Attosecond Pulse Carrier-Envelope-Phase Effects on Ionized Electron Momentum and Energy Distributions

Anthony F. Starace

Department of Physics \& Astronomy, University of Nebraska

Collaborators

Liang-You Peng and Evgeny A. Pronin: Dept. of Physics \& Astronomy, University of Nebraska

References: Phys. Rev. A 76, 043401 (2007); New J. Phys. 10, 025030 (2008)

Outline

■ Motivation
$■$ Theoretical Method
■ Results for a Single Few-Cycle Attosecond Pulse
$■$ Results for Two Few-Cycle Attosecond Pulses
■ Effects of an Additional IR Pulse
■ Effect of Pulse Chirp
$■$ Analytic Description of CEP Effects
■ Concluding Remarks

Motivation

G. Sansone et al., Science 314, 443 (2006).

"The availability of singlecycle isolated attosecond pulses opens the way to a new regime in ultrafast physics, in which the strongfield electron dynamics in atoms and molecules is driven by the electric field of the attosecond pulses rather than by their intensity profile."
The CEP of the Attosecond Pulse Matters!
E. Goulielmakis et al., Science 320, 1614 (2008).

Related Works

■ CEP Effects for a Few-Cycle IR Pulse
G.G. Paulus et al., Nature 414, 182 (2001).
$■$ CEP Effects for a IR Pulse + Attosecond Pulse
A.D. Bandrauk et al., Phys. Rev. Lett. 89, 283903 (2002).

■ Low-Energy Electron Wave Packet Produced by Attosecond Pulse Train and Driven by IR Field J. Mauritsson et al., Phys. Rev. Lett. 100, 073003 (2008).

Our work: CEP Effects for One or Two Few-Cycle Attosecond Pulses with or without an Additional IR Pulse

Theoretical Method

Time-Dependent Schrödinger Equation

$$
i \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\left[H_{0}(\mathbf{r})+H_{I}(\mathbf{r}, t)\right] \Psi(\mathbf{r}, t)
$$

with the atomic and interaction Hamiltonians given by

$$
H_{0}=-\frac{1}{2} \nabla^{2}+V_{C}(r), \quad H_{I}(\mathbf{r}, t)=-i \mathbf{A}(t) \cdot \nabla
$$

respectively, where

$$
V_{C}(r)=\left\{\begin{array}{lc}
-\frac{1}{r}, & \text { for } \mathrm{H} \\
-\frac{1}{r}\left[1+(1+\beta r / 2) e^{-\beta r}\right], & \text { for } \mathrm{He}
\end{array}\right.
$$

with $\beta=27 / 8_{[1]}$. [1] D.R. Hatrree, The Calculation of Atomic Structures (1957).

Vector Potential of Two Attosecond Pulses

$$
\begin{aligned}
\mathbf{A}(t) & \equiv A(t) \hat{\mathbf{z}}=A_{1} F_{1}(t) \sin \left[w_{1}\left(t+\frac{\tau_{1}}{2}\right)+\phi_{1}\right] \hat{\mathbf{z}} \\
& +A_{2} F_{2}(t) \sin \left[w_{2}\left(t-T_{\mathrm{d}}+\frac{\tau_{2}}{2}\right)+\phi_{2}\right] \hat{\mathbf{z}},
\end{aligned}
$$

where the envelopes are given by

$$
\begin{aligned}
& F_{1}(t)= \begin{cases}\sin ^{2}\left[\pi\left(t+\tau_{1} / 2\right) / \tau_{1}\right], & |t| \leq \tau_{1} / 2 \\
0, & |t|>\tau_{1} / 2\end{cases} \\
& F_{2}(t)= \begin{cases}\sin ^{2}\left[\pi\left(t-T_{\mathrm{d}}+\tau_{2} / 2\right) / \tau_{2}\right], & \left|t-T_{\mathrm{d}}\right| \leq \tau_{2} / 2 \\
0, & \left|t-T_{\mathrm{d}}\right|>\tau_{2} / 2\end{cases}
\end{aligned}
$$

Electric field strength: $\mathbf{E}(t)=-\frac{1}{c} \frac{\partial}{\partial t} \mathbf{A}(t)$.

Solution of the TDSE

$$
\begin{aligned}
& \qquad \Psi(\mathbf{r}, t) \equiv \Psi(r, \theta, \phi, t)=\sum_{l=0}^{L} \sum_{m=-l}^{l} \frac{\varphi_{l m}(r, t)}{r} Y_{l m}(\theta, \phi) \Longrightarrow \\
& i \frac{\partial}{\partial t} \varphi_{l m}(r, t)=-\frac{1}{2} \frac{d^{2}}{d r^{2}} \varphi_{l m}(r, t)+V_{\mathrm{eff}}^{l}(r) \varphi_{l m}(r, t)+\left[H_{I}(r, t)\right]_{l m} \\
& \text { where } \\
& V_{\mathrm{eff}}^{l}(r) \equiv V_{C}(r)+\frac{l(l+1)}{2 r^{2}}, \quad a_{l m}=\sqrt{\frac{(l-m)(l+m)}{(2 l-1)(2 l+1)}} \\
& {\left[H_{I}(r, t)\right]_{l m}=i A(t) \frac{1}{r}\left[a_{l m} \varphi_{l-1 m}(r, t)-(l+1) a_{l+1 m} \varphi_{l+1 m}(r, t)\right]} \\
& \quad-i A(t) \frac{d}{d r}\left[a_{l m} \varphi_{l-1 m}(r, t)+a_{l+1 m} \varphi_{l+1 m}(r, t)\right]
\end{aligned}
$$

Numerical Methods

■ Radial Coordinate Discretization:
Central Finite Difference Method.
■ Time Propagation:
Arnoldi Method.
$■$ Reference for Details:
L.-Y. Peng and A.F. Starace, J. Phys. Chem. 125, 154311 (2006).

Ionized Electron Wave Function in Momentum Space

■ Projection onto Field-Free Hamiltonian Eigenstates:

Project $\Psi\left(\mathbf{r}, t_{f}\right)$ onto incoming Coulomb waves,

$$
\begin{gathered}
\Upsilon\left(k, \theta^{\prime}, \phi^{\prime}\right)=\left\langle\Psi_{\mathbf{k}}^{(-)}\left(\mathbf{r}, t_{f}\right) \mid \Psi\left(\mathbf{r}, t_{f}\right)\right\rangle, \\
\left\langle\Psi_{\mathbf{k}}^{(-)} \mid \Psi_{\mathbf{k}^{\prime}}^{(-)}\right\rangle=\delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
\end{gathered}
$$

Calculations of Observables

Without loss of generality, one may set $k_{y}=0$. The momentum and energy probability distributions are then calculated according to,

$$
P\left(k_{x}, k_{z}\right)=\left|\Upsilon\left(k_{x}, k_{y}=0, k_{z}\right)\right|^{2}=P\left(E, \theta_{k}\right),
$$

where θ_{k} is the angle between the laser polarization direction, \hat{z}, and the electron momentum vector $\mathbf{k}=\left(k_{x}, 0, k_{z}\right)$.
The two probabilities are normalized so that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P\left(k_{x}, k_{z}\right) d k_{x} d k_{z} \equiv \int_{0}^{\infty} \int_{0}^{2 \pi} P\left(E, \theta_{k}\right) d E d \theta_{k}
$$

Results for a Single Few-Cycle Attosecond Pulse

Results for a Single \mathcal{A} ttosecond $\mathcal{P}_{\text {ulse }}$ Nebiaska

Momentum Distributions of Electrons Ionized from He

$$
\omega_{1}=36 \mathrm{eV}, I_{1}=5 \times 10^{15} \mathrm{~W} \mathrm{~cm}^{-2}, \tau_{1}=2 T_{\omega}, \phi_{1}=0.5 \pi
$$

Results for a Single \mathcal{A} ttosecond $\mathcal{P}_{\text {ulse }}$ Nebrasháa

Electron Momentum Distributions vs. CEP for He

$$
\omega_{1}=36 \mathrm{eV}, I_{1}=5 \times 10^{15} \mathrm{~W} \mathrm{~cm}^{-2}, \tau_{1}=2 T_{\omega}
$$

Results for a Single \mathfrak{A} ttosecond P Pulse Nebrasháa

Electron Energy Distributions vs. CEP for He

$$
\theta_{k}=0 \text { (full lines) or } \pi \text { (dashed lines) }
$$

Results for a Single \mathfrak{A} ttosecond P Pulse Nebrasháa

Comparison of He and \mathbf{H} at different I_{1} for $\phi_{1}=0.5 \pi$

Results for a Single \mathfrak{A} ttosecond \mathcal{P} ulse Nebraska

Scaling Law for CEP Effects for H

Intensity Dependence of the CEP-Induced Asymmetries

$$
\begin{gathered}
P_{t} \equiv P_{-}+P_{+} \propto I^{1.0} ; \quad P_{d} \equiv P_{-}-P_{+} \propto I^{1.5} \\
R \equiv P_{d} / P_{t} \propto I^{0.5}
\end{gathered}
$$

Results for Two Few-Cycle Attosecond Pulses

3D Momentum Distribution of Electrons for He

$$
\begin{aligned}
& \omega_{1}=\omega_{2}=36 \mathrm{eV}, I_{1}=I_{2} \\
&=5 \times 10^{15} \mathrm{~W} \mathrm{~cm} \\
&-2 \\
& \phi_{1}=\tau_{1}=\tau_{2}=2 T_{\omega} \\
&=0.5 \pi
\end{aligned}
$$

Momentum Distribution of Electrons Ionized from He

$$
\omega_{1}=\omega_{2}=36 \mathrm{eV}, I_{1}=I_{2}=5 \times 10^{15} \mathrm{~W} \mathrm{~cm}{ }^{-2}, \tau_{1}=\tau_{2}=2 T_{\omega}
$$

(a)

(b)

Approximate Formula for the Interference Minima

The total energy distribution of electrons ionized by two attosecond pulses is given by

$$
\begin{aligned}
& P(E, \theta)=\left[f_{1}(E) e^{-i \Delta \Phi}+f_{2}(E)\right]\left[f_{1}(E) e^{i \Delta \Phi}+f_{2}(E)\right] \\
& \quad=\left|f_{1}(E)\right|^{2}+\left|f_{2}(E)\right|^{2}+2\left|f_{1}(E) f_{2}(E)\right| \cos \Delta \Phi
\end{aligned}
$$

where the relative phase is

$$
\Delta \Phi=\left(E+E_{\mathrm{b}}\right) T_{\mathrm{d}}+\left(\phi_{1}-\phi_{2}\right)
$$

The interference minima in the energy spectra occur when $\Delta \Phi=(2 n+1) \pi$, which gives

$$
E_{n}^{\min }=-E_{\mathrm{b}}+\frac{\pi}{T_{\mathrm{d}}}\left(2 n+1-\frac{\phi_{1}-\phi_{2}}{\pi}\right)
$$

Energy Distribution of Electrons Ionized from He

$\omega_{1}=\omega_{2}=36 \mathrm{eV}, I_{1}=I_{2}=5 \times 10^{15} \mathrm{~W} \mathrm{~cm}{ }^{-2}, \tau_{1}=\tau_{2}=2 T_{\omega}$

Results for \mathcal{T} wo \mathcal{A} tosecond $\mathcal{P} u l$ ses

Energy Distribution of Electrons Ionized from H

$\omega_{1}=\omega_{2}=36 \mathrm{eV}, I_{1}=I_{2}=5 \times 10^{15} \mathrm{~W} \mathrm{~cm}{ }^{-2}, \tau_{1}=\tau_{2}=2 T_{\omega}$

Results for \mathcal{T} wo \mathcal{A} tosecond $\mathcal{P} u l$ ses

Distributions of Electrons Ionized from He by Two Pulses with a Phase Difference of π

$$
\phi_{1}=0.5 \pi, \phi_{2}=1.5 \pi
$$

Effects of an Additional IR Pulse

$P\left(E, \theta_{k}\right)$ for H with an Additional IR Pulse for $\phi_{1}=0.5 \pi$

$$
\lambda_{\mathrm{IR}}=750 \mathrm{~nm}, I_{\mathrm{IR}}=5 \times 10^{11} \mathrm{~W} \mathrm{~cm}^{-2}, \tau_{\mathrm{IR}}=4 T_{\mathrm{IR}}
$$

$P\left(E, \theta_{k}\right)$ for \mathbf{H} with an Additional IR Pulse for $\phi_{1}=0$ $\lambda_{\mathrm{IR}}=750 \mathrm{~nm}, I_{\mathrm{IR}}=5 \times 10^{11} \mathrm{~W} \mathrm{~cm}^{-2}, \tau_{\mathrm{IR}}=4 T_{\mathrm{IR}}$

$P\left(E, \theta_{k}\right)$ for \mathbf{H} with an Additional IR Pulse for $\phi_{1}=\frac{\pi}{2}$

$$
\lambda_{\mathrm{IR}}=750 \mathrm{~nm}, I_{\mathrm{IR}}=5 \times 10^{12} \mathrm{~W} \mathrm{~cm}^{-2}, \tau_{\mathrm{IR}}=4 T_{\mathrm{IR}}
$$

Results with $\mathcal{A d d i t i o n a l} \operatorname{IR} \operatorname{Pulse}$

$P\left(E, \theta_{k}\right)$ for \mathbf{H} with an Additional IR Pulse for $\phi_{1}=\frac{\pi}{2}$ $\lambda_{\mathrm{IR}}=750 \mathrm{~nm}, I_{\mathrm{IR}}=2 \times 10^{13} \mathrm{~W} \mathrm{~cm}^{-2}, \tau_{\mathrm{IR}}=8 T_{\mathrm{IR}}$

$P\left(E, \theta_{k}\right)$ for \mathbf{H} with an Additional IR Pulse for $\phi_{1}=\frac{\pi}{2}$

$$
\lambda_{\mathrm{IR}}=750 \mathrm{~nm}, I_{\mathrm{IR}}=2 \times 10^{13} \mathrm{~W} \mathrm{~cm}^{-2}, \tau_{\mathrm{IR}}=8 T_{\mathrm{IR}}
$$

$P\left(E, \theta_{k}\right)$ for \mathbf{H} with an Additional IR Pulse for $\phi_{1}=\frac{\pi}{2}$

$$
\lambda_{\mathrm{IR}}=750 \mathrm{~nm}, \tau_{\mathrm{IR}}=4 T_{\mathrm{IR}}
$$

Dependence on $\operatorname{XUV} \mathcal{V}$ Pulse Intensity Nebraska

$P\left(E, \theta_{k}\right)$ for \mathbf{H} with an Additional IR Pulse for $\phi_{1}=\frac{\pi}{2}$

$$
\lambda_{\mathrm{IR}}=750 \mathrm{~nm}, I_{\mathrm{IR}}=1 \times 10^{13} \mathrm{~W} \mathrm{~cm}^{-2}, \tau_{\mathrm{IR}}=4 T_{\mathrm{IR}}
$$

$P\left(E, \theta_{k}\right)$ for \mathbf{H} with an Additional IR Pulse for $\phi_{1}=\frac{\pi}{2}$

$$
I_{\mathrm{IR}}=1 \times 10^{13} \mathrm{~W} \mathrm{~cm}^{-2}
$$

Chirped, Few-Cycle Attosecond Pulses

Collaborators

Liang-You Peng, Fang Tan and Qihuang Gong
Peking University, Beijing
Evgeny A. Pronin and Anthony F. Starace
University of Nebraska, Lincoln

Reference: Phys. Rev. A (submitted, 2009)

$$
\begin{align*}
\mathbf{A}(t)= & A F(t) \sin \left[\omega(t)\left(t-t_{0}\right)+\phi_{0}\right] \mathbf{e}_{z}, \tag{1}\\
A & =\frac{E}{\omega_{0}}=\frac{1}{\omega_{0}} \sqrt{\frac{I_{0} / I_{\mathrm{au}}}{\sqrt{1+\xi^{2}}}}, \tag{2}\\
\omega(t) & =\omega_{0}+4 \ln 2 \frac{\xi}{1+\xi^{2}} \frac{\left(t-t_{0}\right)}{\tau_{0}^{2}}, \tag{3}\\
F(t) & =\exp \left[-4 \ln 2 \frac{1}{1+\xi^{2}} \frac{\left(t-t_{0}\right)^{2}}{\tau_{0}^{2}}\right], \tag{4}
\end{align*}
$$

Key features:
$■$ Pulse BANDWIDTH does NOT depend on chirp ξ

- Pulse ENERGY does NOT depend on chirp ξ

■ Chirped pulse duration $\tau=\tau_{0} \sqrt{1+\xi^{2}}$, peak intensity

$$
I=I_{0} / \sqrt{1+\xi^{2}}
$$

Laser pulse vector potential. The laser pulse for $\xi=0$ has

$$
\omega_{0}=25 \mathrm{eV}, I_{0}=10^{15} \mathrm{~W} / \mathrm{cm}^{2}, \tau_{0}=T_{0}(1 \text { cycle }), \phi_{0}=\pi / 2
$$

$P\left(E, \theta_{k}\right)$ for Hydrogen. The laser pulse for $\xi=0$ has $\omega_{0}=25 \mathrm{eV}, I_{0}=10^{15} \mathrm{~W} / \mathrm{cm}^{2}$, and $\tau_{0}=T_{0}(1$ cycle $)$

Differential Probability D ifferences

$$
D(E)=P(E, 0)-P(E, \pi) .
$$

Solid lines, $\phi_{0}=0$; dashed lines, $\phi_{0}=\pi / 2$.

$$
A_{1}=\frac{P_{0}^{+}-P_{0}^{-}}{P_{0}^{+}+P_{0}^{-}}, A_{2}=\frac{P_{10}^{+}-P_{10^{\circ}}^{-}}{P_{10}^{+}+P_{10^{\circ}}^{-}} \text {(integrated over energy). }
$$

$$
\text { Solid lines, } \phi_{0}=0 ; \text { dashed lines, } \phi_{0}=\pi / 2
$$

Asymmetry Dependence on $\mathcal{C E P} \phi_{0}$ Nebiraska

$$
\begin{gathered}
\left.A_{1}=\frac{P_{0}^{+}-P_{0}^{-}}{P_{0}^{+}+P_{0}^{-}} \text {(integrated over energy }\right) . \\
I_{0}=10^{15} \mathrm{~W} / \mathrm{cm}^{2}
\end{gathered}
$$

Concluding Remarks

Summary and Conclusions

■ The CEPs of few-cycle attosecond pulses produce asymmetries in ionized electron momentum and energy distributions that become significant at attosecond pulse intensities $\gtrsim 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ (within range of current experimental capabilities).
\square Even a weak IR pulse can augment the CEP effects of a few-cycle attosecond pulse.
$■$ For short attosecond pulses having ionized electron spectra with significant numbers of low-energy electrons, an IR pulse may allow one to explore rescattering of ionized electrons from the ionic core.

- The chirp of a few-cycle attosecond pulse can affect significantly the asymmetry in the ionized electron distributions, which remain sensitive to the CEP.

Outlook:

■ The CEP and chirp of a few-cycle attosecond pulse provide additional tools for controlling electron dynamics in
AMO processes initiated by a few-cycle attosecond pulse.

References:

Phys. Rev. A 76, 043401 (2007);
New J. Phys. 10, 025030 (2008);
Phys. Rev. A (submitted).

Beam Parameters and Gouy Phase

Beam Waist: $w_{0} \quad$ Rayleigh Length: $z_{0}=\pi w_{0}^{2} / \lambda$
Spot Size: $w(z)=w_{0} \sqrt{1+\left(z / z_{0}\right)^{2}}$
Confocal Parameter: $b=2 z_{0}$
Beam Divergence: $\theta=\Theta / 2 \approx \lambda / \pi w_{0}$
Ref.: F. Lindner et al., PRL 92, 113001 (2004)

Gouy Phase: $\zeta(z)=\arctan \left(z / z_{0}\right)$

Estimate of Gouy Phase Variation

Beam Waist: $w_{0} \gtrsim 1 \mu \mathrm{~m} \quad$ Wave Length: $\lambda \sim 3.45 \times 10^{-2} \mu \mathrm{~m}$
Rayleigh Length: $z_{0}=\pi w_{0}^{2} / \lambda \gtrsim 100 \mu \mathrm{~m}$
Gouy Phase: $\zeta(z)=\arctan (z / 100)$

