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Manipulation of vortex motion in quantum lattice models
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Qutline: Introduction
* Quantum statistics and anyons
» Topological phases and quantum computation
* Toric code

Kitaev honeycomb lattice model
* Symmetries on torus

* Finite size effects on torus
 Vortex/anyon manipulation



Quantum statistics

Configuration space of n indistinguishable particles in d dimensional space
excluding diagonal points D:

M, = (R™- D)/S_

In (3+1) dimensions, the configuration space is simply connected;
quantum mechanics permits only two kinds of statistics:

Exchanging particles in 3D space belongs to the permutation group S,

Bose-Einstein statistics: ¥, (0) = t1
Fermi-Dirac statistics:  X_ (O0) =+1 (even) or -1 (odd permutations)

time



Anyons

» particles with fractional statistics in (2+1) dimensional quantum mechanics

The configuration space of n indistinguishable particles in 2 dimensional space
excluding diagonal points 1s multiply connected

D) ) . o o > Leinaas and Myrheim’77
1 2 n Wilczek’82

Exchanging particles on a plane 1s not anymore an element of

permutation group
o~

it 1s braiding, an element of a braid group!




Braid group B,

A braid group for n strands (particles) has Example: O,
n generators {1, o,, ..., 0, ,} which :

satisfy: I I }{ I I

_ 1 1-1 1 1+1 1+2 n
0;0{110; = 0;410;0;4

j J Artin, Ann. Math. 48, 101 (1947)
— Yang-Baxter
equation

1 1+l 12 1 i+l 12

One-dimensional irreps of B, correspond to abelian fractional statistics:

Yo (0) = cid from U(1)

Higher dimensional irreps correspond to nonabelian fractional statistics:

Yo (0) = gloA e.g. from SU(2)
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Topological quantum computation

* quantum computing where fault-tolerance 1s naturally built into quantum computing hardware
* unique model of quantum computation which inspires new quantum algorithms
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nonabelian anyons
Topological phase

a ground state (possibly degenerate) of a certain gapped 2D many-body quantum system

« states within topological phase depend only on topology and are decoupled from local errors
» spectral gap exponentially suppresses thermal excitation of stray anyons and thus non-local errors




Effective
description

topological quantum
field theories

S=kidx { dt d*x e™P a, 9,4,
r

Properties

» finite ground state
degeneracy

e.g genus

* excitation gap

Topological phases

Microscopic models

» Kitaev lattice model
* quantum loop gas models

Physical
realization

Quantum lattices

* superconducting
electronics

* trapped atoms

* polar molecules

* magnetic systems

Continuous systems
* fractional QHS
* graphene




TOFT/CFT

Topological phases

Realization

Application

Abelian
*Z,XZ, theory

(1, e, m, em)

Non- abelian

* SU(2), Ising theory
(1, o, €)
exe=1
EXO=0
oXo=1l+¢
« SU(2); Z, Parafermion theory
SO(3); Fibonacci
(1,7)
TXtT=1+7

* Other general theories

Toric code

Kitaev honeycomb model (phase A)
Freedman loop gas model at k=1
Fendley quantum loop gas at k=2
etc.

Kitaev honeycomb model
(phase B in magnetic field)

« neutral atoms in optical lattices
* lattices of polar molecules

« arrays of Josephson junctions

Quantum Hall state at v =15/2

px * ip, superconductors

Quantum Hall state at v=12/5

Fendley loop gas model at k=3

Levin-Wen string nets

Fendley loop gas models

Topological quantum
memory

Quantum computation
with partial topological
protection

Topological quantum
computation



Toric code

Spin-1/2 particles on edges of a square lattice
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Qp B leaquelteoz (O Qp] =0 oo o o o o o
[ l l [ [ [
Toric code

* is exactly solvable
« exhibits abelian topological phase, specifically

- its ground state 1s 4-fold degenerate on torus, and
- the system has a robust spectral gap to the first excited state at thermodynamic limit



Particles of the toric code

Heﬂ‘ = T Jeff ( Z Qs + Z ":r_,‘} p) Qs - Hvertexax Qp - leaquezteoz
vertices plaquettes
Magnetic charges m Electric charges e
Q,=Il 0o Q=1lco N
Z)

@

Composite particle me

Braiding

e and e (or m and m) particles braid
as bosons

e and m particles are semions,
@ 1.e. anyons with the statistical phase i

X . L :
O e-m composite particle is fermion




Kitaev honeycomb lattice model

H,=1J, Zi,. o%0% + +

x-lin

— ZO{ JO( 21,_] Oalgaj — ZO( JO( 21:.] Kal_]

I =1,] =1=0
J =1, J,=1,
J=J =0 J.=J =0
y z X z

In magnetic field:

H= HO + 2i 2()L:X,y,z Baga,i

A.Y Kitaev, Ann. Phys. 321, 2 (2006).

R O
e’
o -link: X-lill.k/. / ./. ./. .
I

Phase diagram:

 phase A - can be mapped perturbatively
onto Toric code with particles (1, e, m, em);
 phase B - gapless.

* phase B acquires a gap and becomes
non-abelian topological phase of Ising type



Mapping abelian phase onto Toric code

_JT/ - ’-}-y- _}-1

Hy, = —J, E o0, “dimers”

z—links

r o s y Yy
1 = —J @ E J‘}' T — J&J E J‘}' T

z—links y—links

Effective spins

- are formed by ferromagnetic ground states of -J,070}

| Degs =111) | Degr = [11)

A.Y Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).
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Mapping abelian phase onto Toric code

Effective Hamiltonian

first non-constant term of perturbation theory \'/ \ / \ / \ / \'/
occurs on the 4" order '.\ /\ /\ /\ /.\
Heﬁ= 15|J’|EZ{"-}J" ./-\./‘\'/c\./‘\.
\ 4
4 A}

_ u u z Z o (] . ° °

QP — gleft(pjgrighm;pjgupl;pj lljrc:ln::-‘i.?:n|;;|.:|J'| \./ \o/ \./ \./

A W A WY & U A

defined on the square lattice with effective spins on the vertices

Toric code

the effective Hamiltonian is unitarily equivalent to
toric code on the green lattice

Hg = —. (ZQ# > H)

vertices plaquettes

A.Y Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).




Mapping abelian phase onto Toric code

Toric code particle types

» magnetic charges live on plaquettes of the toric code lattice

» electric charges live on its vertices

A.Y Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).



Vortex operators

= OX Z =
W, = o* 0%, 0%0%, 0750%

— X X
K 2,3 K 5,6

[Ho, Wp] =0 (K1 )= 1 KPii ez K= = KoK e




Vortex sectors

Each energy eigenstate [n> is characterized by some vortex configuration
{w, = <n|W |n>= =1} for all plaquettes p

also the vortices are always excited in pairs,
i1.e. even-vortex configurations are relevant on closed surfaces or infinite plane,

the Hilbert space splits into vortex sectors, i.e. subspaces of the system with a particular
configuration of vortices

vortex free sector examples from two-vortex sectors full vortex sector



Products of vortex operators

— Kz X X X z X
Wp Wp+1 K ],ZK 2,3Ky3,4K 5,6Ky6,1 K 4, 7Ky7,8K 8,9K 9,]0Ky]0,5

(we used (K%, )*=1) W o

Q

O o link

Products of vortex operators generate closed loops

Ki,ja(l)Kj,ka(Z) ”.Kp’qa(M—l)Kq’ia(M)

On torus, this gives the condition

ILw,=1




Loop symmetries on torus

For a system of N spins on torus (i.e. a system with N/2 plaquettes), Hp W, =1 implies that there
are N/2-1 independent vortex quantum numbers {w, ..., Wy, }-

Loopsontorus K, “VK; *@ K oMUV oM
- all homologically trivial loops are generated by plaquette operators
- two distinct homologically nontrivial loops needed

to generate the full loop symmetry
group (the third nontrivial loop is a product of these two).

The full loop symmetry of the torus is the abelian group with N/2+1 independent generators of
the order 2 (loop?=I), i.e. Z,N?*1,

All loop symmetries can be written as

C(k,l) =G LW, Wy oo, Wy

b

where k 1s from {0,1,2,3} and G, = [, and G,, G,, G; are arbitrarily chosen symmetries from
the three nontrivial homology classes, and F, with [ from {1, ..., 2N?-1} ' run through
all monomials in the /2



Effective (low energy) Hamiltonian

Jz}:}‘-}ryej:r H:HD+U

Hy = —J. Z c,0r,  2N? degenerate groupd state S U S
z—links = “ground state manifold” |

U = —J, ZO‘O‘;—J ZJG‘;
r—links y—links : e 3 e 3 e o e o :

Brillouin-Wigner perturbation theory

For any exact eigenstate [{> of the full Hamiltonian H, the projection onto ferromagnetic subspace
P> = P> satlsﬁes

[En + Z Hl‘m]w’ ) = Elgpo) = Herel ), Hywy>=E, Y™

n=1

where H® = PyGr—1P G =[1/(E — Hy|(1 — P)U
W>=(1-G)"p,>

Calculating n-th order corrections is equivalent to finding the nonzero elements of the matrix H®

. . - Al | & q
Contributions to H® comes from the length n products K7 ..., K}}  with @ " € x,)
that preserves the low energy subspace.

G. Kells, A. T. Bolukbasi, V. Lahtinen, J. K. Slingerland, J. K. Pachos and J. Vala,
Topological degeneracy and vortex manipulation in the Kitaev honeycomb model, Phys. Rev. Lett. 101, 240404 (2008).



Effective (low energy) Hamiltonian

The resulting low-energy Hamiltonian can be written in terms of operators acting on the spins
of the “dimers” using the transformation rules

Plo*® a’]— +oo, Plo* ® o' — +o,
Plo’ @ '] — —ol, Pl @Il — +0o7,

Plo* ® o] — +1,,

The lowest order non-constant contribution comes from the plaquette operators

TP 3 = -
{‘PI:WF:I o Q."’ U_c'(."J G—Hrj {TF{HJUP[J}

Expanding to all orders gives the contributions from all loop symmetries both homogically trivial
and homologically nontrivial: -

: UQZD J M QU; #X,) #V, X
Z = ]_L-{T; ' ' = l_[ R‘_,r'ﬂ'- I-I '&;"m

_____ 3 | Yu
zb_;i-_ : i ¥
Flz) =z [SOURE » e
A 2 trivial
3 pN/2-2 4Q/ W —s Q
_ P P
H —2 Eci,jGi Za)’)Fj( 1 O Oy/rs)
i=0 =1
nontrivial

G. Kells, A. T. Bolukbasi, V. Lahtinen, J. K. Slingerland, J. K. Pachos and J. Vala, - reflects tOPOIOgy
Topological degeneracy and vortex manipulation in the Kitaev honeycomb model,

Phys. Rev. Lett. 101, 240404 (2008).



Finite-size effects in small systems on torus

Toric code emerges on the 4th order of perturbation theory the low energy sector of H:

o(H)=E =0 (] o H o)+ o(J°) Je;f:lé“}r:"a:lﬁ‘(;zr J=l=J, <.
The minimal size of the lattice with
‘*‘ no finite size terms on the 4th order is
i.e. Toric code on the lattice of 3x3 square plaquettes
which properly represents the torus

For smaller systems, the finite size effects are substantial on the 4th order,
for example N=16:

J2j2 B
W _1£‘|_f| Z[{'J? + R,, —5A,)
272 4
- 2 4
_ lbr]:J{}f;Xﬂ + Ij?_ X,

The toric code spectrum can be reconstructed by extracting
the finite size effects from the spectrum of the full model
G. Kells, N. Moran and J. Vala,

Finite size effects in the Kitaev honeycomb lattice model on torus, : T .
J. Stat. Mech. — Th. Exp., (2009) P03006 . A e



Creating and annihilating vortices

— ~Z X ~Z X — KX z X z
W, = 0%,0Y%, 0%,0%, 0%50%¢ = K¥| ,K*, ;K5 ,K*, sK?5 (K¥¢

W [p>=w > where w = +1

A Pauli operator 0%, at a vertex k
flips the vortex states of those plaquettes
which share the link a(k) originating at the vertex k

Wpoak|w> - - Wp|1P>

... and the same kind of operation can be used to move vortices between plaquettes ...

... however, moving vortices cost energy in general

<¢|OakHOak|¢> - <¢|H|¢> + 2J[3<(I)|KI3[3 (k)|q)> + 2Jy <q)‘KYy(k)|q)>

and that in general spoils the statistical phase.



Statistics of vortices

Exploiting spin-statistics theorem

The statistical phase associated with 2 rotation of a pair of vortices is -1, that means

* the pair of vortices form a fermion (of a new kind)
« the vortices are semions, i.e. abelian anyons with the statistical phase i = (-1)!2

These fermions are created by o
applying a two-spin operator %
K% i1 = 0%0% o



Mutual statistics of fermions and vortices




Mutual statistics of fermions and vortices

o
A o
Q o

O ink excitation of a pair of fermions by the operator
K% 141 = 0%0%,, witha =z




Mutual statistics of fermions and vortices

W o
A o
Q o

° /o , . .
X -link moving fermions costs no energy




Mutual statistics of fermions and vortices

o
A o
Q o

° . : :
o link moving fermions around the vortex
s with no energy cost




o
A o
Q o

x -link

Mutual statistics of fermions and vortices

Phase associated with a closed loop operation is the vortex-vortex statistical phase,
here between the “electric” vortex of the fermion and a “magnetic” vortex
inside the loop.

As moving fermions costs no energy, the operation represents a clean realization of
abelian statistics in the Kitaev honeycomb lattice model.




Conclusions

Symmetries

» classification of all closed loop symmetries of the Kitaev model valid for all parameter ranges and
all possible lattice configurations
« exact perturbative derivation of the full effective Hamiltonian of the model on torus

Spectral properties

 complete classification of finite size effects on torus

* spectral properties of the this torus limit exhibits spectral features which are strikingly similar to the
behavior of full model without and with magnetic field (in progress, numerics)

» perturbative magnetic field opens spectral gap in the nonabelian phase on torus (numerics)

G. Kells, N. Moran and J. Vala, . P o3
Finite size effects in the Kitaev honeycomb lattice model on torus,

J. Stat. Mech. — Theory Exp., (2009) P03006 fw T
. uwra 3 w 02

- 2 vortex|
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0 vortex| 04 0 vortex

o
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%
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*

V. Lahtinen, G. Kells, A. Carollo, T. Stitt, J. Vala, and J. Pachos, o

Spectrum of the Non-Abelian Phase in Kitaev’s Honeycomb Lattice Model, 005 £

Ann. Phys. 323, 2286 (2008). L R R
Quasiparticles

» found a new kind of free fermions
« applied to realize anyonic statistics in the honeycomb model without relying on perturbative
mapping of the toric code operations

G. Kells, A. T. Bolukbasi, V. Lahtinen, J. K. Slingerland, J. K. Pachos and J. Vala,
Topological degeneracy and vortex manipulation in the Kitaev honeycomb model, Phys. Rev. Lett. 101, 240404(2008).

G. Kells, A. T. J. K. Slingerland, and J. Vala,
A description of Kitaev’s honeycomb model with toric code stabilizers, arXiv:0903.5211 (2009).



A decription of Kitaev’s honeycomb model

with toric code stabilizers

NEW & MORE DETAILED VERSION G. Kells, A. T. J. K. Slingerland, and J. Vala,
AT ARXIV TODAY A description of Kitaev’s honeycomb model with toric code stabilizers, arXiv:0903.5211 (2009)
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Ho=- > ZL_,,KQJ H =-x3 Y P(g)®

ac{z,y,z} i.J a 1=1
ZP ) = gfc¥0Z + gZodos +

Yz y
aio5os 040 Sog +oho50% 4 crzcrlcrh

Definition of hard-core bosons and | ]l]j} - | ﬁ'-':b'- | lllj) - | J-"-“}'-
effective spins of the “z-dimers” | ].lj} = | y | | [.]j) —_ | |, 1)_

{:r%:.-—”‘ ):FIH)}‘G? = b} + by,

cr%’:. =73( b f h ) )IE — m" (h ‘If‘q.]-.

B =00 G = Tq(f 2blb,).
Hamiltonian Hy = —Jo Y (0} +05)75 1 n. (Blin, +bg4n.)

q
Jy T;{b; b iy (b) iyt B )

754 Z 2b1b,)

Gy—1
Vortex operators W,=(I-2Ng,)({ qu+ﬂﬁ}Qq Xooay = [ Wao,

q,,=0

Ty—1

= (I=2Ng0)(I - 2Ny, q,) ] Qe

qy, 1]



A decription of Kitaev’s honeycomb model
with toric code stabilizers

: v o “r)l y (&
StrlngS ¢C-'q — lf,’ JTy), .Ul:q gy —1},0 [q 8y —1)0 —L'J] . ry
!1' O.'U {77 (Tz {TI {b +b
T (4.,1).m% (2::0).0%(42.0),0% (q..0)m% (¢.,0)m
z z T S_'_’F
---*'7(1__{}}.‘7[[1:(:)5‘7[t}.[]}.g”[t}.[]}..”[t}.[]}:.-
- ] [];,
Fermionic o ek =btS., g =048, e —
perators q q-q q 9*q (-2t
Jordan-Wigner W, _opt t
( gner) 1 o T;;]_qtﬁ"q—[lﬁ—%b) 17— 2ute) [.f
{""q‘('"q'} = Oqq’- {f"q-("'q’} =0, {(:q‘ Cqt } =0. -2 : L R T —r¥
Hamiltonian = Js ZX CIT U ' S
s S 5
{ IUZY{I{( CellCarng T Carny)
+ J. Z 2( 4Cq
e = e —H
. s —1/2 ik- _ B
Momentum representation Cq = M E Cp. € = Ap = ap+ 10

Bogoliubov transformation

H =Y Ex(viw 1/2)

BCS-type state

' J- : ] ] . = 2J,cos(k, cos(k
Hi= Z [(Ekf:LEL'k } E{it':L{th F A%c_peg) MJ. e 2 costl) 2y cosllhy)

os

)

= [ J(u + vickel )l {Wg}, {0}).

wo o= =2.J,

o = 4k(sin(k;) — sin(k,) — sin(k,
E _ Bk = 2J.sin(k,) + 2.J, sin(k,).
Ve = UEC 'L—‘kflk,
Ep = /& +|Ak]?
ug = 1/2(1 + &/ Ex)
vk = iv/1/2(1 - &/Ex)

In addition the paper includes also:
ke * fermionization on torus
* effcetive magnetic field (non-abelian topological phase)
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