## SHAKING WAVEPACKE

Suppression of decoherence in a wavepacket

(with a bucket)

and

Control of quantum chaos (with a sieve)

Evgeny Shapiro



## **ADVERTISEMENT**

Adiabatic Passage

driven by a few kicks

by femtosecond laser pulses

aka

Coherently Controlled Adiabatic Passage

Talk by Moshe Shapiro @ the conference

### Done with

M. Ivanov, M. Spanner, I Walmsley

Yu. Billig – theory of wave packet controllability

K. Lee, D. Villeneuve, P. Corkum – experiment on wave packet quantum gates







## The plan

Intro: Wavepacket QI-QC program

Suppression of decoherence in a wavepacket with a bucket



Few basics on chaos

Control of quantum chaos: Wavepackets in a sieve



## Background: Wavepacket QI-QC program

- Number of levels involved is not known, not fixed.
   Amplitudes of the levels are not of interest.
   Track the flow of probability and phase
- Look for coarse-grained quantum controls: chunks of phase space.

  Scale with the amount of interesting information, not with the number of levels involved
- Control by applying coordinate-dependent, time-dependent potentials
- Encoding and control robust to initial conditions



## Background: Wavepacket QI-QC program

Encode bitwise information in symmetries

of the wave function envelope



PRL **91** 237901 (2003), JMO **52** 897 (2005)

Control by phase kicks and free evolution



PRL **92** 093991 (2004); **93** 233601 (2004)

 Controllability with free evolution and smooth coordinate dependance of the phase kicks? YES!

# Suppression of decoherence in a wavepacket with the help of a bucket

## Experiment

Na<sub>2</sub>, gas at 450°C from heat pipe



excitation of the wavepacket by short pulse

monitoring the state by emission tomography  $T_{vib} \sim 330 \, \text{fs}$ 

## Dynamics of the vibrational wavepacket

2D: 
$$E_{vJ} = \omega_e (v+1/2) - \omega_e x_e (v+1/2)^2 + (B - \alpha_e (v+1/2)) J^2 - DJ^4$$

$$\omega_{vib}(v,J) = \omega_e - 2 \ \omega_e x_e (v + 1/2) - 2\alpha_e J^2$$





Revival:  $E_{v+1} - E_v = 2\pi k$  for all v

## Temperature brings decoherence



#### Rotational temperature:

$$\omega_{vib}(v_0, J) = \omega_e - 2 \ \omega_e x_e (v_0 + 1/2) - \alpha_e J^2$$

oscillators in the hot rotational ensemble mutually dephase

formally = decoherence, 
$$\rho_{vv'}(t) = C_v C_{v'}^* \left( \sum_J P_J e^{i(E_{v'J} - E_{vJ})t} \right)$$



$$t_{dec} \sim 30 T_{vib}$$

Vibrational temperature in combination with anharmonicity works the same way

#### Well-known methods

## would not work to fight decoherence in a wavepacket

decoherence free subspaces

do not exist here

"bang-bang"

can work well only with few-level systems

methods to stabilize wavepackets against decay

require knowledge of the state to be stabilized and/or carefully arranged level-by-level interferences

#### Place it in the bucket



#### Drive it periodically

Nonlinear resonance ('bucket'): effective potential moving along the resonance phase space orbit.

"Lucky" vs. "unlucky" initial conditions

#### classical motion:

- with the bucket, along the resonance orbit
- in the bucket, relative to the resonance orbit

Encode information in quantum motion relative to the resonance orbit.

This motion will be stabilized

## Ideal case: we act only on vibrations

$$H = H_0(R;\theta) + V(R)\cos\Omega t$$

#### Quantum nonlinear resonance:

quasienergy states in the rotating frame:

$$\chi(R,t) \sim e^{-i\gamma t} \sum_{v} C_{v}(t) e^{-i\Omega(v-v_{i})t}$$

• Taylor expand E(v) near  $v_i$ ,

• envelope: 
$$\Psi(\lambda) = \sum_{v} C_v e^{i(v-v_i)\lambda} e^{i\kappa\lambda}$$
,  $\kappa = \frac{\Delta\omega}{2\omega_e x_e}$ 

$$-\omega_{e} x_{e} \Psi "-V_{v,v\pm 1} \cos \lambda \Psi = \left(\frac{\kappa^{2}}{2} - \gamma\right) \Psi$$

## Decoupling

$$-\omega_e x_e \Psi "-V \cos \lambda \Psi = \left(\frac{\kappa^2}{2} - \gamma\right) \Psi \qquad \kappa = \frac{\Delta \omega}{2\omega_e x_e}$$

different states in the initial thermal ensemble => different detunings => different excitations in the "bucket" lattice

Buckets are nearly harmonic at the bottom

different initial  $(J, v_0)$  states have the same frequency in the bucket and so do not decohere

excitations are near the bottom:

$$\Delta \omega_T << 2\sqrt{V\omega_e x_e}$$

excitations are in a single QE zone:

$$\Delta \omega_T < 32^{1/4} V^{1/4} \omega_e x_e^{3/4}$$



## Driving by polarizability

two beams, frequencies  $\omega_{\rm L} \pm \Omega$ ,  $I_1 = I_2 = I/2$ 

$$H = H_0(R,\theta) - \frac{E^2}{2}\cos^2\frac{\Omega t}{2} \left(\alpha_{\perp}(R)\sin^2\theta + \alpha_{\parallel}(R)\cos^2\theta\right)$$

potential



probability, J = 48



 $Na_2$ :  $I = 2 + 10^{11}$  W/cm<sup>2</sup> linear approximation for  $\alpha(R)$  near  $R_0$ polarizability from Dr. S. Patchkovskii, NRC

## In the bucket



weighted with rotational temperature signal for the WP on  $A^1\Sigma^+_u$  excited at  $\lambda=0$  ( $\Omega$   $t_0=0$ )

## In the bucket



difference of signals for  $\lambda = \pi/3$  and  $\lambda = -\pi/3$ , T = 450°C

#### Time scales:

- oscillations with the bucket
- oscillations inside the bucket
- spreading inside the bucket

### Non-ideal case

$$H = H_0(R, \theta) - \frac{E^2}{2} \cos^2 \frac{\Omega t}{2} \left( \alpha_{\perp}(R) + \frac{\Delta \alpha(R) \cos^2 \theta}{2} \right)$$

- angular dynamics
- different J behave feel different buckets
- additional ro-vibrational coupling

#### The scheme still works





## Conclusions

- WP case: strong off-resonance field to modify the potential.
- Not only the non-linear resonance stabilizes the motion, but it also can suppress the thermal dephasing:
   Different initial conditions are transferred into different excitations in the nearly harmonic bucket.
- In the non-ideal case the effect can still work.

## The plan

Intro: Wavepacket QI-QC program

Suppression of decoherence in a wavepacket with a bucket



Few basics on chaos

Control of quantum chaos: Wavepackets in a sieve



#### Kicked rotor

$$H = \frac{L^2}{2I} + A\cos\theta \sum_{n} \delta\left(\frac{t}{T} - n\right)$$

$$K = \frac{AT^2}{I}; \qquad l_n = \frac{L_nT}{I}$$

$$l_{n+1} = l_n + KT \sin(\theta_n + l_n/2)$$

$$\theta_{n+1} = \theta_n + (l_{n+1} + l_n)/2$$
the standard map

The perturbation scales with KT



stroboscopic map aka Poincare section

#### Resonances

$$H = \frac{L^2}{2I} + A \sum_{n} \cos(\theta - j\omega t)$$

$$T=1, K=0.2$$



#### From regular motion to chaos

#### As K grows, the resonances grow and overlap

#### The sea of chaos and the resonance islands



#### Classical

#### Quantum



$$\langle E_n \rangle \sim Dn$$

• saturation after  $t \sim 1/\Delta E_{Floquet}$ 



• quantum resonances at  $T = 4 \pi m/n$ 



• structures in phase space. cantori impede the diffusion "scarred" eigenstates

# Wave packets in a sieve: quantum control at the edge of strong chaos

## Poincare sections





## Diffusion rate is not uniform!





## Husimi distributions.



## Husimi distributions.



Wave function is much wider than the stable islands

## **Dynamics**



## Quantum vs. classical localization



## Drag the low-diffusion areas across the phase space



## Diffusion in energy



Coherent control of quantum chaos?

## Diffusion in energy



## **Conclusions**

- The low-diffusion areas of phase space can keep and drag quantum population even after the resonance islands are gone.
- Control over the localization energy is questionable. Most probably, due to quantum resonances.