Quantum Control by Laser Pulses: From nuclear to electron dynamics, and back

> J. Manz + I. Barth Institut für Chemie und Biochemie Freie Universität Berlin

Interpreters English ← → German Sign Language Ralf Wiebel + Silke Brendel-Evan

Quantum Control of Light and Matter, KITP, UCSB, April 22, 2009

Quantum laser control of nuclear dynamics: history

year	pioneer /Ref.	mechanism	parameters	
1983	G. K. Paramonov, V. A. Savva, Phys. Lett. 97A, 340 (1983)	π pulse: vibrational excitation A B ($ν > 0$) A B ($ν = 0$)	few, frequency, Intensity, duration	
1985	D.J. Tannor, S.A. Rice JCP 83, 5013 (1985)	$\begin{array}{c} \text{pump - dump" (or several UV pulses)} \\ \text{AB-C*} & \longrightarrow \text{A-BC*} \\ \text{pump} & & & \downarrow \text{dump} \\ \text{AB-C} & \text{A-BC} & \longrightarrow \text{A+BC} \end{array}$	few, frequencies, delay time	
1985	D.J. Tannor, S.A. Rice JCP 83, 5013 (1985)	optimal control, weak fields	few, frequencies, delay time	
1986	P. Brumer, M. Shapiro CPL 126, 541 (1986)	$AB + C \longleftarrow AB C^* \longrightarrow A + BC$ $3 \omega \qquad \uparrow \qquad \qquad$	few, phase	
1986	T. Joseph, J. Manz Mol. Phys. 58, 1149 (1986)	$ \begin{array}{cccc} \text{IR } \pi \text{ pulse} \\ \text{ABC}^* & \longrightarrow \\ \text{ABC}^* & \longrightarrow \\ \end{array} $	few	

Quantum laser control of nuclear dynamics: history

year	pioneer / Ref.	mechanism	parameters
1988	S. Shi, A. Woody, H. Rabitz JCP 88, 6870 (1988)	optimal control, strong fields	"∞"
1988	U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, K. Bergmann CPL 149, 463 (1988)	STIRAP	few
1989	R. Kosloff, S.A. Rice, P. Gaspard, S. Tersigni, D.J. Tannor CP 139, 201 (1989)	local optimal control	"∞"
1990	S. Chelkowski, A.D. Bandrauk, P.B. Corkum PRL 65, 2355 (1990)	chirping	few
1991	J.E. Combariza, B. Just, J. Manz, G.K. Paramonov JPC 95, 10351 (1991)	2 IR π pulse	few
1992	J.S. Judson, H. Rabitz PRL 68, 1500 (1992)	optimal control, feedback learning	"∞"

evolutionary algorithms

Quantum laser control of nuclear dynamics: history

Quantum laser control of electron dynamics: coherent control

Quantum laser control of electron dynamics: dipole switching in molecules

using series of π pulses (TD-CIS(D))
 P. Krause, T. Klamroth, P. Saalfrank, JCP 123, 074105 (2005)

Quantum laser control of electron dynamics: dipole switching in "open system"

using series of π pulses (TD-CIS(D))
 J.C. Tremblay, T. Klamroth, P. Saalfrank, JCP 129, 084302 (2008)

A possible analogy to the Tannor-Rice approach: Quantum control of electron transfer (?)

attosecond charge migration in small peptides
 F. Remacle, R.D. Levine, PNAS 103, 6793 (2006)

Quantum laser control of electron dynamics: optimal control

 ▶ using TD-CIS, application: S0 → S1 transition of N-methyl-6-quinolone T. Klamroth, JCP 124, 144310 (2006)

Quantum laser control of electron dynamics: chirping (restricted optimal control)

> target:

generation of attosecond pulse by high harmonic generation (HHG) A. Ben Haj Yedder, C. Le Bris, O. Atabek, S. Chelkowski, A.D. Bandrauk, PRA 69, 041802(R) (2004)

emitted as laser pulse

Quantum laser control of electron dynamics: carrier envelope phase (CEP) control

E. Sci

Z. Z

control of HHG	\rightarrow	applications
A. Baltuška,, F. Krausz, Nature 421, 611 (2003)	\rightarrow	250 as pulse
E. Goulielmakis,, F. Krausz, Science 320, 1614 (2008)	\rightarrow	80 as pulse
Z. Zhai, RF. Yu, XS. Liu, YJ. Yang, PRA 78, 041402(R) (2008)	\rightarrow	45 as pulse
E.V. van der Zwan, M. Lein, JPB 41, 074009 (2008)	\rightarrow	molecular orbital tomography
A.D. Bandrauk, S. Barmaki, G. L. Kamta, PRL 98, 013001 (2007)	\leftarrow	electron transfer in H_3^{2+} H ⁺ + $H_2^+(1\sigma_g, 1\sigma_u)$

Quantum laser control of electron dynamics: fs IR + as UV pulses

electron localization in H₂⁺ and HD⁺
 F. He, C. Ruiz, A. Becker (2008), submitted

attosecond photoelectron spectroscopy of electron tunneling in H₂⁺ S. Gräfe, V. Engel, M.Yu. Ivanov, PRL 101, 103001 (2008)

Quantum laser control of electron dynamics: carrier envelope phase (CEP) control

photodissociation of D₂⁺
 D. Geppert, P. von der Hoff, R. de Vivie-Riedle, JPB 41, 074006 (2008)

see also: M.F. Kling, Ch. Siedschlag, A.J. Verhoef, J.I. Khan, M. Schultze, Th. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, M.J.J. Vrakking, Science 312, 246 (2006)

Quantum laser control of electron dynamics: symmetry breaking

 symmetry breaking of D₂ dissociation by entanglement between symmetric and antisymmetric states caused by autoionization (1 nuclear and 6 (-1) electronic coordinates)

F. Martín, J. Fernández, T. Havermeier, L. Foucar, Th. Weber, K. Kreidi, M. Schöffler, L. Schmidt, T. Jahnke, O. Jagutzki, A. Czasch, E.P. Benis, T. Osipov, A.L. Landers, A. Belkacem, M.H. Prior, H. Schmidt-Böcking, C.L. Cocke, R. Dörner, Science 315, 629 (2007)

Quantum laser control of electron dynamics: CEP control for circularly polarized laser pulses

Control of directionality of ionization of H atom C.P.J. Martiny, L.B. Madsen, PRL 97, 093001 (2006)

Quantum laser control of electron dynamics: control of electron circulation/rotation/ring current

in nanorings, using two perpendicular time-delayed pulses
 A. Matos-Abiague, J. Beradkar, PRL 94, 166801 (2005)

using optimal control theory (OCT)
 E. Räsänen, A. Castro, J. Werschnik, A. Rubio, E.K.U. Gross, PRL 98, 157404 (2007)

> in molecules, using circularly polarized re-optimized π pulses I. Barth, J. Manz, Angew. Chem. Int. Ed. 45, 2962 (2006) (etc., see below!) Quantum laser control of electron dynamics: control of electron circulation/rotation/ring current

 using 1 or 2 linearly polarized pulses applied to chiral aromatic molecule M. Kanno, H. Kono, Y. Fujimura, Angew. Chem. Int. Ed. 45, 7995 (2006)

using 2 short linearly polarized pulses (MC-TDHF),
 electronic wavepacket (Σ⁺+Π+Δ) in LiH
 M. Nest, F. Remacle, R.D. Levine, New J. Phys. 10, 025019 (2008)

Control of Electric Ring Currents

π and π/2 pulses: from femtoseconds to attoseconds from nuclear dynamics to electron dynamics

I. Barth, J. Manz, Y. Shigeta, K. Yagi, J. Am. Chem. Soc. 128, 7043 (2006)

Concept

circularly polarized laser pulse

induced magnetic field

ring current (nuclear or electronic)

related: inverse Faraday effect

Model assumptions for charge circulation and ring currents

Fixed orientation of molecule

H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)
M. Leibscher, I. S. Averbukh, H. Rabitz, Phys. Rev. A 69, 013402 (2004)
E. Hamilton, T. Seideman, T. Ejdrup, M. D. Poulsen, C. Z. Bisgaard, S. S. Viftrup, H. Stapelfeldt, Phys. Rev. A 72, 043402 (2005)
I. Barth, L. Serrano-Andrés, T. Seideman, Chem. Phys. 347, 263 (2008)

Transition from ground state No spin-orbit interaction, spin conservation

Analogy for opposite ring currents in doubly degenerate states

Magnesium porphyrin (MgP)

Ground state: X¹A_{1g}
 Symmetry: D_{4h}

Chlorophyll c1, c2

Chlorophyll a, b, d

Electric ring current

laser pulse

$$\langle r \rangle = 6.32 \ a_0$$

 $I = 84.5 \ \mu A$
 $B_{ind} = 0.159 \ T$

I. Barth, J. Manz, Y. Shigeta, K. Yagi, J. Am. Chem. Soc. 128, 7043 (2006)

permanent magnetic field

$$\langle r \rangle = 6.85 a_0$$

I = 84.5 µA if B = 8048 T

Present technology: < 100 T (permanent), 34000 T (10 ps) (Rossendorf / Dresden, Rutherford Appleton) E. Steiner et al, Org. Biomol. Chem. 3, 4053 (2005) J. Jusélius et al, J. Org. Chem. 65, 5233 (2000)

Periodic electron circulation $X \rightarrow 5^1 E_{u^+}$ with re-opt. $\pi/2$ -pulse

Laser period:0.94 fsElectron period:0.91 fs

I. Barth, J. Manz, Angew. Chem. Int. Ed. 45, 2962 (2006)

$$|X\rangle \xrightarrow{\tau=2.00 \text{ fs}} \frac{1}{\sqrt{2}} \left(|X\rangle e^{-iE_X t/\hbar} \pm i |5^1 E_{u+}\rangle e^{-iE_{5^1 E_{u+}} t/\hbar} \right)$$

Comparison: Electric ring currents

Nuclear pseudorotation of linear triatomic molecule

I. Barth, J. Manz, P. Sebald, Chem. Phys. 346, 89 (2008) I. Barth, J. Manz, G. Pérez-Hernández, P. Sebald, Z. Phys. Chem. 222, 1311 (2008)

 Driven by circularly polarized infrared (IR) laser pulse propagated along the molecular axis
 Unidirectional pseudorotation of linear triatomic molecule, e.g. FHF⁻ and ¹¹⁴CdH₂
 Method analogous to electron circulation

From electron circulation to nuclear spinning: CdH₂ and FHF⁻

I. Barth, J. Manz, P. Sebald Chem. Phys. 346 (2008) 89

I. Barth, J. Manz, G. Pérez-Hernández, P. Sebald, Z. Phys. Chem. 222, 1311 (2008) (toroidal hydrogen bond)

Film: A. Schild

Summary

circularly polarized laser pulse \Rightarrow ring current \Rightarrow induced magnetic field STRONG effects by ACTIVE control

	system	Q/e]	Т	R/a ₀	B/T
	MgP	1	84.5 μA	1.90 fs	6.32	0.16
	AICI	1	405 μA	396 as	0.18	7.68
electronic	BeO	1	2.49 mA	64.4 as	0.25	52.1
ing current	Н	1	132 μA	1.21 fs	1.27	0.52
	Al ¹²⁺	1	22.3 mA	7.18 as	0.098	1146
	U ⁹¹⁺	1	12.0 A	13.4 zs	≈ 0.004	36.4 MT
	FHF ⁻	9	125 μA	24.4 fs	0.0044	10.9
nuclear	CdH_2	48	151 μA	53.0 fs	0.0030	318
ing current	Н	1	132 μA	1.21 fs	≈ 0.0007	≈ 1000
	He ⁺	2	1.05 mA	304 as	≈ 0.00009	≈ 60000

Conclusion

quantum control by laser pulses nuclear dynamics electron dynamics and back

DFG (project Ma 515/23-1)

Æ

GK 788 (project A1)

Sfb 450 (project TP C1)

Agentur für Arbeit Berlin-Nord

Partner + Coauthors

 Barth, J. Manz, Angew. Chem. Int. Ed. 45, 2962 (2006)
 Barth, J. Manz, Y. Shigeta, K. Yagi, J. Am. Chem. Soc. 128, 7043 (2006)
 Barth, J. Manz, in A. W. Castleman, Jr., M. L. Kimble (eds.), Femtochemistry VII: Fundamental Ultrafast Processes in Chemistry, Physics, and Biology (Elsevier, Amsterdam, 2006), p. 441
 Barth, J. Manz, Phys. Rev. A 75, 012510 (2007)
 Barth, J. Manz, L. Serrano-Andres, Chem. Phys. 347, 263 (2008)
 Barth, J. Manz, P. Sebald, Chem. Phys. 346, 89 (2008)
 Barth, J. Manz, G. Pérez, Hernández, P. Sebald, Z. Phys. Chem. 222, 1311 (2008)

Thanks to... The Group at FU Berlin...

...and international partners! *£* : DFG, FCI, Humboldt