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Configuration space of  n indistinguishable particles in d dimensional space
excluding diagonal points D:

MMnn  = (= (RRnd nd - D)/- D)/SSnn

In (3+1) dimensions, the configuration space is simply connected;In (3+1) dimensions, the configuration space is simply connected;
quantum mechanics permits only two kinds of statistics:quantum mechanics permits only two kinds of statistics:
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Bose-Einstein statistics:

Fermi-Dirac statistics:

χ+  (σ) = +1

χ−  (σ) = +1 (even) or -1 (odd permutations)

Exchanging particles in 3D space belongs to the permutation group Exchanging particles in 3D space belongs to the permutation group SSnn

Quantum statistics



• particles with fractional statistics in (2+1) dimensional quantum mechanics 

The configuration space of  n indistinguishable particles in 2 dimensional space
excluding diagonal points is multiply connected

Leinaas and Myrheim’77
Wilczek’82

Exchanging particles on a plane is not anymore an element of Exchanging particles on a plane is not anymore an element of 
permutation grouppermutation group
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it is braiding, an element of a braid group!it is braiding, an element of a braid group!

Anyons



Artin, Ann. Math. 48, 101 (1947)

A braid group for n strands (particles) hasA braid group for n strands (particles) has
n generators {1, n generators {1, σσ11, , …… ,  , σσn-1n-1} which} which
satisfy:satisfy:

              σσiiσσjj    =  =  σσjjσσii                  for |j - i| > 1for |j - i| > 1

… …

1 i i+1 i+2i-1 n

ExampleExample: : σσii

== Yang-BaxterYang-Baxter
equationequation

i i+1 i+2 i i+1 i+2

σσiiσσi+1i+1σσii  =    =  σσi+1i+1σσiiσσi+1i+1    

One-dimensional One-dimensional irreps irreps of of BBnn  correspond to correspond to abelian abelian fractional statistics:fractional statistics:

χθ  (σ) = eiθ       from U(1)

Higher dimensional Higher dimensional irreps irreps correspond to correspond to nonabelian nonabelian fractional statistics:fractional statistics:

χχθθ    ((σσ) = ) = eeiiθΛ θΛ   e.g.e.g.  fromfrom  SU(2)SU(2)

Braid group Bn



Topological quantum computation
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Topological phase

a ground state (possibly degenerate) of a certain gapped 2D many-body quantum systema ground state (possibly degenerate) of a certain gapped 2D many-body quantum system

•• quantum computing where fault-tolerance is naturally built into quantum computing hardware quantum computing where fault-tolerance is naturally built into quantum computing hardware
•• unique model of quantum computation which inspires new quantum algorithms unique model of quantum computation which inspires new quantum algorithms

•• states within topological phase depend only on topology and are decoupled from local errors  states within topological phase depend only on topology and are decoupled from local errors 
•• spectral gap exponentially suppresses thermal excitation of stray  spectral gap exponentially suppresses thermal excitation of stray anyons anyons and thus non-local errorsand thus non-local errors



Topological phases

Effective
description

Physical
realization

Microscopic models

• Toric code
• Kitaev lattice model
• quantum loop gas models
• string net models

Quantum lattices
• superconducting
   electronics
• trapped atoms
• polar molecules
• magnetic systems

Continuous systems
• fractional QHS
• graphene
• px+ipy sc
   - Sr2RuO4
   - He 3
• vortex lattices
  - BEC

topological quantum
field theories

Properties
• finite ground state
  degeneracy

  e.g.   kgenus

• excitation gap



Topological phases

•• Z Z22  xx Z Z22 theorytheory

••  SU(2)SU(2)22  Ising Ising theorytheory

•• SU(2) SU(2)33  ZZ33  Parafermion Parafermion theorytheory

SO(3)SO(3)33        FibonacciFibonacci

Quantum Hall state at  Quantum Hall state at  νν = 5/2 = 5/2

Kitaev Kitaev honeycomb modelhoneycomb model
(phase B in magnetic field)(phase B in magnetic field)
•• neutral atoms in optical lattices neutral atoms in optical lattices
•• lattices of polar molecules lattices of polar molecules
•• arrays of  arrays of Josephson Josephson junctionsjunctions

ppxx  + + ipipyy  superconductorssuperconductors

Quantum Hall state at  Quantum Hall state at  νν = 12/5 = 12/5

Fendley loop gas model at k=3Fendley loop gas model at k=3

Toric Toric codecode
Kitaev Kitaev honeycomb model (phase A)honeycomb model (phase A)
Freedman loop gas model at k=1Freedman loop gas model at k=1
Fendley quantum loop gas at k=2Fendley quantum loop gas at k=2
etc.etc.

•• Other general theories Other general theories Levin-Levin-Wen Wen string netsstring nets

Topological quantumTopological quantum
computationcomputation

Topological quantumTopological quantum
memorymemory

RealizationRealization ApplicationApplication

Non- Non- abelianabelian

AbelianAbelian

TQFT/CFTTQFT/CFT

Quantum computationQuantum computation
with  partial topologicalwith  partial topological
protectionprotection

(1, σ, ε(1, σ, ε))

ε ε xx ε ε =  = 11

ε ε xx σ σ =  = σσ

σ σ xx σ σ = 1+  = 1+ εε

(1, τ(1, τ))

τ τ xx τ τ =  = 1 + τ1 + τ

Fendley Fendley loop gas modelsloop gas models

(1, (1, e, m, e, m, emem))



Toric code

Qp = Πplaquetteσz

Qs = Πvertexσx

Spin-1/2 particles on edges of a square lattice

Toric code

• is exactly solvable

• exhibits abelian topological phase, specifically

       - its ground state is 4-fold degenerate on torus, and
       - the system has a robust spectral gap to the first excited state at thermodynamic limit

[Qs, Qp] = 0



Particles of the toric code

Qs = ΠC σ
x

Qp = Πplaquetteσz

Qs = ΠC σ
z

Qs = Πvertexσx

e and m particles are semions,
i.e. anyons with the statistical phase i

Magnetic charges m

X

X

X

X

Composite particle me

C

Z

Z

C

Electric charges e

Braiding

e and e (or m and m) particles braid
as bosons

e-m composite particle is fermion



Kitaev honeycomb lattice model

Jx = 1,
Jy = Jz = 0

Jy = 1,
Jx = Jz = 0

Jz = 1,Jx = Jy = 0

B
A A

A
Phase diagram:

• phase A - can be mapped perturbatively
   onto Toric code with particles (1, e, m, em);
• phase B - gapless.

H0 = Jx Σi,j σx
iσx

j + Jy Σi,j σy
iσy

j + Jz Σi,j σz
iσz

j
x-link y-link z-link

= Σα Jα Σi,j σαiσαj =  Σα Jα Σi,j Kα
ij α -link:

A.Y.Kitaev, Ann. Phys. 321,  2 (2006).

H = H0 + Σi Σα=x,y,z Bασα,i

In magnetic field:

• phase B acquires a gap and becomes
   non-abelian topological phase of Ising type

z -link

y -link

x -link



Mapping abelian phase onto Toric code

A.Y.Kitaev, Fault-tolerant quantum computation by anyons, 
Ann. Phys. 303, 2 (2003).

Effective spins

- are formed by ferromagnetic ground states of -Jzσj
zσk

z

D “dimers”



Mapping abelian phase onto Toric code

Effective Hamiltonian

first non-constant term of perturbation theory 
occurs on the 4th order 

defined on the square lattice with effective spins on the vertices

A.Y.Kitaev, Fault-tolerant quantum computation by anyons, 
Ann. Phys. 303, 2 (2003).

Toric code

the effective Hamiltonian is unitarily equivalent to
toric code on the green lattice



Mapping abelian phase onto Toric code

Toric code particle types

• magnetic charges live on plaquettes of the toric code lattice

• electric charges live on its vertices

A.Y.Kitaev, Fault-tolerant quantum computation by anyons, 
Ann. Phys. 303, 2 (2003).
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Vortex operators

Wp = σx
1σy

2 σz
3σx

4 σy
5σz

6 =

      = Kz
1,2Kx

2,3Ky
3,4Kz

4,5Kx
5,6Ky

6,1

wp = <n|Wp|n> = +1 wp = <n|Wp|n> = -1

[H0, Wp]  = 0

H0 |n> = En |n>

p

Kβ
k+1,k+2 K

α
k,k+1= - Kα

k,k+1K
β

k+1,k+2(Kα
k,k+1 )

2 = 1

σz

σy

σx

z -link

y -link
x -link

1

2

3

4

5

6

p p



Vortex sectors

the Hilbert space splits into vortex sectors, i.e. subspaces of the system with a particular
configuration of vortices

m
m

ww
ww
LL

,....,1
,.......,1

⊕=

{wp = <n|Wp|n> = ±1} for all plaquettes p

Each energy eigenstate |n> is characterized by some vortex configuration

also the vortices are always excited in pairs,
i.e.  even-vortex configurations are relevant on closed surfaces or infinite plane,

… …

vortex free sector full vortex sectorexamples from two-vortex sectors



Products of vortex operators

Wp Wp+1 =  Kz
1,2Kx

2,3Ky
3,4Kx

5,6Ky
6,1 Kx

4,7Ky
7,8Kz

8,9Kx
9,10Ky

10,5

σz

σy

σx

z -link

y -link
x -link

p
1

2

3

4

5

6

7

8

9

10

p+1

Products of vortex operators generate closed loops

Ki,j
α(1)

 Kj,k
α(2)

 …Kp,q
α(Μ−1)

 Kq,i
α(Μ)

(we used (Kα
k,k+1 )

2 = 1)

On torus, this gives the condition

Πp Wp = 1



Loop symmetries on torus

For a system of N spins on torus (i.e. a system with N/2 plaquettes),  Πp Wp = 1  implies that there
are N/2-1 independent vortex quantum numbers {w1, … , wN/2-1}.

Loops on torus

- all homologically trivial loops are generated by plaquette operators

- two distinct homologically nontrivial loops needed
  to generate the full loop symmetry
  group (the third nontrivial loop is a product of these two).

The full loop symmetry of the torus is the abelian group with N/2+1 independent generators of
the order 2 (loop2=I), i.e. Z2

N/2+1.

All loop symmetries can  be written as

C(k,l) = GkFl(W1, W2, … , WN-1)

where k is from {0,1,2,3} and G0 = I, and G1, G2, G3 are arbitrarily chosen symmetries from
the three nontrivial homology classes, and Fl, with l from {1, …, 2N/2-1}, run through
all monomials in the Wp.

Ki,j
α(1)

 Kj,k
α(2)

 …Kp,q
α(Μ−1)

 Kq,i
α(Μ)



where

HD |ψ0> = E0 |ψ0> 

Effective (low energy) Hamiltonian

G. Kells, A. T. Bolukbasi, V. Lahtinen, J. K. Slingerland, J. K. Pachos and J. Vala,
Topological degeneracy and vortex manipulation in the Kitaev honeycomb model, Phys. Rev. Lett. 101, 240404 (2008).

D 2N/2 degenerate ground state
= “ground state manifold”

U

H = HD + U

Brillouin-Wigner perturbation theory

For any exact eigenstate |ψ> of the full Hamiltonian H, the projection onto ferromagnetic subspace
|ψ0> = P|ψ>  satisfies

|ψ> = (1 - G)-1 |ψ0>

Calculating n-th order corrections is equivalent to finding the nonzero elements of the matrix H(n)

Contributions to H(n) comes from the length n products                                     with 
that preserves the low energy subspace.



Effective (low energy) Hamiltonian
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N Wp Qp

trivial

nontrivial
- reflects topologyG. Kells, A. T. Bolukbasi, V. Lahtinen, J. K. Slingerland, J. K. Pachos and J. Vala,

Topological degeneracy and vortex manipulation in the Kitaev honeycomb model, 
Phys. Rev. Lett. 101, 240404 (2008).

The resulting low-energy Hamiltonian can be written in terms of operators acting on the spins

of the “dimers” using the transformation rules

The lowest order non-constant contribution comes from the plaquette operators

Expanding to all orders gives the contributions from all loop symmetries both homogically trivial

and homologically nontrivial:



Finite-size effects in small systems on torus
Toric code emerges on the 4th order of perturbation theory the low energy sector of H:

For smaller systems, the finite size effects are substantial on the 4th order,
for example N=16:

The minimal size of the lattice with
no finite size terms on the 4th order is
N = 36
i.e. Toric code on the lattice of 3x3 square plaquettes
which properly represents the torus

The toric code spectrum can be reconstructed by extracting
the finite size effects from the spectrum of the full model

G. Kells, N. Moran and J. Vala,
Finite size effects in the Kitaev honeycomb lattice model on torus,
J. Stat. Mech. – Th. Exp., (2009) P03006



Creating and annihilating vortices

A Pauli operator σαk at a vertex k
flips the vortex states of those plaquettes
which share the link α(k) originating at the vertex k

      Wpσαk|ψ> = - wp|ψ>

Wp|ψ> = wp|ψ> where wp= ±1

… and the same kind of operation can be used to move vortices between plaquettes …

… however, moving vortices cost energy in general

<φ|σαkHσαk|φ> = <φ|H|φ> + 2Jβ<φ|Κβ
β (k)|φ> + 2Jγ <φ|Κγ

γ(k)|φ>

Wp = σz
1σ

y
2 σ

x
3σ

z
4 σ

y
5σ

x
6 = Kx

1,2K
z
2,3K

y
3,4K

x
4,5K

z
5,6K

y
6,1

and that in general spoils the statistical phase.

σz

σy

σx

z -link

y -link
x -link

β

α

γ

k



Statistics of vortices

Exploiting spin-statistics theorem

The statistical phase associated with 2π rotation of a pair of vortices is -1, that means

•  the pair of vortices form a fermion (of a new kind)
•  the vortices are semions, i.e. abelian anyons with the statistical phase i = (-1)1/2

These fermions are created by
 applying a two-spin operator

Kα
k,k+1 = σαkσαk+1

σz

σy

σx

z -link

y -link
x -link



Mutual statistics of fermions and vortices

vortex

m

m

e

e

e

m

e



Mutual statistics of fermions and vortices

excitation of a pair of fermions by the operator
Kα

k,k+1 = σαkσαk+1  with α = z

σz

σy

σx

z -link

y -link
x -link

m

m

e

e

e

m

e

vortex



Mutual statistics of fermions and vortices

σz

σy

σx

z -link

y -link
x -link moving fermions costs no energy

m

m

e

e

e

m

e

vortex



Mutual statistics of fermions and vortices

σz

σy

σx

z -link

y -link
x -link moving fermions around the vortex

with no energy cost

m

m

e

e

e

m

e

vortex



Mutual statistics of fermions and vortices

σz

σy

σx

z -link

y -link
x -link

m

m

e

e

e

m

e

vortex

Phase associated with a closed loop operation is the vortex-vortex statistical phase,
here between the “electric” vortex of the fermion and a “magnetic” vortex
inside the loop.

As moving fermions costs no energy, the operation represents a clean realization of
abelian statistics in the Kitaev honeycomb lattice model.



Conclusions
SymmetriesSymmetries

• classification of all closed loop symmetries of the Kitaev model valid for all parameter ranges and
  all possible lattice configurations
• exact perturbative derivation of the full effective Hamiltonian of the model on torus

Spectral propertiesSpectral properties
• complete classification of finite size effects on torus
• spectral properties of the this torus limit exhibits spectral features which are strikingly similar to the
  behavior of full model without and with magnetic field (in progress, numerics)
• perturbative magnetic field opens spectral gap in the nonabelian phase on torus (numerics)

QuasiparticlesQuasiparticles

• found a new kind of free fermions
• applied to realize anyonic statistics  in the honeycomb model without relying on perturbative
  mapping of the toric code operations

V. Lahtinen, G. Kells, A. Carollo, T. Stitt, J. Vala, and J. Pachos,
Spectrum of the Non-Abelian Phase in Kitaev’s Honeycomb Lattice Model,
Ann. Phys. 323, 2286 (2008).

G. Kells, A. T. Bolukbasi, V. Lahtinen, J. K. Slingerland, J. K. Pachos and J. Vala,
Topological degeneracy and vortex manipulation in the Kitaev honeycomb model,  Phys. Rev. Lett. 101, 240404(2008).

G. Kells, N. Moran and J. Vala,
Finite size effects in the Kitaev honeycomb lattice model on torus,
J. Stat. Mech. – Theory Exp., (2009) P03006

G. Kells, A. T. J. K. Slingerland, and J. Vala,
A description of Kitaev’s honeycomb model with toric code stabilizers,  arXiv:0903.5211 (2009).



A A decription decription of of KitaevKitaev’’s s honeycomb modelhoneycomb model
with with toric toric code stabilizerscode stabilizers

NEW & MORE DETAILED VERSION G. Kells, A. T. J. K. Slingerland, and J. Vala,
AT ARXIV TODAY        A description of Kitaev’s honeycomb model with toric code stabilizers,  arXiv:0903.5211 (2009)

Definition of hard-core bosons and
effective spins of the “z-dimers”

Hamiltonian

Vortex operators



A A decription decription of of KitaevKitaev’’s s honeycomb modelhoneycomb model
with with toric toric code stabilizerscode stabilizers

Strings

Fermionic operators
(Jordan-Wigner)

Hamiltonian

Momentum representation

Bogoliubov transformation

BCS-type state

In addition the paper includes also:
• fermionization on torus
• effcetive magnetic field (non-abelian topological phase)
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