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Noise and control: good and bad noise

Control Hamiltonian

Controls

Complete controllability if:

B; = [Hy Hy]

B, = [Ho, [Ho, Hy|]

B; = [H-0,[Ho, [Ho, Hy]]]

B, = [H-0, [, [H,[..[.[H,H].].]

the set B generates the full Hilbert space.
Tarn, Clark, Rabitz, Ramakrishna
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Example 1: adiabatic following

Maintaining the density operator diagonal in the energy representation

€1 = —hﬂ, Eg;g = 0: €4 = hi}

) = w2+ J2

We want to change the energy scale from €4 to {1,



Motivation: Quantum refrigerator




State of the system and vector space

s - . o= . =

H = M{E}Bl + JBs , L = —IB, —I—n‘.u'{t}Bg . C =




Equation of motion




The propagator U, = Uil

: The Q. -
Energy scaling U, = elo" ] = oL
2
( ~ m{qlz-_c}\ q=VI+m?
Uy = ms C —é s = sin(¢®) and ¢ = cos(gO)
m(l-c) s  mi+c 0,. = m,—b,.
\ e q 7 ) h heKpe 1

Deviation from adiabatic following ¢ =1 — uﬁ(l, ])_

whenever ¢© = 271 1=0,1.2... § = 0.

Quantization of the adiabatic parameter m
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Noise 1n the controls

Phase noise L’Nﬂ(ﬁ) = —’r'a[ﬁs [H: A]]

w(t)

A : .
Error in updating
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Amplitude noise | £.X = —[B1, [B1, X]].
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Dynamics with phase noise

) (1) /% _ L o\ [11)
m fJ (t): %%_ﬁhﬂ | —1 ]':
\ € ) \ 0 1 @ %) \C)

The propagator | U, =

interaction representation:

Us(t) Ua(t) = W(t)Ua(t)

\ 0 0 —,0 )
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(c—s0
Us(O@ =2y, | § C 0

\001

S =sina and C = cosa. o = y,mmvV9Im?2 + 4 m— 0 a=7.2mm =~ ®pa7,

Us (), for [ Tevolutions. o = Ppeva

Asymptotic minimum phase noise

T — E' ‘5-rmfn =1- EDE(¢hETﬂ) ~ @ich/z

s
For amplitude noise § =1 — Hg(l, 1) ~] e gt
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The minimum temperature
Quantum refrigerator
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Good noise

Surrogate dynamics



Efficient simulation of quantum many particle dynamics

‘Basic facts:

1) The computational effort of a
scales with the size of Hilbert space.

2) The size of Hilbert space scales exponentially with the number

of degrees of freedom.
\_ J

( )

Quantum computing

Exploiting the inherent parallellyism in quantum interference

The best example (Feynman):
Simulate one quantum system by another

reduction of exponential complexity
. .




All or nothing approach:

If we know the wavefunction W(rir2rs3,...,...,'n,t)
at all times we can calculate the evolution

of any observable (B) = (V|BIW)

Now ' obeys the time dependent Shrodinger equation 177 W = HW

with solution 'V (t) = —1/hHt WY(0)

The computation resources scale as D

where D is the size of Hilbert space |D = dN
and O is larger then 1.
N number of particles
Nrect solutions become prohibitively expensive!




The Problem: T'unneling Hamiltonian for N

bosons

H= ©.N.4+0sNit+A(ath+bia)+u(Ne+Nz)

single particle inter—particle
tunneling term interaction



What is the # of states?

We define Jy _ _2_11 ( atb—b a)
Jz =%(3Ta—b*b)

and the total number of particles is conserved

Then: 2
H= - JX +g Jz

N =Na+Nb

The # of states

= size of Hilbert space

D=N+1

is the effective many body non linear Hamiltonain



Definition: Zero order scaling

The simulation of dynamics of a Lie subalgebra of observables
is efficient if and only if the necessary memory and the CPU resources
do not depend on the Hilbert space representation D.

A dynamical simulation may be possible if we limit our scope

We will be interested only in a limited set of dynamical observables.

Example: for the Hamiltonian H= 0}, J X

we can solve Heisenberg equations X =i|H,X] for the the set J X J Yo Jz

Jx=1i/h [HaJX] = 0 We get a closed set of 3
. , coupled linear equations
J v=1/h [H ,J y] = — Wz independent of the size

of the Hilbert space
=1/h [H,Jz] - (DJy



What can be done with a non linear Hamiltonain?

_ 2
H= (DJX+%JZ

The H2eise§1berg equations of motion include all powers of operators

Jx . Jx, Jx .. and combinations JxJy . Jfoz,
and we obtain D(D—1) coupled equations of motion.

If we start with the state (all particles in the left well)
Y(0) =|—}) after a short time:

(t) = exp{-i/h Ht } ¥(0) = X Ci )
and Ci has amplitude forall k

In general for H=Ho+H:, If the commutators:
Ai1=[Ho, Hi1] , A2=[Ho. [Ho,H:1], As=... generate the full Hilbert space
The computational problem becomes prohibitively expensive!

If we limit ourselves to the dynamics of {(Jx) ,{Jy ) (Jz)» then ..



Surrogate Dynamics

An equivalent dynamics which preserve the
original dynamics of (Jx).(Jy).(Jz) but are easier to solve.

Information on other expectation values may be lost!

Embedding the unitary dynamics in a non unitary
open system dynamics.

Replacing Schrodingers equation: i all =Hwy
ot

by the Liouville von Neumann equation

d_p ——i[H,p] + Lo (p)




Surrogate Dynamics

We need to solve three problems:

1)What is the open system dynamics that preserves the dynamics
of the expectations (Jx) ,(Jy ), (Jz) ?

2) Can the open system dynamics limit the growth of the representation?

3) Ho to solve the Liouville von Neumann equation without using
a density operator?



Surrogate Dynamics
We start with problem 3

d -
Ho to solve the Liouville von Neumann equation —p =1 [H ’p] T LD (p)

without using a density operator? dt

where L (p) is Lindblad form VpV 1= 12{v TV p}

Gisin,(PRL 1984) Percival, Diosi .. developed a
Stochastic Non Linear Schrodinger Equation (SNLSE) where:

oy = {-i Halt + (F((V))dE by
where <§J> =0 and <EAJ E,»k> = Sjk’y dt

and the density operator () is the average of stochastic realizations

p(t) = 1/NZ‘\|I|><\|I|\ ~ when N—seo

This realization is not unique !



Surrogate Dynamics 2y Can the open system dynamics
moving to problem 2 limit the growth of the representation?

|dea: Aplying a measurement of the operator A
collapses the state of the system to an eigenfunction of A

We employ the theory of weak continuous measurement, (Diosl)

causing partial collapse.
This process can be described by the Lindblad semigrop generator:

Lo(p) =—v[A [Ap]]

Specifically collapsing on to the submanifold

Lo(p) = =v( [ Ix [3pll+[ Iy, [I.pI] +1 v, [IvpIl)

This is realized by the sSNLSE

dy = {-i Hdt — ’Yig(\]i—<\]i>w)2dt +é(\]i—(\]i>w)d§j}\|l



Surrogate Dynamics
lets solve problem 1:

1)What is the open system dynamics that preserves the dynamics
of the expectations (Jx) , (Jy ), (Jz) ?

Analogy with pure dephasingL (p) :—i[H,p] — Y [ H, [H,P]]

The dissipator does not change energy
The Heisenberg equation of motion:

X = iHXI7809, BX]] HE -0 dor U3,

The eigenvalue of the linear part:Y(t) = exp( (-1 ®w—Cy)T)
Therefore when Y C << ® the dynamics of Jj is not affected

We have a competition between localization caused by the d|SS|pator
and dispersion on all states caused by the non linear term J

How can we exploit this property?



For the open system dynamics defined by:

p=—i |+ Y w0 p| — 53 7% [Ke [% 0]

i

And the uncertainty: Afy] =) <()Q - <XE>)2> .

Then the loss of purity:

for p = 1) (4.

We can estimate: A(y)

ﬁmt’n = &[I,b] = &[w]mﬂm — C‘H._,

Boxio, Viola, Ortiz EPL 79 40007 (2007).
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Then we obtain the condition on 7 N &

or a better estimate for SU(2)

The timescale of the noise has to be much longer than
the timescale of the unitary dynamics.



Generalized Coherent states (GCS)

Choice of time dependent basis functions xn

Looking for the states with minimum uncertainty with respect

to the operators of the algebra: A (\P) :<AJ§<> +<AJ§/ -+ (A.Jzz>
— <-sz + y+Jzz> _( <Jx>2+<Jy>2+ <Jz>2)
Generalized purity: P(y)=( (JX>ZW+(Jy>2\|,+ <Jz>2\|1)
Casimir C= Jx+Jy+J: (C)=j(j+1)
Maximum purity = Minimum uncertainty

The purity is invariant to a unitary transformation U (rotation)
generated by the group U= exp(-i ((odx +BJy +yJz))

P(y) =P(Uy)



Generalized Coherent states (GCS)
Choice of time dependent basis functions yn

Xn=UnVW, =12 8 N non—orthogonal basis states

Any matrix element can be calculated within the algebra.
.l.
for example: (¥ n|Jy [y, = (WoUn[dy Uy

The computation complexity is independent of
the size of the Hilbert space.

We start by creating a uniform distribution of GCS: Yn
. . -l
We find the overlap matrix S, :<Xn IXm> and invert it S

We can either move the basis functions (, or the operators
by a global time dependent unitary operator

U(t)=exp(=i (a()Ix +B1) Iy +(t)Jz))



Generalized Coherent states (GCS)

The global stable solution of the Stochastic Schrodinger equation
Khasin &Kaosloff, JPA 41 (2008) 365203

X = i0[J, X]=7ZL 3 [BXI]

Superposition initial state
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Surrogate Dynamics
Efficient simulation of quantum evolution using dynamical coarse graining

Khasin & Kosloff PRA 78 (2008) 012321

Expanding the wavefunction with time dependent GCS functions:

M
y(t)= ;ci(t) U)o

Efficient simulation is obtained if M does not depend on the size

of the Hilbert space ~] e fing M=(2j+1)(1-VP) =

generalized purity PEU[E}[W]

—4

=
oo
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0.2f

15
time (in units of w™")

22.5

P the purity
2 2 2
<\JX>\|I +<Jy >\|I+ <\J Z>I|J

When the Hilbert
space increases the
# of expansion
states M decreases



Surrogate Dynamics
Comparing unitary to non unitary dynamics

Unitary obtained by direct propagation (solid) j:64

- ...-"ﬂ'-"'."-"'l‘-‘-.'l‘"'-..---'-
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The bath does not affect the dynamics of (Jx) , (Jy ), (Jz)



A Tunneling Hamiltonian

Surrogate Dynamics

N= 20 000 particles

2000 stochastic realizations
Size of the expansion M=60

decreasing values of Y

2
H= (DNa+(D|\|b+A(aTb+bTa)+U(Na-%Nb) =~ Jx + HJE
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A Tunneling Hamiltonian Different values of the
Inerparticle coupling

H=-w J, +%.JZZ

change in tunneling dynamics at U/2m=1
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Surrogate Dynamics

Analysis: Comparison to mean field solutions

calculations carried out with a single GCS: W="¥((x), (3y ), (32))

U/2mw=1/2 N=512

su(z V]
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N=128,256,512



Surrogate Dynamics
Analysis: Breakup of mean field solutions

suzlVl
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Surrogate Dynamics
Analysis: Two individual realizations of the SNLSE

At short times thee is no difference in dynamics
At longer times the dynamical events appear at different times.
Averaging deceases the purity
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Surrogate Dynamics Generalization

1) The observables (Xi) are a member of the set { Xi}
forming a Lie algebra.

2) The Hamiltonain has the form:

H= Z aj X +Z bijij+Z Cikik Xj Xk XI+....

3) L=-ilHpl+Lo() Lo ==1X [X. DXipll)
non unitary dynamics

dy = {-i Hdt — Yé(Xi-(Xi)w)zdt +§(Xi—<Xi>w)d§j}\|f
SNLSE where (&,J) =0 and <E_,J Ci = Oy dt

4)  y(t)= Zc ) U@w)d; ¢ generalized coherent states GCS

hasis set maximizing the purity, |P = Z(X,)



Semiclassical viewpoint

Y= C(T,T*)E_TJJ’\—j) T=C0S 0/2 ¢

~i0

7 -1

T+ 1

)

S T+ T 27— 1
H(r, %) = <*.-:r H e> = —w] - U
(r7") = (i) =~ T 2220
g W 27 — IT]* -1
—iF = ——(1 — 7° .
iT 2( ) + > {J 11
The unstable fixed point  H(—1,—1) = wj.
.. _ 29 —1
The initial state chosen is T=0 H(0,0) = J L.

ul

The initial state is unstable if: H(—1,—1) = H(0,0),

Then: v 2

1
= =1+—+40(j?), ~1
2w 2j—1 +2J+(( )




Stochastic version of the mean field solution:

SU{E}[w]

><J>and P
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Surrogate Dynamics

Flowchart

Selected observables (Xj)

GCS X& |Q,y,) Fictitious Bath
representation —v2[Xi5,[Xi, pl]

Simulating the bath by
the stochastic non—linear
Schrodinger equation for vy,

The # of basis functions M
IS much smaller than N
N=20000 M~60

The # of realizations
Is determined by the
dispersion or purity

| | Averaging
Uil E@”N (Xip=Xi)st = n 2<\|fk‘xl‘\|fk>




Coherent control in the context of many body dynamics
U 2
H=-0(1) J,+LJ;]

Mathematically our many body Hamiltonian is compleatly controllable.
This means that there exist an external field w(t) that will lead the system
from any initial state to any final state.

Moreover the control can generate any unitary transformation U

We found that when the size of the Hilbert space increases
the only possible state to state control is between GCS states.

Control between states that are not GCS become

extremaly sensative any noise in the control (0(t) will collapse
the system to a GCS!



Controllability of quantum systems

H = I:Il] —I—Zm(t}j{t‘ [Baﬂﬂ] = s5u(V)

Noise on the controls ~ H = Hp+ ) [u;(t) + &(1)] X,

@) =0 (@) = 76i6(t — ).




Fd&c — f;’(& M :

This leads to the conditions
on the controls

Cr =j(j+1) for SU(2)

i; 3 YA

The errors have to decrease with
the size of the representation



Thank you
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For ¢ = @FZIEH(Q) Cy = 3n/4.

For Bose-Hubbard model for the n-modes BEC

M bosons in optical lattice is su(n) subulgebra of the single particles observables

n—1
M= 2n

M(M +n).

i -4 2n - 3
’l-'?_i LAWY ez = (n—1)(M+n)M =0 (M )
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