

Attosecond Pulse Carrier-Envelope-Phase Effects on Ionized Electron Momentum and Energy Distributions

Anthony F. Starace

Department of Physics & Astronomy, University of Nebraska

Collaborators

Liang-You Peng and Evgeny A. Pronin: Dept. of Physics & Astronomy, University of Nebraska

References: Phys. Rev. A 76, 043401 (2007); New J. Phys. 10, 025030 (2008)

- Motivation
- Theoretical Method
- **Results for a Single Few-Cycle Attosecond Pulse**
- **Results for Two Few-Cycle Attosecond Pulses**
- **Effects of an Additional IR Pulse**
- Effect of Pulse Chirp
- Analytic Description of CEP Effects
- Concluding Remarks

Motivation

Motivation

G. Sansone et al., Science **314**, 443 (2006).

"The availability of singlecycle isolated attosecond pulses opens the way to regime in ultrafast new a physics, in which the strongfield electron dynamics in atoms and molecules is driven of the by the electric field attosecond pulses rather than by their intensity profile." The CEP of the Attosecond **Pulse Matters!**

E. Goulielmakis et al., Science 320, 1614 (2008).

Related Works

- **CEP Effects for a Few-Cycle IR Pulse** G.G. Paulus et al., *Nature* **414**, 182 (2001).
- CEP Effects for a IR Pulse + Attosecond Pulse A.D. Bandrauk et al., *Phys. Rev. Lett.* 89, 283903 (2002).
- Low-Energy Electron Wave Packet Produced by Attosecond Pulse Train and Driven by IR Field J. Mauritsson et al., *Phys. Rev. Lett.* 100, 073003 (2008).

Our work: CEP Effects for One or Two Few-Cycle Attosecond Pulses with or without an Additional IR Pulse

Theoretical Method

Time-Dependent Schrödinger Equation

$$i\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = [H_0(\mathbf{r}) + H_I(\mathbf{r},t)]\Psi(\mathbf{r},t)$$

with the atomic and interaction Hamiltonians given by

$$H_0 = -\frac{1}{2}\nabla^2 + V_C(r), \quad H_I(\mathbf{r}, t) = -i\mathbf{A}(t) \cdot \nabla$$

respectively, where

$$V_{C}(r) = \begin{cases} -\frac{1}{r}, & \text{for H,} \\ -\frac{1}{r} \left[1 + (1 + \beta r/2) e^{-\beta r} \right], & \text{for He,} \end{cases}$$

with $\beta = 27/8$ [1]. [1] D.R. Hartree, The Calculation of Atomic Structures (1957).

Vector Potential of Two Attosecond Pulses

$$\mathbf{A}(t) \equiv A(t)\hat{\mathbf{z}} = A_1F_1(t)\sin\left[w_1\left(t + \frac{\tau_1}{2}\right) + \phi_1\right]\hat{\mathbf{z}}$$
$$+A_2F_2(t)\sin\left[w_2\left(t - T_d + \frac{\tau_2}{2}\right) + \phi_2\right]\hat{\mathbf{z}},$$

where the envelopes are given by

$$F_{1}(t) = \begin{cases} \sin^{2} \left[\pi \left(t + \tau_{1}/2 \right)/\tau_{1} \right], & |t| \leq \tau_{1}/2; \\ 0, & |t| > \tau_{1}/2, \end{cases}$$

$$F_{2}(t) = \begin{cases} \sin^{2} \left[\pi \left(t - T_{d} + \tau_{2}/2 \right)/\tau_{2} \right], & |t - T_{d}| \leq \tau_{2}/2; \\ 0, & |t - T_{d}| > \tau_{2}/2. \end{cases}$$

Electric field strength: $\mathbf{E}(t) = -\frac{1}{c} \frac{\partial}{\partial t} \mathbf{A}(t)$.

Solution of the TDSE

$$\Psi(\mathbf{r},t) \equiv \Psi(r,\theta,\phi,t) = \sum_{l=0}^{L} \sum_{m=-l}^{l} \frac{\varphi_{lm}(r,t)}{r} Y_{lm}(\theta,\phi) \Longrightarrow$$

$$i\frac{\partial}{\partial t}\varphi_{lm}(r,t) = -\frac{1}{2}\frac{d^2}{dr^2}\varphi_{lm}(r,t) + V_{\text{eff}}^l(r)\,\varphi_{lm}(r,t) + [H_I(r,t)]_{lm}$$

where

$$\begin{aligned} V_{\text{eff}}^{l}(r) &\equiv V_{C}(r) + \frac{l(l+1)}{2r^{2}}, \quad a_{lm} = \sqrt{\frac{(l-m)(l+m)}{(2l-1)(2l+1)}}, \\ [H_{I}(r,t)]_{lm} &= iA(t)\frac{1}{r} \left[la_{lm}\varphi_{l-1m}(r,t) - (l+1)a_{l+1m}\varphi_{l+1m}(r,t) \right] \\ &- iA(t)\frac{d}{dr} \left[a_{lm}\varphi_{l-1m}(r,t) + a_{l+1m}\varphi_{l+1m}(r,t) \right]. \end{aligned}$$

Numerical Methods

Radial Coordinate Discretization:

Central Finite Difference Method.

Time Propagation:

Arnoldi Method.

Reference for Details:

L.-Y. Peng and A.F. Starace, *J. Phys. Chem.* **125**, 154311 (2006).

Ionized Electron Wave Function in Momentum Space

Projection onto Field-Free Hamiltonian Eigenstates:

Project $\Psi(\mathbf{r}, t_f)$ onto incoming Coulomb waves,

$$\Upsilon(k,\theta',\phi') = \langle \Psi_{\mathbf{k}}^{(-)}(\mathbf{r},t_f) | \Psi(\mathbf{r},t_f) \rangle,$$

$$\langle \Psi_{\mathbf{k}}^{(-)} | \Psi_{\mathbf{k}'}^{(-)} \rangle = \delta(\mathbf{k} - \mathbf{k}').$$

Calculations of Observables

Without loss of generality, one may set $k_y = 0$. The momentum and energy probability distributions are then calculated according to,

$$P(k_x, k_z) = |\Upsilon(k_x, k_y = 0, k_z)|^2 = P(E, \theta_k),$$

where θ_k is the angle between the laser polarization direction, \hat{z} , and the electron momentum vector $\mathbf{k} = (k_x, 0, k_z)$. The two probabilities are normalized so that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(k_x, k_z) dk_x dk_z \equiv \int_{0}^{\infty} \int_{0}^{2\pi} P(E, \theta_k) dE d\theta_k.$$

Results for a Single Few-Cycle Attosecond Pulse

Results for a Single Attosecond Pulse Nebraska

Momentum Distributions of Electrons Ionized from He $\omega_1 = 36 \text{ eV}, I_1 = 5 \times 10^{15} \text{ W cm}^{-2}, \tau_1 = 2T_{\omega}, \phi_1 = 0.5\pi$

Results for a Single Attosecond Pulse Nebraska

Electron Momentum Distributions vs. CEP for He $\omega_1 = 36 \text{ eV}, I_1 = 5 \times 10^{15} \text{ W cm}^{-2}, \tau_1 = 2T_{\omega}$

KITP, UC-Santa Barbara, 2 June 2009 - p.16/48

Electron Energy Distributions vs. CEP for He $\theta_k = 0$ (full lines) or π (dashed lines)

Comparison of He and H at different I_1 **for** $\phi_1 = 0.5\pi$

Results for a Single Attosecond Pulse Nebraska

Intensity Dependence of the CEP-Induced Asymmetries $P_t \equiv P_- + P_+ \propto I^{1.0}; \quad P_d \equiv P_- - P_+ \propto I^{1.5};$ $R \equiv P_d/P_t \propto I^{0.5}$

Results for Two Few-Cycle Attosecond Pulses

3D Momentum Distribution of Electrons for He

$$\omega_1 = \omega_2 = 36 \text{ eV}, I_1 = I_2 = 5 \times 10^{15} \text{ W cm}^{-2}, \tau_1 = \tau_2 = 2T_{\omega}$$

$$\phi_1 = \phi_2 = 0.5\pi$$

Momentum Distribution of Electrons Ionized from He $\omega_1 = \omega_2 = 36 \text{ eV}, I_1 = I_2 = 5 \times 10^{15} \text{ W cm}^{-2}, \tau_1 = \tau_2 = 2T_{\omega}$

Approximate Formula for the Interference Minima

The total energy distribution of electrons ionized by two attosecond pulses is given by

$$P(E,\theta) = \left[f_1(E)e^{-i\Delta\Phi} + f_2(E)\right] \left[f_1(E)e^{i\Delta\Phi} + f_2(E)\right]$$
$$= \left|f_1(E)\right|^2 + \left|f_2(E)\right|^2 + 2\left|f_1(E)f_2(E)\right| \cos\Delta\Phi,$$

where the relative phase is

$$\Delta \Phi = (E + E_{\mathbf{b}})T_{\mathbf{d}} + (\phi_1 - \phi_2).$$

The interference minima in the energy spectra occur when $\Delta \Phi = (2n+1)\pi$, which gives

$$E_n^{\min} = -E_{\rm b} + \frac{\pi}{T_{\rm d}} \left(2n + 1 - \frac{\phi_1 - \phi_2}{\pi} \right)$$

Energy Distribution of Electrons Ionized from He $\omega_1 = \omega_2 = 36 \text{ eV}, I_1 = I_2 = 5 \times 10^{15} \text{ W cm}^{-2}, \tau_1 = \tau_2 = 2T_{\omega}$

Energy Distribution of Electrons Ionized from H $\omega_1 = \omega_2 = 36 \text{ eV}, I_1 = I_2 = 5 \times 10^{15} \text{ W cm}^{-2}, \tau_1 = \tau_2 = 2T_{\omega}$

Distributions of Electrons Ionized from He by Two Pulses with a Phase Difference of π $\phi_1 = 0.5\pi, \phi_2 = 1.5\pi$

Effects of an Additional IR Pulse

 $P(E, \theta_k)$ for H with an Additional IR Pulse for $\phi_1 = 0.5\pi$ $\lambda_{IR} = 750 \text{ nm}, I_{IR} = 5 \times 10^{11} \text{ W cm}^{-2}, \tau_{IR} = 4T_{IR}$

KITP, UC-Santa Barbara, 2 June 2009 - p.29/48

 $P(E, \theta_k)$ for H with an Additional IR Pulse for $\phi_1 = 0$ $\lambda_{IR} = 750$ nm, $I_{IR} = 5 \times 10^{11}$ W cm⁻², $\tau_{IR} = 4T_{IR}$

 $P(E, \theta_k)$ for H with an Additional IR Pulse for $\phi_1 = \frac{\pi}{2}$ $\lambda_{IR} = 750 \text{ nm}, I_{IR} = 5 \times 10^{12} \text{ W cm}^{-2}, \tau_{IR} = 4T_{IR}$

 $P(E, \theta_k)$ for H with an Additional IR Pulse for $\phi_1 = \frac{\pi}{2}$ $\lambda_{IR} = 750 \text{ nm}, I_{IR} = 2 \times 10^{13} \text{ W cm}^{-2}, \tau_{IR} = 8T_{IR}$

 $P(E, \theta_k)$ for H with an Additional IR Pulse for $\phi_1 = \frac{\pi}{2}$ $\lambda_{IR} = 750 \text{ nm}, I_{IR} = 2 \times 10^{13} \text{ W cm}^{-2}, \tau_{IR} = 8T_{IR}$

 $P(E, \theta_k)$ for H with an Additional IR Pulse for $\phi_1 = \frac{\pi}{2}$ $\lambda_{IR} = 750 \text{ nm}, \tau_{IR} = 4T_{IR}$

Dependence on XUV Pulse Intensity

 $P(E, \theta_k)$ for H with an Additional IR Pulse for $\phi_1 = \frac{\pi}{2}$ $\lambda_{IR} = 750 \text{ nm}, I_{IR} = 1 \times 10^{13} \text{ W cm}^{-2}, \tau_{IR} = 4T_{IR}$

Dependence on XUV Frequency, ω , and Number of Cycles, N

 $P(E, \theta_k)$ for H with an Additional IR Pulse for $\phi_1 = \frac{\pi}{2}$ $I_{\rm IR} = 1 \times 10^{13} \ {\rm W \ cm^{-2}}$

Chirped, Few-Cycle Attosecond Pulses

Collaborators Liang-You Peng, Fang Tan and Qihuang Gong Peking University, Beijing Evgeny A. Pronin and Anthony F. Starace University of Nebraska, Lincoln

Reference: Phys. Rev. A (submitted, 2009)

Chirped Pulses

$$\mathbf{A}(t) = AF(t) \sin \left[\omega(t)(t - t_0) + \phi_0\right] \mathbf{e}_z, \qquad (1)$$

$$A = \frac{E}{\omega_0} = \frac{1}{\omega_0} \sqrt{\frac{I_0/I_{au}}{\sqrt{1 + \xi^2}}}, \qquad (2)$$

$$\omega(t) = \omega_0 + 4 \ln 2 \frac{\xi}{1 + \xi^2} \frac{(t - t_0)}{\tau_0^2}, \qquad (3)$$

$$F(t) = \exp\left[-4\ln 2\frac{1}{1+\xi^2}\frac{(t-t_0)^2}{\tau_0^2}\right],$$
 (4)

Key features:

- Pulse BANDWIDTH does NOT depend on chirp ξ
- Pulse ENERGY does NOT depend on chirp ξ

Chirped pulse duration $\tau = \tau_0 \sqrt{1 + \xi^2}$, peak intensity $I = I_0 / \sqrt{1 + \xi^2}$

Laser pulse vector potential. The laser pulse for $\xi = 0$ has $\omega_0 = 25 \text{ eV}, I_0 = 10^{15} \text{ W/cm}^2, \tau_0 = T_0 \text{ (1 cycle)}, \phi_0 = \pi/2$

 $P(E, \theta_k)$ for Hydrogen. The laser pulse for $\xi = 0$ has $\omega_0 = 25$ eV, $I_0 = 10^{15}$ W/cm², and $\tau_0 = T_0$ (1 cycle)

Asymmetry Dependence on Chirp ξ

KITP, UC-Santa Barbara, 2 June 2009 – p.42/48

Asymmetry Dependence on $\mathcal{CEP} \phi_0$

Concluding Remarks

Summary and Conclusions

- The CEPs of few-cycle attosecond pulses produce asymmetries in ionized electron momentum and energy distributions that become significant at attosecond pulse intensities ≥ 10¹⁴ W/cm² (within range of current experimental capabilities).
- Even a weak IR pulse can augment the CEP effects of a few-cycle attosecond pulse.
- For short attosecond pulses having ionized electron spectra with significant numbers of low-energy electrons, an IR pulse may allow one to explore rescattering of ionized electrons from the ionic core.

• The chirp of a few-cycle attosecond pulse can affect significantly the asymmetry in the ionized electron distributions, which remain sensitive to the CEP.

Outlook:

The CEP and chirp of a few-cycle attosecond pulse provide additional tools for controlling electron dynamics in AMO processes initiated by a few-cycle attosecond pulse.

References:

Phys. Rev. A 76, 043401 (2007);New J. Phys. 10, 025030 (2008);Phys. Rev. A (submitted).

Beam Parameters and Gouy Phase

Beam Waist: w_0 Rayleigh Length: $z_0 = \pi w_0^2/\lambda$ Spot Size: $w(z) = w_0\sqrt{1 + (z/z_0)^2}$ Confocal Parameter: $b = 2z_0$ Beam Divergence: $\theta = \Theta/2 \approx \lambda/\pi w_0$ Ref.: F. Lindner et al., *PRL* 92, 113001 (2004)

Gouy Phase: $\zeta(z) = \arctan(z/z_0)$

Estimate of Gouy Phase Variation

Beam Waist: $w_0 \gtrsim 1 \mu \text{m}$ Wave Length: $\lambda \sim 3.45 \times 10^{-2} \mu \text{m}$ Rayleigh Length: $z_0 = \pi w_0^2 / \lambda \gtrsim 100 \mu \text{m}$ Gouy Phase: $\zeta(z) = \arctan(z/100)$

