B(t), cf.
Eq. (14), since these are the only parabolas that take us to the origin. If the initial point is
(x1(0), x2(0)) ∈ I, then the control is switched from -1 to 1 when the parabola that contains
(x1(0), x2(0)) and describes the flow (x1(t), x2(t) crosses B(t). The phase space flow then
continues on B(t) to the origin. If (x1(0), x2(0)) ∈ II, then the control is switched from + 1
to 1 when the parabola that contains (x1(0), x2(0)) and describes (x1(t), x2(t) crosses A(t).
The phase space flow then continues on A(t) to the origin. We have solved this example by
constructing the Hamiltonian function. Alternatively, it could also be solved by considering
the final-time cost, φ(xf ), which in the example above corresponds to

φ(x1,f , x2,f , x3,f ) = x3,f = T ,

i.e. the total time to reach the target.2

3 Hamilton-Jacobi-Bellman principle

When we transform all running costs into final costs φ(xf ), the optimization problem consists
in designing the trajectory from initial point x0 to final point xf that minimizes the final cost,

min φ(xf ) .

We seek to solve this problem globally for all initial points x0 and introduce the optimal
return function,

V (x0) = min φ(xf ) , (20)

that is V (x) corresponds to the best or minimum cost starting from initial value x. Suppose
that we have solved the optimization problem and know V (x). This defines the optimal
trajectory from x0 to xf :

2Note that φ(xf ) doesn’t include the target state because we assume the target state to be fixed and the
zero variations δx1,f , δx2,f would leave λ1 and λ2 undefined.
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Boston

Chicago

Santa Barbarax

x(u)δ

0

fx

Consider now the optimal return for small deviations from the optimal trajectory,

V
(
x+ δx(u)

)
.

The claim is now that
min
u

V
(
x+ δx(u)

)
= V (x) . (21)

This is the principle of dynamic programming or Hamilton-Jacobi-Bellman (HJB)
principle . It states that if we have found the optimal way to go from Santa Barbara to
Boston, and Chicago is located on this way, then also the way from Chicago to Boston is
optimal. We can rewrite Eq. (21) by expressing δx in terms of the equation of motion of x,
Eq. (1),

min
u

[
V (x) +

∂V

∂x
f(x, u) δt ,

]
= V (x)

which leads to the Bellman PDE ,

min
u

[
∂V

∂x
f(x, u)

]
= 0 . (22)

The optimal cost must satisfy Eq. (22). If we want to achieve the optimization in mininum
time, we need to consider t as a state variable such that our equations of motion become

ẋ = f(x, u, t) , ṫ = 1 (23)

Eq. (22) is then rewritten

min
u

[
∂V

∂t
+
∂V

∂x
f(x, u)

]
= 0 , (24)

which is the Hamilton-Jacobi-Bellman equation . Note that if there is no restriction
on time, then V does not depend on t, i.e. the optimum is achieved at infinite time (these
problems are called infinite horizon problems).

We now show the connection between the HJB equation, Eq. (24), and the Pontryagin
principle, Eq. (10), by considering what happens along the optimal trajectory. Evaluating,
along the optimal trajectory, the partial derivative of V (x) with respect to x which also
depends on x, we find

∂V

∂x

(
x∗(t)

)
= λT (t) . (25)

Inserting this into Eq. (22), we see that

min
u

[
λT (t)f

(
x∗(t), u

)]
= 0 .
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Since the term inside the square brackets is nothing but the Hamiltonian, cf. Eq. (17), along
the optimal trajectory, x∗(t), we see that the optimal control minimizes H at each time.
That is, we recover Pontryagin’s minimum principle. We can therefore determine the optimal
control as the argument that minimizes the Hamiltonian,

u∗(x) = arg min
u

[
H
(
x∗(t), λ(t), u

)]
. (26)

or,

u∗(x) = arg min
u

[
∂V

∂x
f(x, u)

]
. (27)

Eq. (27) implies
∂V

∂x
f(x, u∗(x)) = 0 . (28)

Eq. (26) implies that the Hamiltonian is zero along the optimal trajectory, why?

H
(
x∗(t), λ(t), u∗(t)

)
= 0 ,

and that the optimal cost V is constant along the optimal trajectory,

dV

dt

∣∣∣∣
(x∗(t))

= 0 ,

since
dV

dt
= H .

We now show that Eq. (25) indeed satisfies the equation of motion for λT (t), Eq. (8). Let us
denote partial derivatives by subscripts,

∂V

∂x
= Vx .

Taking the derivative of Eq. (25), we obtain

λ̇T = Vxx
(
x∗(t)

)
f(x∗, u∗) .

On the other hand, we can differentiate Eq. (28) with respect to x and find

0 =
∂

∂x

[
Vxf(x, u∗)

]
= Vxx f

(
x, u(x)

)
+ Vxfx + Vxfu .

For optimal u, fu = 0 and we can express Vxx in terms of Vxfx and obtain

λ̇T = −∂V
∂x

∂f

∂x
.

With Eq. (25), we find

λ̇(t) = −∂f
∂x

T

λ .
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From the construction of the Hamiltonian, Eq. (17), it follows that

−∂H
∂x

= λT
∂f

∂x
,

and we indeed recover Eq. (8). The connection to Pontryagin’s maximum principle is easily
made by considering the optimal return at the final point,

V (xf ) = φ(xf ) .

This is inserted into Eq. (25) for t = T and we obtain

λT (T ) =
∂φ

∂x

(
xf
)
.
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