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The Mid-Level Quantum Computation Roadmap: Promise Criteria

QC Approach
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Unigue Qubits This field is so diverse that it 1= not feasible to label the critena wath “Promise™ symbols.

Legend: @ = a potentially viable approach has achieved sufficent proof of principle

&:’ = a potentially viable approach has been proposed, but there has not been sufficient proof of principle

& = no wiable approach 15 known

The column nuomnbers correspond to the following (QC criteria:

#4. A universal set of quantum gates.

#1. A scalable phy=ical system with well-charactenzed qubits.
#2. The abihity to imtialize the state of the qubits to a simple fiducaal state.

#3. Long (relative) deccherence times, much longer than the gate-operation time.

#3. A qubtt-specific measurement capability.
6. The ability to interconwert stationary and flying qubits.
The ability to tasthfully transmit flying qubits between speafied locations.



Introduction to the physical system/model
Control of spin-half coupled to SHO

Controllability:
Eigenstate vs. finite (approx.) vs. complete

controllability

What are possible (feasible) control schemes?
Resonant control
Control via truncation
Optimal control?
Ultrafast / Adiabatic control (if time permits)



Trapped ions (E.g. Cadmium)
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Qubits coupled by harmonic oscillators

Comprehensive review: "Quantum dynamics of single trapped
ions" by D. Leibfried, R. Blatt, C. Monroe, D. Wineland.
Review of Modern Physics, vol. 75, p. 281 (2003).



Single ion energy levels
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Mathematical formulation

Field-free Hamiltonian:
H, = (1,)o,0, toala

Field: E(&,t) = x E(t)cos(k&-m t); o, =m,

Interaction Hamiltonian:

H, = -ugs. E(E;t) ﬁ

= (/) o, E(t)cos(kép(a+al)-m t)

Lamb-Dicke parameter n= k&,



Resonant transitions

QANwIII

Carrier: w =w,

IN,n) to |T,n) m

First red sideband: w, =w,-w,,
N,n) to [T,n-1)

First blue sideband: w, =w,+w,,
N,n) to |T,n+1) "

QANwIII



Transition couplings

Trapped-ion quantum states
Spin 'z system coupled to
H.O.:

Eigenstates are transitively

3
connected by only two ¢
resonant fields 1T 0

3

:

14 0



Lamb-Dicke limit

Interaction Hamiltonian:
H, = 6, Q(t)cos(n(a+at)-ot)

Transition matrix elements: <A| H,|B>

Carrier: First red sideband:
N nyo [Tn)~L,(n?) N n) o |Tn1)~il" (n?)

Lamb-Dicke limit (LDL): (motional cooling)
Eo « A, n « 1, keep terms to 3(a+at)

H= Q(t)[c,+ o] H= Q(t)i[c,a-c.a*]

Carrier: First red sideband:

Nnyo|Tn~1 N n)o [T n-1)~+n



Laser-cooling Cd* to n=0

Thermometry:

. : | n
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L. Deslauriers et al. quant-ph/0404142 Lamb-Dicke regime



Cirac-Zoller QC scheme

VOLUME 74, NUMBER 20 PHYSICAL REVIEW LETTERS

15 May 1995

Quantum Computations with Cold Trapped lons

J. 1. Cirac and P. Zoller®

Institwt fiir Theoretische Physik, Universidt Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
(Received 30 November 1994)
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Controllability?

4
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Expect: system is uncontrollable

Harmonic oscillator: @——@0+—>0¢—>0G¢—> 0« -
| n) In+1) |n+2) |n+3) |n+4)



Challenges in infinite-D

» How to define controllability?

InN> — |m) #

2:(finite number)cnln) — Z(finite number)dmlm) =

z:(infinite- number)cnln) — Z(infinite number)dmlm) =

 Lie algebra might be «~-dim, but does it
span the space? Don't know.

» Using piecewise-constant controls, global
controllability cannot be achieved with a
finite number of operations (Huang, Tam & Clark, J.
Math. Phys., 1983)



Methods from Classical Control

|.  Graphical methods (transfer graphs)

Classical: Turinici & Rabitz, Chem. Phys. 2001
Quantum: Rangan & Bloch, J. Math. Phys. 2005

Eigenstates of the field-free Hamiltonian: nodes
Transition matrix elements of interaction
Hamiltonian: edges

o 0 —0—0—-0-00



Methods from Classical Control

Il. Lie algebraic methods
Brockett, IEEE Trans. Auto. Control, 1969

Ramakrishna et al., Phys. Rev. A, 1995
If 1‘1’=(HO+Hi)‘P is controllable, the Lie algebra formed by

H, , H; , and all possible linearly independent

commutators spans U(N).

For «-D systems, these methods have
restricted use



Ex. Driven Harmonic Oscillator

| n) In+1) |n+2) |n+3) |n+4)

# of elements in the control algebra = 4 (does not span
Hilbert space)

|0>—> la.? :R.J. Glauber, Phys. Rev. (1963)

lo>—> IB>



Schemes to control «-D systems

a. Truncate infinite-dimensional space (Rangan,
Monroe, Bucksbaum, Bloch, Phys. Rev. Lett., 2004,
Yuan & Lloyd, Phys. Rev. A, 2007)

b. Coarse-grained controllability (E. Shapiro,
lvanov & Billig, J. Chem. Phys., 2004)

c. Analytic domain controllability (Lan, Tarn, Chi
& Clark, J. Math. Phys., 2005)

d. Finite controllability (Bloch, Brockett, Rangan,
20009)



Infinite Lie algebra

ez In+d 109 Lie algebra is «-D
iy IN*D (Bloch, Brockett, Rangan,
IT) I\I\I\ \ == quant-ph/0608075)
|n+ 4)
In+2) |n+3)
N’> Iy |n+1)
exp(-iHAt) The alternate application
= exp(-i(H.+H )At) of control fields removes
= exp(-iH_At) . exp(-iH At) a chirp instability in
.exp(-1/2[H_,H ](At)?) unitary flows. (Brockett,
.exp(1/12[H_,[H_,H ]1(At)3) Rangan, & Bloch, CDC 2003)

.exp(1/12[[H_,H ],H ](At)3)...



I. Finite controllability:

Definition
Given
-a system, and
-a nested set of finite dimensional subspaces
it will be said to be finitely controllable if

- it can be transferred from any point in one of
the subspaces to any other point in that
subspace

- with a trajectory lying entirely within the
subspace.




Finite controllability: theorem

Consider a complex Hilbert space X together
with a nested set of finite-dimensional subsets

H={H,cH,cH,L }
Consider ¥ = (Z uiBi]‘P
=1

where the B, are Hermitian control operators.
Assume
- H, is an invariant subspace for B,

- the system is unit vector controllable on H,
using only B,



Finite controllability: theerem (cont'd)

If

- for each H ;o =1 there is a B, that leaves H,,
invariant, and

-for any unit vector in H_ the orbit generated

by ex{iB,)contains a point in one of the lower
dimensional subspaces Hg

then any unit vector in any of the H, can be
steered to any other unit vector in any other H;
using a finite number of piecewise constant
controls.

(Bloch, Brockett, Rangan, IEEE TAC, 2005, 2006, 2007, 2008, 2009)



Finite controllability

H




Explicit scheme




Example: trapped-ion quiit

Trapped-ion quantum states
Spin 'z system coupled to H.O.:

Transitively connected by two
resonant fields

ln+4
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Finite Controllability’ Example

Kneer-Law-Eberly scheme, PRA 57, 2096 (1998)

Aim: Start from ground state and create a finite
superposition of trapped-ion energy eigenstates

Method: reverse engineer

110)

I\I\ . .

a The key to controllability is that each operator has
different invariant subspaces within the set of finite
superpositions, and one never in fact turns on both
operators simultaneously.



Finite controllability’ of trapped-ion

Reachable set includes . J
superpositions of finite

numbers of eigenstates.

(BBR, quant-ph/0608075)



ll. Eigenstate controllability

A system is eigenstate controllable if the

population can be coherently transferred
from any eigenstate to any other

eigenstate.



Example: trapped-electron

Trapped-electron guantum states:
Spin-1/2 system coupled to two S.H.O.’s
(Pedersen & Rangan, Quant. Inf. Proc., 2008.)

(c)

L

m=
m =
m =
m =

cyclotron axial magnetron
motion motion motion

—— From Marzoli et al., arXiv:0810.4408 ——




Eigenstate controllability
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BUT - No finite controllability

I
|1;0)/ﬁ20> |11M)21> 1123

é A
1 101
100) {010) |TM11> 10
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Eigenstate controllability

Eigenstate controllability does not imply
finite controllability in an

infinite-dimensional system.



Control schemes for spin-1/2 HO

us fields:

 Alternating pulse schemes (Cirac-Zoller)

» Off-resonant schemes (Molmer-Sorensen)

« Spin-dependent forces (Milburn-Schneider-dJames)

« Bichromatic scheme (Rangan, Monroe, Bloch,
Bucksbaum)

ns fields:
« Fast pulse scheme (Garcia-Ripoll,Cirac, Zoller)

Adiabatic schemes:



Control by truncating Hilbert space

Trapped-ion quantum states

3
Spin 'z system coupled to H.O.: ¢
Transitively connected by a |T) 0
Bichromatic resonant field
53
|n+ 4) 2
In+2) |n+3)

w "eD . 4y 0

T e \ \ \

! ! ®

\ ® ¢ |n+4)




Transition matrix elements

Carrier: [{ n) <> |T n)~L,(M?) First red sideband:
L ny < [T n-1) ~ i L, (n2)




Manipulate coupling transitions

Carrier: [{ n) < [T n)~L,(M?) First red sideband:
N n)o [T n-1)~iLM (n?)

Choose n such that a desired transition is turned off.
E.g.,atn ~0.53, ¥ 7) & |T 6) coupling is turned off
°

| ) |f|5> 7

Finite sequentially connected system

Rangan, Monroe, Bucksbaum, Bloch, Phys. Rev. Lett., 2004



Lie algebra spans the space

Decompose control Hamiltonian into the roots of the algebra

Using standard notation for a basis of su(N), let ¢, ; denote the matrix with unit ij entry and

zeros elsewhere. Define x;;=e;;—e;; and y; J:r(ej “,-+€_‘,-I!-). B 1s decomposed into the
I-times-symmetric roots
/D 10000 \
1 00000 ..
000O0O0O0
S$1=y1,=110 0 0 0 0 O (3)
000O0O0OD0
\[} 00 0O0O0 /
S2=Y23. (4)
S3=Y34; (5)

(6)



The Lie bracket of these roots with each other give the N-2 skew-symmetric matrices that
represent next-nearest-neighbor coupling as shown below. These matrices form a closed Lie alge-
bra with the matrices from which they were formed, for example, 57, 5> and their commutator
Ey=[5,.5;] form a Lie subalgebra, similarly for S,, §; and their commutator Ky, ;, and so on. This
generation of alternate symmetric and skew-symmetric elements of the algebra has been observed

1.331']1\\31',3'13
[S1.52]=x13 =Ky, (7)
Kyi1=224. (8)
(9)

Simularly,
[x13:%4]=¥14 = Saw1- (10)

Carrying on in a similar fashion through the matrix that represents the coupling between the first
and Nth state (here N is assumed even),

Syw-1n=Y1nN- (11)

It can be shown that the number of linearly independent commutators formed by this set of
matrices is N(N—1)/2. Thus, the roots of the control Hamiltonian can be used to produce N(N
—1)/2 independent elements of the algebra.



Lie algebra spans the space

An interesting observation can be made if the control matrices B; representing the nearest-
neighbor couplings are all skew-symmetric. The Lie algebra generated by these matrices consists
of the skew-symmetric matrices, 1.€., the symmetric matrices 5, are not generated. These matrices
also number N(N—1)/2. This is the set of generators for the rotation group O(N), each pairwise
coupling representing an independent rotation in N-dimensions.'®

Thus, if the eigenstates are sequentially connected by the transition matrix elements (usually
real), then the Lie algebra generated by the roots of the control terms alone span a space of
N(N-1)/2. If the drift matrix is strongly rﬁgulsu',12 it can be decomposed into N linearly indepen-
dent traceless diagonal matrices h;=e;;—€;,; ;1. The Lie brackets formed by the drift matrix and
the N(N—1)/2 matrices computed above yield another N(N—1)/2 matrices of the opposite sym-
metry. For example. [A,5,] gives K, etc. Thus the total number of linearly independent matrices
are 2*¥*N(N—1)/2+N=N?, which is sufficient to show controllability.

Lie algebra of the spin-1/2 coupled to truncated harmonic
oscillator controlled by the carrier and red sideband fields
spans the space.

Rangan & Bloch, J. Math. Phys., 2004



Lie algebra of multiple TIQC's

If an n-qubit system has a symmetric
distribution of field-free eigenenergies, the
system can be controlled by only 2"(2"+1)
elements of the sp(2") algebra.

|Dsp1) 5

we 0 0 0 1D5,,0) :  y
Hy = (D w0 g ) "’25 E w,
0 0 0 — g P 1Si,1) E y

15120/ .

(Cabrera, Rangan, Baylis, Phys. Rev. A, 2007)



Manipulate coupling transitions

Carrier: [{ n) < [T n)~L,(M?) First red sideband:
N n)o [T n-1)~iLM (n?)

Choose n such that a desired transition is turned off.
E.g.,atn ~0.53, ¥ 7) & |T 6) coupling is turned off
°

| ) |f|5> 7

Finite sequentially connected system

Rangan, Monroe, Bucksbaum, Bloch, Phys. Rev. Lett., 2004



Numerical example
In=0) |1> A
S S-S

T) ®
Ny @
[#(t=0)) = N0 )

In=0) I1

|P(t=0)) = (N4 ) +|13 ))IN2

3us pulse produces 30% transfer

10us pulse produces 99.4% transfer

Good candidate for optimal control problem



Optimal Control Theory

Shi & Rabitz (1988, 1990), Kosloff et al (1989), ...

Find the control field E(t), 0 <t<T
Initial state: | \P(t — ())>

Target functional: T =(W(T)|PXP |W¥(T)) —| maximize

.
Cost functional: [1(t)|E(t) [?dt~ penalty

0 minimize parameter
Constraint: Schrodinger’s | Lil(t)> +H(t,E(t)) | W(t)) =0+c.c.
equation

Introduce Lagrange multiplier: |A(t)) Maximize unconstrained functional
T, T, o
J=T- _[ 1(t) | E(t) Fdt — 2Re _[ dt((A(t) |WP(1)) +: H(t, E(1)) | P(1)))
0 0

OCT of Quantum Search Algorithm in Rydberg atoms:
Rangan & Bucksbaum, Phys. Rev. A, 64, 33417 (2001)



Using shorter pulses?

Ny @

Faster pulses — larger bandwidth, many colors

In=0) |1) 12) 13) 14) 15) |6) 17)

In=0) |1) 12) 13) 14) 15) 6) I7)

Uncontrollable!



Need faster pulses (ns)

The fast pulse control

scheme (Garcia-Ripoll et

al, 2003) shows that it is
possible to access a finite

set of states (2&®2) by

leaving the state space
into the HO states

(coherent states).



Two-ion entangled states

In=0) |1) I2

ITT) o

™) @
NT

N4

In=0) |1) 12) 13) 14) |5 17)
| |

A bichromatic field can be used to produce entangled

states of two ions. (Rangan, Monroe, Bucksbaum, Bloch,
Phys. Rev. Lett., 2004)



Recap: Coherent control via STIRAP

p

Lsp

o population . ©

&

(d)

ﬂ

1=

time

Aim: adiabatically transfer populatio
from |1) to [3)

0 Qpr) 0
() e(t) 2(Ap—Ag) ]

Hit)=

ra| =
L L)

From: Bergmann et al.,
Rev. Mod. Phys., 1998

Also look at David
Tannor’s book



Adiabatic Hamiltonian for trapped ion

UNPUBLISHED

RWA Hamiltonian in the interaction picture,
fields on resonance

Hint =

[

\

0 z12 e U 0 0 0
Z21 Ec 0 zggEr_r- 0 0 0

0 259 Er_r- § 2354 Ec 0 0

0 0 243 ke 0 245 By 0

0 0 0 254 oy 0 256l

0 0 0 0 |zgE., O

Dipole matrix elements z; are complex

Only two colors E_ and E,




Two-color N-level STIRAP

: UNPUBLISHED
Truncated trapped-ion system:
Adiabatically transfer population from |V, n=0) to |V, n=6)

n=0) [1) 2) 3) [4) ) 6)

Similar to multilevel STIRAP in magnetic sublevel
quantum states: Shore, Bergmann et al., Phys. Rev. A,
1995. See also, theory by Vitanov, Phys. Rev. A.



STIRAP with >1 ions?

UNPUBLISHED

In=0) |1)

T

In=0) |1) 12) 13) 14) 15)

Adiabatic Hamiltonian couples only [{{) with |T1) ©

But equations are inconsistent ® - WIP



Transfer graphs and Control

 How well do transfer graphs represent
quantum control processes?

 Classical transfer graphs: Turinici & Rabitz,
Chem. Phys. 2001

Eigenstates: nodes, transition couplings: edges
Example:

| n) In+1) |n+2) |n+3) |n+4)



Trapped-ion transitions

The transition couplings can be complex.

In LDL,

Carrier: A=0
H= Q(t)[c,+ o] T

QANwIII

First red sideband: A=-o,
—> HF= Q(t)i[o,a-c.al]

First blue sideband: A=,
—> HF= Q(t)i[o,al-c.a]

QANwIII

)



Quantum Transfer Graph

¢+ e ¢ e .
.

Real control n . General
matrix e e ¢ . complex
Imaginary — \ control matrix

control matrix  Drift matrix

In QTGs, eigenstates represented by a doublet of
nodes. (Rangan & Bloch, J. Math. Phys., 2005)



Quantum Transfer Graph

The role of the drift
Hamiltonian (field-free
evolution) is crucial for

““controllability of the finite (and

«) system. This feature is
elucidated by the quantum
transfer graph. (Rangan &
Bloch, J. Math. Phys., 2005)



Spin-half particle coupled to a quantum harmonic
oscillator — model of a trapped-ion

Example of infinite-D control:

-Eigenstate controllability #

finite controllability # global controllability
Bichromatic control in the truncated system

-Lie algebra, entanglement, optimal control,
STIRAP

Classical transfer graphs have Ilimitations in
describing quantum control processes.

http://www.uwindsor.ca/rangan rangan@uwindsor.ca
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