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– (2γ,2e) on He 
– (4γ,e) on Li

• HHG
– Li Ncut-off ≈10 optical regime

– Li, Rb Ncut-off ≈100 XUV regime
– Resonant enhancement
– Polarization gating
– Optimal control

• Further directions
• Multi-photon many-electron processes on complex targets
• More HHG control
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