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I. Motivation &
Overview



What is DD?...

From: Coherent averaging techniques
Coherent control of nuclear spin Hamiltonians in high-resolution NMR spectroscopy.

E.L. Hahn, PR 80, 580 (1950);
U. Haeberlen & J.S. Waugh, PR 175, 453 (1968).

Paradigmatic example: Spin echo

© Refocusing — Use of tailored pulse sequences to selectively 'turn off' )
undesired spin couplings over a time interval.

1 2 .
H=w,0,+w,0, — H4=0 Non-selective

1 2 1 .
H=w,o,tw,0, — Hg=w,0, Selective

© Decoupling — Refocusing of couplings to a specific subset of degrees ,_.+
of freedom, which are effectively 'traced out'.

1 2 1 2 1
H=w,o,tw,oc,+J 0,0, - Hgy=w,0,

Motivation:

. . . . . ey The “race-track” echo:
- Elimination of couplings during signal acquisition; Effective time reversal

- Enhancement of spectral resolution.
|

Ll



Why do we need it in QIP?

To: Dynamical decoupling techniques <> Open-loop Hamiltonian engineering

Open-loop dynamical control schemes relying on the application
of unitary control operations drawn from a basic (finite) repertoire.

Motivation: Need for effectively removing unwanted coherent and decoherent evolution
ubiquitous in physical realizations of QIP!

© Dynamical coherent control of unitary (closed-system) evolution:
- Halt natural evolution: 'no-op'/quantum storage
- Switch off selected qubit couplings: Universal Hamiltonian simulation

- Remove couplings to non-computational degrees of freedom: Leakage suppression

© Dynamical coherent control of non-unitary (open-system) evolution:
- Remove coupling to environment: Decoherence suppression (no redundancy, no measurement)
- Symmetrize coupling to environment: DFS/NS synthesis

Remark: Control tasks meaningful for both physical and logical (encoded) qubits...
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A paradigmatic example: DD of qubit dephasing-|

LV & S. Lloyd, PRA 58, 2733 (1998).

Dephasing spin-boson model:
Ho=He®l+1®H+Hg=w,0,81+18), wblb+0,8), g.(b+bl)

= Preferred (z) basis: [H,,Hg|=0 — Hovewer, genuinely quantum bath: [H_,H]#0

Free [exact] coherence dynamics:
o (1)=C0|p(t)[1)=py, (0)exp(2iw, t)exp (- Iy (t))

1—cos(wt) Decoherence function

2
w

()=, dwl(w)[2n(w,T)+1]

Spectral density

Control action:
A train of identical, resonant mpulses, with separation At — arbitrarily strong and fast (BB).
Elementary spin-flip cycle of duration T_=2At:

U(T,)=PU,(At)PU (At)=e " 2e' "o =g ' Male H' =P'H P=—H +H_-Hg

Hg=H',+H,+O(At)~1s®H.  Approximate time reversal as long as bath is 'frozen'!

B ______________________________________________________________________|
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A paradigmatic example: DD of qubit dephasing-2

Controlled [exact] stroboscopic coherence dynamics, t, =NT, :

1—cos(wty)

Io(ty)=T.(ty)= [, do I (w,T)20(w,T)+1]
/

DD-renormalized spectral density

limTc—’O,N—nzo plo(tN:NTC>:plo(O) 08k

0.6

Decoherence suppression if control period -
T, shorter than memory correlation time. D

0.5
0.4
0.3

021

= Formal analogy with quantum Zeno
(and anti-Zeno) physics

0.1f

= Requirement for 'coherent averaging':
— At At
Tpp X T, Dl/wc— min{ T} Le_0o01 =0.1 w,ty=2 N( )

Non-Markovian error regime
9 N=1.....N =50



10+ yrs of DD: An (incomnplete) overview...

1998
1999

2000

2001

2002

2003

BB control for single qubit. Viola & Lloyd, PRA 58, 2733

Error suppression/symmetrization. Viola, Knill, Lloyd, PRL 82, 2417; Zanardi, PLA 258, 77
Universal decoupled control. Viola, Lloyd, Knill, PRL 83, 4888; Duan & Guo, PLA 261, 139

Parity kicks for quantum oscillator. Vitali & Tombesi, PRA 59, 4178

Dynamical generation of NSs/DFSs. Viola, Knill, Lloyd, PRL 85, 3520

Algebraic framework. Knill, Laflamme, Viola, PRL 84, 2525; Zanardi, PRA 63, 012301
Collisional decoherence suppression. Search & Berman, PRL 85, 2272; PRA 62, 053405
Off-resonant effect suppression. Tian & Lloyd, PRA 62, 050301
Exp. BB suppression of single-photon dephasing. Berglund, quant-ph/0010001

Inhibition of decay to continuum. Agarwal, Scully, Walther, PRL 86, 4271

Encoded dynamical decoupling. Lidar & Wu, PRL 88, 017905; Viola, PRA 66, 012307

Decoupling based on orthogonal arrays. Stollsteimer & Mahler, PRA 64, 052301

Exp. realization of encoded dynamical decoupling. Fortunato, Viola, NJP 4, 5.1
Universal quantum simulation. Wocjan et al, QIC 2, 133; Lloyd & Viola, PRA 65, 010101
Heating/finite temperature reservoir. Vitali & Tombesi, PRA 65, 012305
DFS dynamical generation. Wu & Lidar, PRL 88, 207902

Solid-state QC design and decoherence. Byrd & Lidar, PRL 89, 047901
Universal leakage suppression. Wu, Byrd, Lidar, PRL 89, 127901
Geometric interpretation of BB control. Byrd & Lidar, QIP 1, 19
Robust bounded-strength design. Viola & Knill, PRL 90, 037901

B ________________________________________________|

15



An (incomplete) overview - Continued...

2004

2005

2006

2007

2008

2009

Connection with quantum Zeno physics. Facchi, Lidar, Pascazio, PRA 69, 032314
Application to 1/f spectral densities/power spectra. Shiokawa & Lidar, PRA 69, 030302
Faoro & Viola, PRL 92, 1179051

Connection with universal dynamical control. Kofman & Kuritzki, PRL 93, 130406
Decoupling based on Hamilton cycles. Roetteler, quant-ph/0408078
Equivalence with orthogonal arrays. Roetteler & Wocjan, quant-ph/0409135
BB control of nuclear quadrupolar qubit. Fraval et al, PRL 95, 030506
Concatenated dynamical decoupling. Khodjasteh & Lidar, PRL 95, 180501
Random dynamical decoupling. Viola & Knill, PRL.94, 060502
Santos & Viola, PRL 97, 150501

PAREC/Embedded dynamical decoupling. Kern & Alber, PRL 95, 250501
Decoupling based on Eulerian orthogonal arrays. Wocjan, PRA 73, 062317
Exp. BB control of fullerene qubits. Morton et al, Nature Phys. 2, 40
Optimal decoupling for dephasing spin-boson model. Uhrig, PRL 98, 100504
DD for QDs/Long-time decoherence freezing. Zhang et al, PRB 75, 201302
Universality of Uhrig DD for dephasing. Yang & Liu, PRL 101, 180403
Exp. DD-enhanced nuclear spin memory in P:Si. Morton et al, Nature 455, 1085
Exp. BB control of polarization qubits. Damodarakurup et al, arXiv:0811.2654
Exp. Uhrig DD in trapped ions. Biercuk et al, Nature 458, 996
Dynamically corrected gates. Khodjasteh & Viola, PRL 102, 080501
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II. Control-theoretic
Framework



Systermn assumptions

CONTROLLED

CLASSICAL | TARGET
—> = | DYNAMICS

CONTROLLER | SYSTEM, S

: ENVIRONMENT, E

Htot(t) = [HS+ Hctrl(t)] ® |E+ IS® I_|E+ za Ea® Ba
© Target system S is in general an open quantum system: Total 'drift' Hamiltonian
Hy=H®l ;+| ®H+H, Hg traceless

H ~ H ® H, Hy~ CY forsomed, d= 2" for nqubits

Reduced system dynamics:
ps(t)=Trace{U (t) p5(0)® p(0)U ™ (1)}

Closed-system limit (unitary dynamics) recovered for Hg =O0.

© Hg responsible in general for unwanted non-unitary/decoherence effects:

H £~ Za Sa® Ba 1 S traceless <« Error generators

— Bath operators Hg, B, are assumed to be bounded but otherwise (potentially) unknown.

IL



Control assumptions

CONTROLLED

CLASSICAL | TARGET
—> = | DYNAMICS

CONTROLLER | SYSTEM, S

: ENVIRONMENT, E

Htot(t) = [HS+ Hctrl(t)] ® |E+ IS® I_|E+ za Ea® Ba

© Environment E is uncontrollable: Adjoin controller acting on S only,

Ho(=H (8le, H(t)=2 (H,®!¢) uy(t)
Design object: U.(t)=Texp{—i f; dx H_(X)] <« Control propagator

© Controlled evolutions are most easily described in a frame that follows applied control,

~

pe(t)=UL(t)pe(t)U (1)

~ t
0 ()=U (U (t)=Texp[-i [, dx UL(X)H,U(X)] < Logical (or toggling-frame)

propagator

— Logical-frame evolution is ruled by time-dependent Hamiltonian H (t)=U!(t)H U (t).

E———_____________________________________________________________________|
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Control objective and performance

DD problem = Open-loop steering problem for the (joint) propagator in an
appropriate frame, subject to relevant control constraints.

@ Assume that control inputs u(t) can realize a set of instantaneous BB pulses.
DD benchmark: Suppress evolution due to Hg and/or Hgover desired evolution time T

~

U(T)~10U(T), T>0 NOOP gate/'time suspension'

Arbitrary state preservation:

p(T)=ps(0)8[U(T)p(0)ULT)] = pg(T)=U (T)ps(0)UL(T)=ps(0)=|p )]

© Characterize DD quality by appropriate performance indicators, e.g.:
- Worst-case pure-state error (probability):

€= Max|w>{TraceS(P§bS(t))}, Ps=|w><w|, Ps=1s—Pg
1—er= Minimum (input-output) fidelity

- Average input-output fidelity or gate entanglement fidelity...
- Fidelity error for a fixed [generic] initial state...

E———___________________________________________________________________________|
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Classitication of DD schemes

Design of DD schemes largely influenced by:

@ Assumptions on control resources:

Pulsed vs Continuous
Unbounded vs Bounded strength
Unbounded vs Bounded rate

(1) Type of control operations —

(2) Mode of applying control operations —  Deterministic vs Randomized
(Cyclic vs Acyclic)

(3) Accuracy of control operations — Perfect vs Faulty
(Systematic vs Random errors)

© Assumptions on target Hamiltonian: Known vs Unknown (Model uncertainty)
Time-independent vs Time-varying

ATTENTION PLEASE! Generic vs Local structure (Efficiency)
€6

No claim (hope) of completeness — focus on basic DD design...

B
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I11. Bang-Bang
DD Protocols



Periodic DD: Average Hamiltonian description

@ Assume that controller operates cyclically: U (t+ Ty = U () for T, > 0. Cycle time
= Stroboscopic controlled evolution: U.(T)=1s, U(ty=MT)=0(t,=MT,)
C C ! M C M C

© Assume that drift Hamiltonian is time-independent, with H H OHS K =Max|eig(H,)|

= A time-independent average Hamiltonian exists such that

U (tM =M TC)ZeXp{—i ﬁtM}ZeXp{— i(ﬁ(o)-l-ﬁ(l)-l-...)tM} Magnus series

ﬁ(O)

— 1 ¢T. ~ — i T, t, ~ ~
HOZT_fO dt, F(t,), Hm:_ﬁf‘) dt, [ dt, [F(t,),F(t,)]

Convergent for KT, < 1. Higher-order terms H'™ T_= O(KT,)", m>1.

o First-order decoupling: Generate H to lowest order in T, by noticing that

H, approaches H in the fast control limit, T,= T/M, M — oo.

© Physical requirement for manipulation:
Coupling must remains coherent over manipulation time scale, T. < T.= min; {T; 0T }

Focus on H , design




Group-based DD design

Keyword: Map time-average into group-theoretical average.

© Decoupling group: G = {g;}, ] = 0...., OGG 1. G acts on state space Hg via a
faithful, unitary, projective representation,

H(g) = g€ Maty (C), 0,0,=0, 0, uptophase, §,=1s.

© PDD protocol: Let T, =OgCAt and assign U(t) over T, as

0 At s
N —>
BRl(—1)At+s|= a8 —t
t=(-)At+s 1=1,..,060
0, teA
N teAt Instantaneously change control propagator
U.(t)= I 2 at the end of each control subinterval.
G511 €AY C A o oA
6 4=Pg 9=Pg
U.(t) | | : : |
Sequence of BB pulses P, P, P,
Pe= .0l Ho(t) ———————t+——

II1.2



Decoupling by symmetrization

© Lowest-order BB effective Hamiltonian:
i 1 o . o
H0=mzj ngogj=(H§®lE>(H0) G-symmetrization
H@ is the projector onto the commutant @ '= {operators commuting with all @j}.

Filter out unwanted evolution using symmetry

(1) Closed-system setting:

= II:(H,)=0: Non-selective (maximal) refocusing (aka: 'annihilation")
= II-(H,)#0: Selective refocusing

Refocusing Error suppression

(2) Open-system setting:

1
G

= H/g\(sa)

-Hsgj)®| et 1 S<S§>HE+Za(

= I1-(S,)=S,: Error symmetrization

Remark: If gacts irreducibly, averaging is always maximal by Schur's Lemma, E& =C| .

II13



BB DD by example-!

Ty Ty

1. Single qubit with pure dephasing:
gA():l | @1=0'X |

H,=w,0,8| .+ ;®H+0,8B,
T.= 24t

G= %=1{0,1}, represented as G =l 0|

— 1
0775 [I o,l +o,0,0, ]ZO Time-symmetrize

2
= Second-order PDD by rearranging control path, . T T .
0=l ] 9=0x | g=I
Uc(Tc_t)=U0<t) =
T, = 2At
Leading corrections of order O[(K T _)’].
2. Single qubit with arbitrary decoherence:
Ho=w,o,@1 c+1 ®H+>, ,.0a®B,
G = % X %= {(0.,1), (1,0)}, represented as ’g\={| T, ,Uy,az}
Ex=%[l o, +o,0,0,+0,0,0,+0,0,0, ]=O, etc. | T, T, L™ T,
I
— Different group paths yield same H®' but
| grolp paths vl R bu T.= 44t

different H'" .
|
Iy




BB DD by example-2

3. Quantum register with linear decoherence:
_\" (i) n (i) Rr()
Hy=2,  wo,'®l +I S®HE+Zi:IZa:x,y,zO-a ®B!

= Independent vs collective decoherence: 3nvs 3 error generators

G = % X %= {(0,1), (1,0)}, representedas g ={1 ,X,Y ,Z]

X=®_ o,=my, ec.(collective pulses) = 7.=0 Va,i. T, = 44t

4. Quantum register with arbitrary evolution and/or decoherence, d=2":

= Fully generic [unknown] Hgand/or Hg contain arbitrary n-body qubit operators.
G= 23X %, representedas G ,={l ,0,,0,,0,/'8..8(| ,0,,0,,0,]", |Gl=4"

= Recursively cycle each qubit through Pauli basis, e.qg., for arbitrary 2-body couplings.

Ho=zi:1wi0(z')+zi<,-:1Za,bzx,y,ngbUS@UL” Exp
inefficient...
R Y N [ (Y Y O [ NN BN B _
n=3 I I I 1 X X X X Z Z Z ZY Y YY Complexity
| X ZY | X Z Y I X ZY | X ZY grows as 4 -1

II1s5



The need for improved DD design...

BB PDD is very smple and attractive in principle, unfortunately way too idealized...

© Poor efficiency: Averaging becomes unpractical with growing group size OGL..

@ Low-level averaging: Unwanted interactions are removed only to the first order...
F_(T) 21—0(T2At2||Hm||4)

= High-level

(1) Fidelity loss directly dominated by second-order corrections... DD design

(2) Residual error amplitudes add up coherently over multiple cycles...

@ Extremely unrealistic control resources...

(1) Instantaneous control pulses imply unbounded control strengths even for finite T.....
= Poor spectral selectivity. = DD beyond
= Inappropriate for including drift during pulses. BB assumption

(2) No build-up tolerance/reduced sensitivity against control imperfections...
(3) Estimated control rates may be/seem prohibitively high for realistic open systems....

= Improved convergence analysis

E———_____________________________________________________________________|
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Improving DD efficiency: Combinatorial design

M. Stollsteimer & G. Mahler, PRA 64, 052301 (2001); M. Roetteler & P. Wocjan, quant-ph/0409135.

Keyword: Make explicit reference to multipartite structure of the target system.
© Exploit combinatorial concept of Orthogonal Array (OA): e.g., OA(16,5,4,2)

H0=Zizlzin<j:1Za,bzx’y’z\]gbag)ﬁba(bj) I\/I:#control n: # qubits
time-slots
I I I 1 X X X X Y Y Y Y Z Z Z Z\ Everypairofrowscontains all
I Xy 2 1 X Y Z2 |1 X Y Z | X Y Z} 16possible pairs of symbols
I XY 2 Y Z | X Z Y X | X | Z'Y Big saving
I XY Z2 2 Y X | X | Z2 Y Y Z | X
over 49!

© Any OA(M,n,4,2) can be used to decouple n+1 qubits governed by an arbitrary 2-local (bilinear)
Hamiltonian using M control time-slots. OA(M,k,4,2) may be constructed from QEC codes with

parameters
4"

M=4" meN Efficient scaling M vs k
3 7 7

k=

Remark: OA approach may be extended to qudits with t-local interactions.

17



Boosting DD performance: High-level DD design

Design of high-level DD protocolsin the BB limit has explored different venues...

(1) Concatenated DD: Recursively apply a lower-order periodic sequence.

Optimize short-time performance by effective renormalization of H,,,:

2
) Khodjasteh & Lidar, PRL 95 (2005).

FT=1—O<T2||H o

= Number of required pulses grows exponentially with concatenation level...
= Very successful in single-qubit decoherence settings...
Zhang et al, PRB 75 (2007); 77 (2008).

(2) Optimal DD: Achieve exact cancellation of H____to desired order:
kTt

2(N+1)’

error

At =T sin’ k=1,2,...,N Uhrig, PRL 98 (2007).

= Linear complexity, however only for purely dephasing interactions...

(3) Randomized DD: Pick control operations and/or path at random.

Optimize long-time performance by enforcing probabilistic cancellation of H,, -

LV & E. Knill, PRL 94 (2005);

F.=1-0 (T AL |H oo ) Santos & LV, PRL 97 (2006).

= Robust against model uncertainty, however requires tracking of control trajectory...

—
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IV. Bounded-strength
DD Protocols |




Tools for bounded-strength design

Keyword: Eulerian cycles on Cayley graphs.

@ Given G, choose a set of generators, '= {y, }, A=1,..., 1" .

Rules for constructing the Cayley graph G(G, I') :

= Assign a vertex to each group element.
= Assign a color to each generator.

= Join vertex g,.; to g, by an edge of color A iff g =y, g.1.

G = %= { Py, P, Po3, Pi3, Pio3, Pz }
T = {veYo }={ P, Pa}l  YoVi= Vi Vo2

© Def: An Eulerian cycle on G is a cycle that
uses each edge exactly once. [Euler, 1766!] Po

© A Cayley graph supports Eulerian cycles of length
L= |g| 1T | Q)E (G (% ’ r)) = (y29 VZ?VZ? y]_? y29 y19 y]_? VZ? y]_? y]_? y29 y]_)

A



Eulerian DD (EDD)

LV & E. Knill, PRL 90, 037901 (2003).

Keyword: Design continuous U, (t) according to Eulerian cycle.
© Control resources: Assume ability to implement group generators,
At
3/A=Texp{—|fO dsh (s)=u(At), A=1,..,|T].

© Eulerian protocol: Choose Eulerian cycle Z¢ = (y34, ¥Yam - ¥a) 0N G (G, ).
Let T, = L At and assign U () over T_ as

0 At S, T,
| | 1 | |
U (t,_,+s)=u(s)U(t,_,) ' ! - ; '
t.1 = (I-)At =1,...,.L
ul(sz t=s During the I-th interval, use
U,(s) y, t=At+s as a control Hamiltonian
U.(t)= u,(s) Y. Vs t=2At+s the one that implements the

generator )A/AI, with ¥,

u(s)y, t=(L-1)At+s colouring the I-th edge in P..

V2



Eulerian symmetrization and robustness

© Lowest-order Eulerian effective Hamiltonian:
ﬁo=Q§(Ho)=H§(Ff(H o)) ; Ff(X)=—ZA= _t 0 ds UI(S)X UA(S)-
Still G-invariant, but average is over both the group generators and the control interval.

@ Provided that the errors generated during each interval are correctable by the DD group,
EDD achieves the same G-symmetrization of the BB limit with finite control strengths:

1 A )|
Ho=Qg(Ho)=ij gTj H, 0,

= BB limit formally recovered for F~(X)= X i.e. hy =0 during At,.
= A 2nd-order protocol may be obtained by a time-symmetric 'Euler supercycle' (SEDD).

© EDD automatically incorporates robustness properties against systematic control errors:
H'.(t) = H.(t) + AH_(t) = ideal control + error component

= Control errors are also symmetrized: Q;[AH (s)leCqg"

= Full 'fault-tolerance' if DD group acts irreducibly.

E———_____________________________________________________________________|
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EDD by example-|

1. Single qubit with pure dephasing revisited:

S/(//_»__\G(zz, r )
G=%=1{0,1},representedas G ={| ,o,] 0r . .1
Generatingset T ={ y;} ={1}, P-= (v, 1) v 7's
1
U, (t)=exp[~i[, dsh(s)a,]
Euler cycle:yy, v, = X X
u (At)j=c,=X

SEDD: (X X)(XtXT)
gzzL[ Cds ul(s)o,u(s)+ [ ds ul(s) o, 0,0 ]UX(S>]=

X z X

1 At T + . _ _ - |
B 2At fo ds [UX(S)UZ UX(S)_ ux(s)“z] =0 Continuous-time spin-echo

= No time-overhead wrto BB case.
= Second-order DD implemented by pairs of alternating-phase pulses.

— Robustness (1* order) against any systematic error along z,y:

Q:lo,(1)]=0, Qs[o,(t)]=0.

LV, JMO 51, 2357 (2004).

B ______________________________________________________________________________|
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EDD by example-2

2. Single qubit with arbitrary decoherence revisited:

9 t ¥
G= %X 2H=1{01),(1,0) (l’) 6 = >@

Generatingset I'={ vy,, >} = {(0,1), (1,0)}, '
4
?E - (y]_, ’ y]_a ) ) y]_’ ) yl) v 7‘
u,(t)=exp[~i [ dsh,(s)a,] 5 2

Uy(t)=exp{—if; ds hy(S)o'y} AR ; LY
X q
O——®

= Time-overhead wrto BB case: Factor of 2.
= Fully robust (to 1% order) against systematic faults.

Generators: X,
3. Quantum register with linear decoherence revisited: Eulercycle: X VXYY XV X

G= %X %={0D, 1,0}
Now work under the collective (tensor power) representation,
P = (Vi Vo Yas Vor Von Vi Vo V), With collective generators, y;=X'"'=X,®...9 X,

— Control may be realized through collective Hamiltonians: Y=Y ®..0Y,

u(xa“)=exp[— i f:) ds hx<5)(z: o) )>]

Khodjasteh & LV, arXiv:0906.0525.

Vs



V. (Some) Experimental
Demonstrations



Optical polarization qubits: Single-axis BB DD

Berglund [with P. Kwiat], quant-ph/00100001.

Qubit computational basis: {|H ), [V )] 1 13
09 =X
08 )
Input photon state: 0.7
06
¥ = [ doo Alw)]w)®]w), [w)=c,[H)+¢, V) = o
04
03
— Decoherence introduced by unwanted coupling gf
between polarization and frequency degrees of 0
freedom (frequency-insensitive detection). oo
— BB control according to G = %, = (1, X) implemented
by periodically interchanging polarization eigenstates, ! f"*‘*&';';;'g'\"
faster than optical correlation time Tt ,~L_/c, 08 - h
0.7
RIH)=[V), RIV)==%[H) > os.
/ 04 -
03 -
M2 or M4 waveplate, or o
optically active quartz rotator 0
0 1 2

B - I

\i ¢ Data
e a Data (QC)
N --- Theory
S Theory (QC)
N :
o

. \“ﬂ-t___'_

N
..................................................... ‘E
4 4 5 i i i i
\\ é
* ‘\‘Q + Data
e A Data (QC)
\\\ --- Theory
N | Theory (QC) |
*
T . +
SN



Optical polarization qubits: Two-axis BB DD

Damokarakurup €t al, arXiv:0811.2654 (Nov 2008).

Qubit computational basis: {|H ), V)]

= Decoherence in an arbitrary basis engineered through suitable cavity design:
Insert a Soleil-Babinet element in front of each of two 45-deg plane mirrors

= BB polarization control achieved through full
Pauli-group DD (two active operation/cycle)

G=2%X %= (,XY,2) = XZXZ

ELLIPTICAL STATE

Z=[H)(H|=[V){V],
X=[H)(VI+[V)(H] Without Bang-Bang With Bang-Bang

‘I =
= E\
0.9
Active DD-correction of Z08
arbitrary single-qubit errors TorfTon ¢ T0- ¢
5 g- 120 ag.-12° S
S I - 5018
] TRy Ao a4 o ;ﬂ"?{
ool 2= =p=36 == A
0 1 2 3 4 5 & 7 8 g 0 1 2 3 4 5 & 7 8 9

# bang-bang cycles # bang-bang cycles
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DD in solid-state nuclear-quadrupole qubits

System: Crystal of Y,SiO; doped with Pr’* ions.
Electronic ground state splits into 3 doubly degenerate levels with m,=+5/2,+3/2,+1/2

Fraval, Sellars & Longdell, PRL 95, 030506 (2005).

= Quantum coherence stored in hyperfine transition m=—1/2 — +3/2

= Decoherence primarily due to slowly fluctuating magnetic fields as a result of cross-relaxation

DD according to
G= %= (X

Hyperfine coherence time
a | extended to > 30s.

Do B L Optimal B-field, T,0 = 0.86 s
T -
20} ~ TR
" B
X WX
Py b
o 20 Detuned B-field, T,0 = 100 ms * .
!-{ .
15} A, .
. L
10— D 1 : z
107 10 10 10

Eang Bang cycling time At (ms)
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DD in electron-nuclear spin qubits

Morton et al, Nature Phys. 2, 40 (2006).

b=

2-qubit system supported by 4 levels in 12-level
spin manifold of fullerene N@C60 molecule:

Nuclear spin polarisation
- a

mg="=+3/2,—3/2, m*=0,1

0
Time (ps)

(Imperfect pulses)

= Strong engineered coupling (RF driving) is
introduced to drive Rabi nuclear oscillations,
and removed by DD on the electron.
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= DD-enhanced quantum storage of electron-spin state
in the nuclear-spin state of 3P in %Si single crystal.

Morton et al, Nature 455, 1085 (2008).
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DD in trapped-ion qubits

Biercuk et al, Nature 458, 996 (2009); arXiv:0905.0286 (May 2009).

System: Array of °Be* ions in a Penning trap.
Qubit states: Ground-state electron-spin-flip transition.
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Normalized counts

- Phase decoherence due to ambient [magnetic field]
noise as well as engineered phase noise
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noise spectrum
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= Quantitative comparison between BB control based
on uniformly spaced vs optimally spaced T, pulses in
different purely-dephasing environments

Normalized counts

UDD significantly outperforms uniform DD in the
presence of noise with a 'hard' spectral cut-off.
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Essential reading on DD theory

@ Dynamical suppression of decoherence in two-state quantum systems —
LV & S. Lloyd, Phys. Rev. A58, 2733 (1998).

@ DD of open quantum systems —
LV, E. Knill & S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999).

@ Robust DD of quantum systems with bounded controls —
LV & E. Knill, Phys. Rev. Lett. 90, 037901 (2003).

© Fnhanced convergence and robust performance of randomized DD —
L.F. Santos & LV, Phys. Rev. Lett. 97, 0150501 (20006).

@ Performance of deterministic DD schemes: Concatenated and periodic sequences —
K. Khodjasteh & D. A. Lidar, Phys. Rev. A 75, 062310 (2007).

@ Keeping a quantum bit alive by optimized n-pulse sequences —
G.S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007).

@ ntroduction to quantum dynamical decoupling —
LV, Book chapter, forthcoming [check my research group webpage @Dartmouth...]

wThank, you for your attention...




