QUANTUM CONTROL OF LIGHT AND MATTER
Kavli Institute for Theoretical Fhysics — Friday, Jul 10, 2009

Quantum Error Correction:

Lorenza Viela

Lorenza.Viola@Dartmouth.edu

T4 T RECHTIT
L By T

C e N ESENERERSSN R R
Department of Physlcs and Astronomy, Dartmouth College




The quest for high-fidelity dynamical control

Scalable QIP requires that information is realized fault-tolerantly

@ Physical QIP devices are: o
= |mperfectly isolated: Environmental errors (decoherence, leakage...) " I
= |mperfectly controllable; Operational errors (systematic, random...) ,x’f &\.\
-
Methods for quantum error control need Mﬁ_
to remove more noise than they introducel —
RO
® Accuracy threshold theorem(s): 1
Shor 1996; Kitaev 1997; Knill et al 1998; Aharonové&Ben-Or 1998; i
Preskill 1998; Steane 1999, 2003; Knill 2005... : e,
: : T.h | :__9 | Hf‘i"ﬂ I
Fault-tolerant architectures require a small error per gate, 119 o il
EPG < EPG, . =~ 10° to 3x 1072
thres SORHES 0 <
— Experimentally achieved EPGs = 107... It 1% b
— Estimated number of physical CNOTs needed at EPG=1% e
i - 14
for 10° logical gates on 100 qubits = 10'4... peole -
ol S - | —
Lower EPGs are imperative - ! A
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Open-loop control to the rescve...

Advantages of 'open-loop' error mitigation include
(i) Design simplicity: No measurement and memory overheads; (ii) Established tradition
in high-resolution NMR; (iii) Increasing availability in QI technologies.

Y
Key idea: Coherent averaging of interactions
Simplify spectra by removing the splittings due to unwanted interactions.

Paradigmatic example: Spin echo - » Effective time-reversal
Hahn, PR 80 (1950).

Theory: Average Hamiltonian formalism
Haeberlen & Waugh, PR 175 (1968); Waugh, J. Magn. Res. 50 (1982).

QIP tasks: Engineering of closed- and open- system dynamics

- Halting natural evolution: No-op/guantum memory...

- Switching off qubit couplings: Hamiltonian simulation...

- Switching off coupling to environment: Decoherence control...
-Symmetrizing coupling to environment: DFS/NS synthesis...
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A paradigmatic example: Phase noise

EREEEN
Dephasing spin-boson model: LV & Lloyd, PRA 58 (1998,
H=0,0.+3 wblb,+0.0Y g(b+5]) 3 TN e
Control action (PDD ) y - \
A train of identical, resonant nt_pulses, with E " HH-,H
separation Ar — arbitrarily strong and fast (BB ). E ) I".
:Er o4 IIII
Decoherence suppression if control period ©e_gor gy ".
" " na T ' T: ) i I'
T_= 2Ar shorter than memory correlation time. A - '.II
oz r
y m;ﬁ:zm‘(f), | \
E ru" 1o ! ' 1w
o 3 T, b= 65ms Cutoff frequency * Time
ml‘_'l
-E?L‘;u Experimental demonstrations:
S = ) v BB control of fullerene qubits.
= E lo.=1.758%
EE 1 fun = Morton et al, Nature Phys. 2, Jan 2006.
L
= ]
§ - | I v DD-enhanced quantum storage of electron-spin state
C 0.0 0.5 1.0 in the nuclear-spin state of **P in ®Si single crystal.
Storage time ()
Morton et al, Nature 455, Oct 2008.
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Dynamical decoupling (DD) framework

[ | [ [ ][
3 l
CLASSICAL | TARGET l CONTROLLED
e 1
CONTROLLER | SYSTEM, § =P DYNAMICS
|
|

1
ENVIRONMENT, E |

H:m'r_'::ﬂ = (Hs + Hctrl':ﬂ) @ 'IE + 'r.‘:T @ l;L‘rj';‘_" Za E:.-E' BuE 'Jr_"rq:trl':i!tlJ +Herr{:r

Reduced system dynamics: ps(#)=Trace [ U (#)ps(0)® pe(0) U (1))

@ Environment E is uncontrollable: Adjoin (semiclassical) controller acting on S only,
H.(f=H_(0el =), (H &I ju/) - Control inputs

© DD objective: To actively correct a set of error Hamiltonians & ={H_ E_} by unitary
operations drawn from a finite control repertoire so that

UIT)=18U(T), T>0 = pg(T)=ps(0)=|y){y]

= BB setting: H_(r) realizes a set of instantaneous pulses — Unbounded controls,

H,. .. = 0 during each control operation

= Physical prerequisite: Time-scale separation — Non-Markovian error regime,
Thp << T. = min{t™"}
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Dynamical error control: (Some) theory challenges

© What about long-time high-fidelity quantum storage? =
DD performance for finite delay/long time depend critically on 'averaging' accuracy...
= Errors must be removed to high-order while keeping complexity reasonable.

© What about error-corrected quantum computation?

Different schemes for combining DD with universal control exist in the BB limit:
'intercalate’ gates with DD pulses... 'spread’ gate operation over DD cycle...

LV, Lloyd, Knill, PRL 83 (1999); Khodjasteh & Lidar, PRA 78 (2008).

= Performance bounds only derived for simplest DD schemes...
— Shortcomings: (i) Stringent synchronization; (ii) Encoding overheads; (iii) BB resources.

@ \What about (more) realistic control pulses?

&-pulse assumption too unrealistic for many control systems of interest. ..
= Open-loop engineering with bounded control inputs substantially more challenging.

Qutline:

Il. Case study: Long-time electron spin storage ina QD -
W. Zhang et al., PRB-RC 75, 201302 (2007); PRB 77, 125336 (2008).
lll. Dynamically corrected universal quantum gates — T
K. Khodjasteh & LV, PRL 102, 080501(2009); arXiv: 0906.0525.
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II. Dynamically corrected
quantum storage



Low-level DD: Periodic DD

LV, Knill, Lloyd, PRL 82, 2417 (1999 ); Zanardi, PLA 258 (1999),

& Control assumptions: (i) Cyclic controller U_ir+ T.) = U_(0), T, = 0,
<k

E.l'."ﬂ.|'|

(ii) Constant, norm-bounded Hamiltonian, ”H”E”H

© Group-based DD: Choose G, = {g fj=0..1G,,l- 1, g, =1, adiscrete group.
Periodic DD (PDD) implemented by letting T. = | Gop | At and by assigning Uit as

U‘{“_ljﬂf-k:}:g“l & &=FPa &=F.g

Fized group path — ' ! > : '
Sequence of BB control pulses Ar 3

© Cycle propagator: Compute via Magnus expansion, convergent for kT </ [fast control limit]

UT)=e™" H=), H" = H= Y dHg=0, (H)

=0
" |§ DDI 7

Decoupling

E_|=0, VE_ e}, E_traceless C
condition

Symmetrization of controlled dynamics: 'Filter out’' unwanted contributions by symmetry.
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Principles of high-level DD design

@ PDD suffers from coherent error accumulation due to higher-order Magnus corrections...

Heol)

Fr=l—D(TEﬂr3

© Design of high-level DD protocols [BB limit]:

(1) Concatenated DD: Recursively apply a lower-order periodic sequence.
Optimize short-time performance by effective renormalization of H,,:

F,=1-0 (T:| H’f}m”) Khodjasteh & Lidar, PRL 95 (2005): PRA 75 (2007).

= Number of required pulses grows exponentially with concatenation level...

(2] Optimal DD: Achieve exact cancellation of H,,,, to desired order:

3 .I:.'."iT

— - b — . 'I'_ i "
At =T sin IINTL) k=12,....N Uhrig, PRL 98 (2007 ).

=+ Linear complexity, however only applicable to pure dephasing...
(3} Randomized DD: Pick control operations and/or path at random.

Optimize long-time performance by enforcing probabilistic cancellation of H,,:

'f') LV & E. Knill, PRL 94 (2005);

f,=1—n(r.ﬂr5||H f :
Santos & LV, PRL 97 (2006 ); NJP 10 (2008).

[Slpraiy

= Robust against model uncertainty, however requires tracking of control trajectory...

KITP mz




DD by examples: Single-qubit setting

A
Hyro=1;8H +X®E +Y®B +Z®E.

@ The basic PDD sequence: "Universal DD' based on Pauli group PDD =fXfZIXfZ=C,

Gpp= & x5 > (L X Y.Z] m, m, m, T,

H%{g,}ﬂi(fg,f+xg,x+rg,r+za,z)=n, a=x,y,: _L Yo

- T=4 A -

— Decoherence error removed to lowest order, H'=1 .@H . —but H'" couples S-E...
— Different 'group paths' give different sequences with same H'"' but different "' .
@ [mprove PDD averaging by invoking...

= Symmetrization of control path: System SDD={fXZXfZ|[ Time-reverse|

operators removed in all odd order terms... I ITr ¥ Tlr" ¥ T 1y 1 iT ¥ T" ler‘; |
= Randomization of control path: At each cycle

pick path at random and symmetrize... ) SRPD=[fZfXfZfX|[Time-reverse|

= Concatenation: Recursively apply Pauli DD... I E: T ¥ T' X 1|T-' Y T Z ]|T-'J‘ |

c.=CPCPCPCP, A A

eg.: PCDD, = C,XC,7C XC,Z = [XFZXZIX[XIZIXZIZ... = [IXZOXNVIXEZENf[Repeat] T, =6 Ar
Operators coupling S-E appear at order H'*' and higher.
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DD of hypertine-induced decoherence

© Electron spinin a quantum dot: Central spin problem

Hy=hQ,S 0l +1,8Y T,0-T+50- Z AT,
?.Fg':"ﬁ" Zeeman Intrabath Hy perfine
=5 g B g splitting dipolar interaction contact interaction
R ) {\;‘L_"-:
N~ LOF = GaAs QD @ sub-K temperature, sub-T bias:l—
Vo w2 1 1
_, ¥ 2 ~ e ~ = ® o= 104 peV,
Ac= Aoy (), total strength Ay~ 90 eV, T~ g~ ’JNE A] 1

= Consistent with experimentally measured free induction decay times:
Ti=10ns<T,

Johnson et al., Nature 2005; Koppens et al., 5cience 2005; Petta et al., ibid. 2005...

@ A fairly peculiar DD problem: 'Pure-bath’ dipolar timescale © =~ 10-100 ps.
— (Approximately) non-dynamical and (strongly) non-Markovian nuclear spin reservoir.

= Simultaneous dephasing and relaxation dynamics in the limit of weak bias fields.

Questions: (1) What time scale suffices for good DD? _~ N 4 ~ 20 GHz... EG,_*”\"EA*HE{] MHz...
(2] What are best DD performers in realistic regimes?
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Control of electron spin coherence: Results

Focus on zero bias field and unpolarized initial bath state.
|. Objective: Arbitrary state preservation.

HEEI[!S’(IC pulse delays (> 1 ns) are wgll A L _ L kT ~w T ~N
outside Magnus convergence domain... JNA o © 0 F

an

=
o ]
a
S0k "'hh
y H‘:L

HF

%)

.1_- g

G

Gl
T 10

lime (164

= DD efficiency determined by spectral width & — not upper spectral cutoff:
Fidelity better than 90% achievable with pulse delays up to vN longer than worst-case estimate.

= Truncated CDD protocol (m=2) shows best performance, as long as pure bathH , =0 .
SRPD shows best randomized performance, over as few as 5 control realizations.
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Control of electron spin coherence: Results

Focus on cyclic DD protocols.
Il. Objective: Pure state stabilization/DF5 synthesis.

Initial electron spin may be aligned with 'effective field' created by control: Eigenstates of dominant
Magnus corrections are (approx) preserved. Orthogonal components decay in the long-time limit.

100
90r
- e ~30
Foun
L
& [Analocgy with
" f_'-..r=D1.i1i; spin-locking

physics. ..]

llse delay At

= Fidelity saturation indicates open-loop generation of a stable one-dim DFS.

= Analytical prediction for CPMG saturation value in the uniform limit A_=A:
F..= 1—%}?{,‘13 () = 1—%{3 0Ty

v DD-protected storage of exciton qubits in self-assembled QDs —
Hodgson, LV, D'Amico, PRB 78 [2008),
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IIL. Dynamically corrected
quantumn gatles



Towards error-correcting quanturn gates...

|
CLASSICAL | TARGET : CONTROLLED
CONTROLLER | SYSTEM, § : = | DynAMICS
: |

[ |
| ENVIRONMENT, E |

t)=(H.+H, (t)®I.+[.®H,+} E®B=H, (t)+H

H, t-nt( ctrl error

H = 0 during each BB pulse, whereas EPG = O(1||H,

errar for real-life finite T..

FFEIF”]

© [Some] hints from NMR:

(1) Composite pulses: H,, due to systematic faults — purely classical... \ﬁ
=+ Exploit non-linear composition properties of rotation errors...

© Goal: Reduce EPGin a generic gate while avoiding unphysical BB controls. ;"’7‘ 7 )5‘

Levitt (1983); Tycko (1983); Wimperis (1994 ); Brown, Harrow & Chuang, PRA 70 (2004).

(2] Strongly-modulating pulses: H,,.. due to internal spin Hamiltonian — fully known...

=+ Exploit coherent averaging of Hamiltonian error...
Fortunato et al, JCP 116 (2002): Boulant et al, PRA 68 (2003).

Unintended error component includes coupling to a dynamical environment,
over which no control/minimal knowledge may be available...
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System and control assumptions

& Target system 5: n-qubit drifless register underg:::-ing linear [non-Markovian| decoherence.

=2 D

Hyo=I.@H.+H

Error

Bath operators bounded but
otherwise unknown

@ Controller C: Implemented by time-dependent 'primitive’ Hamiltonians acting on 5 only,

|

h(t)o, h (1o

(il

h(fo'ea'|, i, j=1...n subjectto

(i) Finite-power constraint: Bounded control amplitude, h"{r] <h_

(i) Finite-bandwidth constraint: Minimum switching time for modulation, Trin > 0-

DCG block structure:

Each U, generates U, (t.z; ;)

with Errnr phase .:p‘r_

U"“j’”_l}zuan

Uﬂ
j

[F; : Fj—l}ﬂpl_ifj

Error action operator

¢,IJ| J‘: v UL;;{-’-',E}-_

_|' i

KITP
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(2, .1, )]

Task: Reduce total EPG

UN
EFGphysz{I{f= D mln” Efrﬂr'”]
Y
EFGE{:IFFE-EtEd - T.nt_ GILT _mln” ermr” :



Error cancellation via Evlerian DD

Step 1: Seek a combination which removes error while achieving NOOP gate.
LV & Knill, PRL 90 (2003).

© Eulerian DD (EDD): Assume ability to implement group generators, G = (I, ], I=1,..., L,

via bounded-strength primitive control Hamiltonians.
= EDD rule for applying generators: Follow an Eulerian cycle on the (Cayley) graph of G

Def. 1 [Cayley graph]: Vertex g, connected Def. 2 [Eulerian cycle]: Closed sequence of
to vertex g;w edge labeled by 7, iff g=8 M LxD edges that uses each edge exactly once

5 X

& Example: Arbitrary linear decoherence on n qubits @: - @

_ . . . . i p _
gm;u: —3-': Iri’: — “{allllj X[all_lj }?[all_I’ Ziall) ]'. g: {}h ], g flrr

= (ollective generators can be implemented by o ‘
collective primitive Hamiltonians — e.g. o I
i T . 1
Iirﬂ;IJ@...@IW:ﬂxp[—rID Fax[:_”.lds(zj Ij)] X‘m
l&l ~ ylall]

Yot [2 +]
¢Em= z;=l Zj':]_ UEI.¢.H;UEI.+¢EE:D
Eulercycle: X ¥ XY ¥ X ¥ X

Significantly smaller error compared to free evolution.
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Error cancellation beyond NOOP

Step 2: Seek a combination which removes error while achieving generic gate.

@ Additional knowledge of errors to be cancelled is needed: Exploit different gate

combinations sharing same error phase = M,=Uexp(—i®), M,=exp(—i®)

- . . i i
@ Modified Eulerian construction: Implement control path { .
which begins at 7 and ends at [7 on modified graph =2 = 1 1
li) To non-identity vertex, attach edge labeled by M, 7| 1 |18
(i) To identity vertex, attach edge labeled by M,, ! v
| 74 . ] J
Bpoe=P o+ 3. U DU +0l2E — 1,

Iy (x
Total 1st-order error vanishes as long as rdy el
primitive errors @, and @ obey DD condition

i ) " ,
Eulerpath: X / ¥ /T X T VY XY XU
= EPG=|d |2+]|| = O [max( ||1?I3'hj||2. ||| ]

-G

Significantly smaller error compared to direct switching.
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DCG: resourse requirements

Explicit constructions depend on specific 'pulse shape' assumptions:
Focus on piecewise constant controls — rectangular pulses:

= Assume that control profile over [¢,, t,| is obtained by stretching & scaling of a fixed
reversible pulse shape over [0, 1]:

h{ﬂ,f]=ﬂhu(:_—“), i€t 1]

ERLS!

A A
.-"f L
Rotation angle ¥
0 |
— Example of gate combinations sharing the same [leading] error phase:
.+ hoi0,1):
hl[ﬂ 3 El]- . | = 71 =
| : {I]M [1] = "I'_'M 1
0 21 _ 0 i 1
M, =C,, M ,= NOOFP -
DCG time overheads:

X
1 ‘ {
2x4=8 = l6timeslots per DCG for linear decoherence Qf 5 x:%

2x2=4 = 6timeslots per DCG for pure dephasing Euler path: X 1 X 1
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DCG circuits: Examples

Arbitrary linear decoherence onn =4 qubits.

= — R
U, = NOOP U, =R, 2(90)
4 __| -
1
;J-!J. -,!.':- F— -
Primitive Gates 7 | pidl wab 3 —
B B :
1— — R ol )
= o 1
5 . Primitive Gbes "
= Ti=i . ; X
ﬂ S lire=
4
3
2
1
- 1 )= 2)
Uy =CVZ

[Each single-qubit z rotation to be
further decompaosed in terms of
primitive x- and y- rotations...|
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DCG performance: Results

Case study: Cat-state benchmark under spin-bath decoherence.
£ |. Bath-induced error with ideal [bounded-strength| controls.

N - - n - N -
HE.I'J'EI.I'= IE@ZJ:=1 'rk!"r.tifl+25=1 Ui@2k=lﬂk "r.l:

1
= —={|000 ;+| 111
s lws)=—(l000)+[111))
Mo lmprovement -------- ‘,-j,'
w01 Dynamically ff, !
= DCG implementation consists of ! | Corrected  wem wm L IJ'
e " L] ._F ] IE"I th .--..-..-
[2 +2 x6]x 16 = 256 primitive gates .E a0 gorithm - ;; t—000
£ 4 d
= Performance indicator: & i f_,f jf
Change in error-corrected ‘slope’ b -~ I
o . o 4 :
— g 1o o J | Cat5tate -
EPGmrrEELEd - {h mir|| |"1:‘rerrc:|r”:| EPGphys é: f r.,:‘ ¥ Circuit : F=0.9999
- o '
y ’ [lilee
H A / LD AN
. : : | ’ e
Large region of improvement exists e Lall f
10 b e I _ R e .. B
10’ wt oo 0l 0.l

Uncorrected Fidelity Error, 1 = F
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DCG performance: Results

) Case study: Cat-state benchmark under spin-bath decoherence.
B |l. Bath-induced error with faulty [bounded-strength] controls.

N - = n - N -
Her.ru.r=I5@2k=1rk1fk-fl+zj=l[rj@2k=lﬂkfk

L : :
s |5 )=—=(|000 )+ 111))
V2 !
Systermatic Crrar
in Cantral
W oL
= Pulse length error included: 1
hy (t)]=h, (){1+€) E o |
£,
= DCG performance plateau once ﬁ .
uncompensated systematic error z
dominates over bath-induced error E 10
L
107
Large region of improvement exists iy
111 LR .1:.: 1.I.:Il_ . .“.:“ s .:.IH. . o :
Uncorrected Fidelity Error, 1 =F
IIL8
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What about arbitrarily accurate DCGs?

K. Khodjasteh, D.A. Lidar & LV, forthcoming.

@ Can decoherence suppression be pushed to arbitrarily high order in principle?
= Combine DCG constructions with recursive design: Concatenated DCGs (CDCGs).
= Hint: Embed lower-order DCGs as components for EDD sequences and 'balance pairs'...

EPG™ = (kt . ||H,

1
Errc:ur”:I

@ Solution is constructive and fully analytic, however plenty of room for optimization...

L
5
Q=exp[-i 2n/3 X]
1 \ \
=—(|0)+]1
lws) = (0)+[1)
-F -
. : 1— : ool
= Increasing slopes are achieved =~ _1a- o L 1
. o DoGE 2o
as concatenation level grows, g :.‘-Tﬁ = Lo
if sufficiently small primitive -15 __,w‘g.--"' -9-DCG :;3a4.9r.,__
switching times are available. e - pcalieagros
_Elﬁ: 1 1 1
5.5 -5 15 -4 35 -3 25 -

|Dg 1 fII:TIIlirI 'J’II
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Conclusions and outlook

@ High-level DD protocols (both deterministic and randomized) can offer viable
decoherence control v s in realistic settings:
= Solid-state systems: Q dots, rare-earth doped ions in crystals...
= Bosonic systems: Nan ical resonators...
= Optical systems: Flying ion qubits...

Damodarakurup et al, arXiv:0811.2654, Nov 2008,

g atoms, trapped ions...

= Atomic /molecular systems: Ry
: Biercuk et al, Nature 458, 996 (2009).

@ DCGs approximate ideal gates in a universal set with error that scales quadratically
in the physical EPG without encoding or measurement overheads:

= Concatenate with composite pulses for additional robustn
=+ Extend construction to different open-system models/con

= Explore 'control landscape'/make contact with optimal-gontrol theory approaches... <&

@ Additional experimental implementations of open-loop error Control

benchmarks much needed and welcome!... .
Thanks for your attention...




