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Quantum systems and their transformations

(pure) quantum states (= vectors in Cm, m <∞)

• example: qubit (=quantum bit) is an element of C2 (→ Bloch sphere)

• combined quantum system: tensor product Cm1 ⊗ · · · ⊗ Cmn

• space of all Z-linear comb. of v1 ⊗ · · · ⊗ vn (vj ∈ Cmj , ⊗ bilinear)
• example: two qubits as given by C2 ⊗ C2

quantum operations = unitary transformations U ∈ SU(d)

• Lie group SU(d) = {G ∈ GL(d ,C)|G−1 = (G ∗)T , det(G ) = 1}
(= closed linear matrix group)

• Lie algebra su(d) = {g ∈ gl(d ,C)| − g = (g∗)T , Tr(g) = 0}
• tangent space to SU(d) at the identity
• vector space with bilinear and skew-symmetric multiplication

[g1, g2] := g1g2 − g2g1 where [g1, g2] ∈ su(d) and
[[g1, g2], g3] + [[g3, g1], g2] + [[g2, g3], g1] = 0 (Jacobi identity)
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Quantum computing as a control problem (1/2)

Schrödinger equation as a continuous model for quantum computing
d
dt U(t) = [−ı̇H(t)] U(t), where H(t) = H0 +

∑m
j=1 vj(t)Hj

• unitary transformation U(t) ∈ SU(d) (= algorithm)

• system Hamilton operator H(t), where iH(t) ∈ su(d)

• control functions vj(t)

(for this talk) NOT interested in:

• pure state transformations:
d
dt |Ψ(t)〉 = [−ı̇H(t)] |Ψ(t)〉, where |Ψ(t)〉 is a pure state

• numerical computations and decoherence (and similar effects)

• in the last part we briefly consider:
d
dt ρ = [−ı̇H(t), ρ], where ρ is a mixed state
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Quantum computing as a control problem (2/2)

Schrödinger equation as a continuous model for quantum computing
d
dt U(t) = [−ı̇H(t)] U(t), where H(t) = H0 +

∑m
j=1 vj(t)Hj

• unitary transformation U(t) ∈ SU(d) (= algorithm)

• system Hamilton operator H(t), where iH(t) ∈ su(d)

• control functions vj(t)

• find efficient control algorithms to synthesize unitary transformations
(efficient = short evolution time)

controllability (= universality), i.e., all U ∈ SU(d) can be obtained

necessary and sufficient condition: ı̇H0, ı̇H1, . . . , ı̇Hm generate su(d)
(Brockett (1972,1973), Jurdjevic and Sussmann (1972))
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Simulation of unitary transformations

resources (realistic for nuclear spins in nuclear magnetic resonance)

• instantaneous operations Uj ∈ SU(2)⊗n = SU(2)⊗ · · · ⊗ SU(2)

• time-evolution w.r.t. a coupling Hamilton operator H (−ı̇H ∈ su(2n))

efficient control algorithm for U ∈ SU(2n) with evolution time t

• U =
[∏m

k=1

(
Uk exp(−ı̇Htk)Uk

−1
)]

U0 and t =
∑m

k=1 tk (tk ≥ 0)

• Lie group variant: conjugate the orbit exp(−ı̇Htk) with instantaneous
operations Uk ∈ SU(2)⊗n ⇒ piecewise change of the time evolution

Lie algebra variant: simulate H ′ =
∑m

k=1 tk(UkHUk
−1)

• iH ′ ∈ su(2n) and time t =
∑m

k=1 tk (tk ≥ 0)

• linearized version (first order): log(UU0
−1) = −i

∑m
k=1 tk(UkHUk

−1)

• often easier to solve
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Two qubits: Mathematical structure (1/5)

Cartan decomposition g = k⊕ p

• condition: [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k

• k Lie algebra, K its Lie group; but p only a subspace

example: G = SU(4) and g = su(4)

• K = SU(2)⊗ SU(2) = exp(k) where
k = spanR{XI,YI,ZI, IX, IY, IZ}

• subspace p = spanR{XX,XY,XZ,YX,YY,YZ,ZX,ZY,ZZ}

notation: e.g. XI = i(X⊗ I)/2
where X := ( 0 1

1 0 ), Y :=
(

0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
, I := ( 1 0

0 1 )
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Two qubits: Mathematical structure (2/5)

control algorithms and the Weyl orbit

• U =
[∏m

k=1

(
Uk exp(−ı̇Htk)Uk

−1
)]

U0 and t =
∑m

k=1 tk (tk ≥ 0)

• Weyl orbit W(p) = {Kp K−1 : K ∈ K} ∩ a of p ∈ p

• max. Abelian subalgebra a ⊂ p and p =
⋃

K∈K Ka K−1

example: k⊕ p = su(4) ([k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k)

• k = spanR{XI,YI,ZI, IX, IY, IZ}
• subspace p = spanR{XX,XY,XZ,YX,YY,YZ,ZX,ZY,ZZ}
• max. Abelian subalgebra a = {a1XX + a2YY + a3ZZ : aj ∈ R} ⊂ p

• W[b1XX + b2YY + b3ZZ] =W[(b1, b2, b3)] = {(b1, b2, b3),
(−b1,−b2, b3), (−b1, b2,−b3), (b1,−b2,−b3), and all permutations}

• Weyl group W = symmetric group S4 (|W| = 24)
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Two qubits: Mathematical structure (3/5)

Weyl orbit W(p) = {KpK−1 : K ∈ K} ∩ a of p ∈ p

• max. Abelian subalgebra a = {a1XX + a2YY + a3ZZ : aj ∈ R} ⊂ p

• W[b1XX + b2YY + b3ZZ] =W[(b1, b2, b3)] = {(b1, b2, b3),
(−b1,−b2, b3), (−b1, b2,−b3), (b1,−b2,−b3), and all permutations}

Kostant’s convexity theorem (1973)

• Γa[{KpK−1 : K ∈ K}] = convex closure of W(p)
Γa = orthogonal projection to a (w.r.t. a natural scalar product on g)

• idea: What is with {KpK−1 : K ∈ K} ?
orthogonal projection to a = convex closure of the intersection with a
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Two qubits: Mathematical structure (4/5)

Weyl orbit W(p) = {KpK−1 : K ∈ K} ∩ a of p ∈ p

• max. Abelian subalgebra a = {a1XX + a2YY + a3ZZ : aj ∈ R} ⊂ p

• W[b1XX + b2YY + b3ZZ] =W[(b1, b2, b3)] = {(b1, b2, b3),
(−b1,−b2, b3), (−b1, b2,−b3), (b1,−b2,−b3), and all permutations}

majorization condition [after Bennett et al. (2002)]

• assume that |a1| ≥ |a2| ≥ |a3| and |b1| ≥ |b2| ≥ |b3|
• ã1 := |a1|, ã2 := |a2|, ã3 := sgn(a1a2a3)|a3|
• (a1, a2, a3) is in the convex closure of W[(b1, b2, b3)] iff

ã1 ≤ b̃1, ã1 + ã2 + ã3 ≤ b̃1 + b̃2 + b̃3, and ã1 + ã2−ã3 ≤ b̃1 + b̃2−b̃3

• Zeier/Grassl/Beth (2004) [see also Yuan/Khaneja (2005 and 2006)]
proved the connection to the convex closure of the Weyl orbit
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Two qubits: Mathematical structure (5/5)

KAK decomposition (A = exp(a))

• max. Abelian subalgebra a = {a1XX + a2YY + a3ZZ : aj ∈ R} ⊂ p

• G = K1 exp(a1XX + a2YY + a3ZZ)K2 ∈ G (Kj ∈ K)

remark: KAK decomposition is not unique

• Vidal/Hammerer/Cirac (2002): sufficient to consider all
(a1, a2, a3) + π(z1, z2, z3) where zj ∈ Z

• Vidal/Hammerer/Cirac (2002): aj ∈ [−π/2, π/2]
⇒ (to find the optimal control) it is sufficient to consider only
(z1, z2, z3) = (0, 0, 0) and (z1, z2, z3) = (−1, 0, 0)

• Zeier/Grassl/Beth (2004) [see also Dirr et al. (2006)] proved the
connection to the nonuniqueness of the KAK decomposition
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Two qubits: results (H = coupling Hamilton operator)

gate simulation [Khaneja/Brockett/Glaser (2001)]

One can simulate U in time t iff U = K1 exp(tW )K2 such that
W ∈ conv(W(iH)), where Kj ∈ K = SU(2)⊗ SU(2).

Hamiltonian simulation
[Bennett et al. (2002), this formulation by Zeier/Grassl/Beth (2004)]

One can simulate H ′ in time t iff
K1(iH ′/t)K1

−1 ∈ conv (W(iH)) for some K1 ∈ K = SU(2)⊗ SU(2).

remark [Zeier/Grassl/Beth (2004)]

Bennett et al. (2002) is a special case of Khaneja/Brockett/Glaser (2001)
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Two qubits: comments (1/3)

gate simulation [Khaneja/Brockett/Glaser (2001)] (H = Hamiltonian)

One can simulate U in time t iff U = K1 exp(tW )K2 such that
W ∈ conv(W(iH)), where Kj ∈ K = SU(2)⊗ SU(2).

comments

• control problem is reduced to convex optimization (via Kostant)
which can be solved analytically

• Uk exp(−ı̇Htk)Uk
−1 (can be made to) commute with each other in

U =
[∏m

k=1

(
Uk exp(−ı̇Htk)Uk

−1
)]

U0 and t =
∑m

k=1 tk (tk ≥ 0)

• idea: exp(t1p1) exp(t2p2) = exp(t1p1 + t2p2 + t1t2[p1, p2]/2 + · · · )
remember: p1, p2 ∈ p⇒ [p1, p2] ⊂ k⇒ new direction lies in fast k
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Two qubits: comments (2/3)

further properties of p (k⊕ p = su(4), [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k)

• p is irreducible under the action of K by conjugation

• Kp K−1 = p̃ ⇔ Gp G−1 = p̃ (p, p̃ ∈ p,G ∈ G,K ∈ K)
⇔ characteristic polynomials of p and p̃ are equal

⇒ three (real) invariants of p, p̃ under conjugation
(as Tr(p) = Tr(p̃) = 0)

• cp. Makhlin (2002): three (real) invariants for two-qubit operations
under local equivalence

• related to Zhang/Vala/Sastry/Whaley (2003): detailed
characterization of non-local operations in two-qubit systems
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Two qubits: comments (3/3)

gate simulation [Khaneja/Brockett/Glaser (2001)] (H = Hamiltonian)

One can simulate U in time t iff U = K1 exp(tW )K2 such that
W ∈ conv(W(iH)), where Kj ∈ K = SU(2)⊗ SU(2).

(incomplete) list of proofs

original proof in Khaneja/Brockett/Glaser (2001),
Vidal/Hammerer/Cirac (2002), more general case in Yuan/Khaneja (2005)

• Childs/Haselgrove/Nielsen (2003): proof of the lower bound relying
on majorization conditions on the spectra of U(Y ⊗ Y )UT (Y ⊗ Y )

• uses Thompson’s theorem:
A, B hermitian than exists A′, B ′ such that spec (A′) = spec (A),
spec (B ′) = spec (B), and exp(iA) exp(iB) = exp(iA′ + iB ′)
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Beyond two qubits

approach for choosing a Cartan decomposition g = k⊕ p

• for two qubits: k = local part, p = non-local part

• n qubits (n > 2): local operations $ K (e.g., SU(2)⊗n $ K)

lower bounds on the evolution time
• assume that all elements of K can be applied instantaneously,

and not only the elements of SU(2)⊗n ⇒ we get the evolution time

• SU(2)⊗n ⊆ K ⇒ the evolution time can only be greater

determine suitable K [Childs et al. (2003), Zeier/Grassl/Beth (2004)]

• n even: K is conjugated to the orthogonal group O(2n)

• n odd: K is conjugated to the (unitary) symplectic group

Sp(2n−1) = {U ∈ U(2n)|UT Jn/2U = Jn/2}, where Jk =
(

0k Ik
−Ik 0k

)
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Algebraic structure analysis for multi-qubit systems

Cartan decomposition g = l⊕ p and symmetric spaces G/L

The Cartan decomposition induces a symmetric space:
n even: SU(2n)/SO(2n), n odd: SU(2n)/Sp(2n−1)

general case of G/L = SU(2n)/SU(2)⊗n and l = Lie algebra(L)

g = l⊕m, where [l, l] ⊂ l and [l,m] ⊂ m (but not [m,m] ⊂ l for n > 2)
⇒ no Cartan decomposition

de Rham cohomology of G/L = SU(2n)/SU(2)⊗n

• antisymmetric invariant
[in contrast to a symmetric (i.e., polynomial) invariant]

• computed for n = 2, 3 [Zeier (2006)]

• potential connections to the structure of entanglement
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Our model: coupled fast and slow qubit system (1/2)

the physical system (high field case, in a double rotating frame)

• free evolution w.r.t. the Hamiltonian H0 = JIz + J(2Sz Iz)

• control Hamiltonian on the first qubit (= electron spin):
HS = ΩS(t)[Sx cosφS(t) + Sy sinφS(t)]

• control Hamiltonian on the second qubit (= nuclear spin):
HI = ΩI (t)[Ix cosφI (t) + Iy sinφI (t)]

• time scales ΩI � J � ΩS (H0 faster than some local operations!)

• first qubit = fast qubit and second qubit = slow qubit

notation: Sµ = (σµ ⊗ id2)/2 and Iν = (id2 ⊗ σν)/2 (µ, ν ∈ {x , y , z})
where σx := ( 0 1

1 0 ), σy :=
(

0 −i
i 0

)
, σz :=

(
1 0
0 −1

)
, id2 := ( 1 0

0 1 )



A fast and slow qubit system Physical model 21 / 37

Our model: coupled fast and slow qubit system (2/2)

how to synthesize slow transformations (first order approximation)

H0 + HI = 2JSβIz + ΩI (t)(Sα + Sβ)(Ix cosφI + Iy sinφI ) truncates to

Hα(φI ) = 2JSβIz + ΩI (t)Sα(Ix cosφI + Iy sinφI )

where Sβ = (id4/2 + Sz) =
(

id2 02
02 02

)
, Sα = (id4/2− Sz) =

(
02 02
02 id2

)
energy diagram (w.r.t. lab frame)

ωS , ωI = natural precession frequency of
the first and second qubit

model ⇒ efficiency measure (time):

• count evolution under Hα(φI )

• neglect fast operations and H0

αβ

ββ

αα

βα

ωS − J

ωS + J

ωI − J

Hα(φI)

Hβ(φI)

ωI + J
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Mathematical structure of our model (1/2)

Cartan decomposition g = k⊕ p (g = su(4), G = SU(4))

condition: [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k (k Lie algebra, K its Lie group)

fast operations: −ı̇Sµ (µ ∈ {x , y , z}) and −ı̇H0 ⇒
K = exp(k) where k = spanR{−ı̇Sµ,−ı̇2Sν Iz ,−ı̇Iz : µ, ν ∈ {x , y , z}}

K = S[U(2)⊗U(2)] (sometimes called SU(2)× SU(2)×U(1))
which is block-diagonal in an appropriately chosen basis

slow operations: e.g., −ı̇Hα(φI ) ⇒
P = exp(p) where p = spanR{−ı̇Iγ ,−ı̇2SµIγ : γ ∈ {x , y}, µ ∈ {x , y , z}}
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Mathematical structure of our model (2/2)

Weyl orbit W(p) = {KpK−1 : K ∈ K} ∩ a of p ∈ p

• max. Abelian subalgebra a = {a1(−ı̇SβIx) + a2(−ı̇SαIx) : aj ∈ R} ⊂ p

• W[b1(−ı̇SβIx) + b2(−ı̇SαIx)] =W[(b1, b2)] = {(b1, b2), (b1,−b2),
(−b1, b2), (−b1,−b2), (b2, b1), (b2,−b1), (−b2,−b1), (−b2, b1)}

majorization condition: (a1, a2) is in the convex closure of W[(b1, b2)] iff
max{|a1|, |a2|} ≤ max{|b1|, |b2|} and |a1|+ |a2| ≤ |b1|+ |b2|

KAK decomposition (A = exp(a))

• G = K1 exp[a1(−ı̇SβIx) + a2(−ı̇SαIx)]K2 ∈ G (Kj ∈ K)

• is not unique ⇒ consider all (a1, a2) + π(z1, z2) where zj ∈ Z
• majorization condition simplifies for a1, a2 ∈ [−π, π]
⇒ sufficient to consider only (z1, z2) = (0, 0)
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Time-optimal control of fast and slow qubit system

Zeier/Yuan/Khaneja (2008)

The minimal time to synthesize G ∈ SU(4) is min{(|t1|+ |t2|)/ΩI}
such that G = K1 exp[t1(−ı̇SβIx) + t2(−ı̇SαIx)]K2

remarks

• slow operations: −ı̇Hα(0), we use the Weyl orbit of −ı̇SαIx :
b1 = 0 and b2 = 1 ⇒ W[(b1, b2)] = {(−1, 0), (1, 0), (0,−1), (0, 1)}

• Yuan/Zeier/Khaneja/Lloyd (2009):
applied similar techniques in a tunable coupling scheme of
super-conducting qubits
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Examples of time-optimal controls

minimum time tmin for CNOT[2, 1], CNOT[1, 2], and SWAP

1 e ı̇π/4
(

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

)
= exp[π(−ı̇2Sx Iz + ı̇Sx + ı̇Iz)/2] ⇒ tmin = 0

(as it is contained in K = fast operations)

2 e ı̇π/4
(

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
= exp[π(−ı̇2Sz Ix + ı̇Sz + ı̇Ix)/2] =

exp(ı̇πSz/2) exp(−ı̇t ′H0/J) exp
[
−ı̇πHα(π)/ΩI

]
(where t ′ = −πJ/ΩI mod 2π ≥ 0)
⇒ tmin = π/ΩI

3 e ı̇π/4
(

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
= exp[π(ı̇2Sx Ix + ı̇2Sy Iy + ı̇2Sz Iz)/2] =

e ı̇πSz/2e−ı̇πSx/2e−ı̇3πH0/(2J)e ı̇πSy/2e−ı̇t
′H0/J exp

[
−ı̇πHα(π)/ΩI

]
×e−ı̇πSx/2e−ı̇πH0/(2J)e−ı̇πSy/2

⇒ tmin = π/ΩI
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Control algorithms and density matrices

efficient control algorithms for U ∈ SU(2n) with execution time t

• U =
[∏m

k=1

(
Uk exp(−ı̇Htk)Uk

−1
)]

U0 and t =
∑m

k=1 tk (tk ≥ 0)

• time-evolution w.r.t. a given Hamilton operator H (−ı̇H ∈ su(2n))

• conjugate the orbit exp(−ı̇Htk) with instantaneous operations
Uk ∈ SU(2)⊗n = SU(2)⊗ · · · ⊗ SU(2)

local equivalence of density matrices ρ and ρ̃

• local equivalent if UρU−1 = ρ̃ for some
U ∈ SU(2)⊗n = SU(2)⊗ · · · ⊗ SU(2)

• related to mixed state transformations:
d
dt ρ = [−ı̇H(t), ρ], where ρ is a mixed state

• recall: ρ can be written as c · Id + H where −ı̇H ∈ su(2n) and c ∈ R
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Adjoint representation and adjoint orbits

adjoint representation

• Lie group G [i.e. SU(2n)] and its Lie algebra g [i.e. su(2n)]

• adjoint representation Ad(G )(g̃) := Gg̃G−1 (G ∈ G, g̃ ∈ g)

• infinitesimal version ad(g)(g̃) := [g , g̃ ] (g , g̃ ∈ g)

adjoint orbit of g̃ ∈ g w.r.t. K ⊂ G

• Ad(K)(g̃) := {Ad(K )(g̃) : K ∈ K} = {Kg̃K−1 : K ∈ K}
• especially important if K = SU(2)⊗n = SU(2)⊗ · · · ⊗ SU(2)

example: Ad(K)-orbit of ZZI + IZZ (analyzed by hand)

• support in su(2)⊗ su(2)⊗ Id and Id⊗ su(2)⊗ su(2)

• orbit is not linearly closed ⇔ What is the dimension of the orbit?

• orbit contains (e.g.) XXI± IXY but not XXI± IYY
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Restricting representations and orbits

philosophy

• start some representation [e.g., the adjoint representation Ad(G)]
or an adjoint orbit Ad(G)(g̃) where g̃ ∈ g

• restrict G to a subgroup K

• we consider G = SU(2n) and K = SU(2)⊗n = SU(2)⊗ · · · ⊗ SU(2)

restricting Ad from SU(2n) to SU(2)⊗n

• the irreducible representation Ad[SU(2n)] decomposes if we restrict

• su(2n) ⇒ [Id⊕ su(2)]⊗n = Id⊗n ⊕ · · · ⊕ su(2)⊗n; [Id⊗n /∈ su(2n)]
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Decomposing the adjoint representation Ad

two qubits: G = SU(4), K = SU(2)⊗ SU(2)

• [Id⊕ su(2)]⊗2 = Id⊗2 ⊕ [su(2)⊗ Id]⊕ [Id⊗ su(2)]⊕ [su(2)⊗ su(2)]

• ⇒ vector space decomposition g = k⊕ p = local⊕ nonlocal
• k = [su(2)⊗ Id]⊕ [Id⊗ su(2)] is a subalgebra of dimension 3 + 3 = 6
• p = su(2)⊗ su(2) is an irreducible subspace of dimension 9

three qubits: G = SU(23), K = SU(2)⊗ SU(2)⊗ SU(2)

• [Id⊕ su(2)]⊗3 = Id⊗3 ⊕ k⊕m1 ⊕m2 ⊕m3 ⊕m4, where
• k = [su(2)⊗ Id⊗ Id]⊕ [Id⊗ su(2)⊗ Id]⊕ [Id⊗ Id⊗ su(2)]
• m1 = su(2)⊗ su(2)⊗ Id, where dim(m1) = 9
• m2 = su(2)⊗ Id⊗ su(2), where dim(m2) = 9
• m3 = Id⊗ su(2)⊗ su(2), where dim(m3) = 9
• m4 = su(2)⊗ su(2)⊗ su(2), where dim(m4) = 27

• k is a subalgebra of dimension 3 + 3 + 3 = 9

• m1 ⊕m2 ⊕m3 ⊕m4 is a subspace of dimension 54 (NOT irreducible)
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Kostant’s convexity theorem (revisited) (g = k⊕ p)

Kostant’s convexity theorem (1973):

• orth. projection of {KpK−1 : K ∈ K} to a

= convex closure of {KpK−1 : K ∈ K} ∩ a

• a = max. commutative subalgebra in p and p ∈ p

versions of Kostant’s convexity theorem

version A: project to a max. commutative subalgebra a of p

version B: project to a max. commutative subalgebra tg of g

(usually generalizations consider only version B)
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Generalizations of Kostant’s convexity theorem (1/2)

dualism between irred. representations and (integral) adjoint orbits

both corresp. to integral points in tg (= max. Abelian subalgebra in g)

restrict the group G to a subgroup K

problem 1: find all t ′ ∈ tk corresp. to restricted adjoint orbits of t ∈ tg

problem 2: (asymptotic decomp.) find all rational (t ′, t) ∈ (tk, tg) s.t.

a) ∃n ∈ N s.t. (nt ′, nt) is integral and
b) decomposition of the representation nt contains nt ′

remark: if t index of the representation V ⇒
nt index of the representation (inner tensor product) V⊗n
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Generalizations of Kostant’s convexity theorem (2/2)

restrict the group G to a subgroup K

problem 1: find all t ′ ∈ tk corresp. to restricted adjoint orbits of t ∈ tg

problem 2: (asymptotic decomp.) find all rational (t ′, t) ∈ (tk, tg) s.t.

a) ∃n ∈ N s.t. (nt ′, nt) is integral and
b) decomposition of the representation nt contains nt ′

• Heckman (1980,1982): problems 1 and 2 are equivalent

• Kirwan (1984): restriction of a compact Lie group to a Lie subgroup
(for convexity one has to restrict to a certain convex cone of tk)

• Kirwan’s result gives no practical method for explicit computations!

• Berenstein/Sjamaar (2000):
computational methods relying on integral cohomology groups



Analyzing non-locality: representation-theoretic methods Restricting representations 34 / 37

Spectra and current status

spectra of reduced density matrices

• density matrices: ρAB , ρA, and ρB [and more tensor components]

• consider: spec ρAB , spec ρA, and spec ρB

• problem: What combinations of spectra are possible?

• equivalent to the discussed restrictions of representations

→ Keyl/Werner (2001), Klyachko (2004),
Christandl/Mitchison (2005), . . .

decomposition of an adjoint orbit Ad(G)g (g ∈ g, g integral)

• dream: decompose Ad(G)g into Ad(K)-orbits using
the equivalent asymptotic decompositions of representations

• status: preliminary computations
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Commutator relations for two and three qubits

important for the analysis of products of adjoint orbits

two qubits [G = SU(22),K = SU(2)⊗2]

• g = k⊕ p where k = [su(2)⊗ Id]⊕ [Id⊗ su(2)] and p = su(2)⊗ su(2)

• [k, k] ⊂ k and [k, p] ⊂ p, [p, p] ⊂ k

three qubits [G = SU(23),K = SU(2)⊗3]

• [Id⊕ su(2)]⊗3 = Id⊗3 ⊕ k⊕m1 ⊕m2 ⊕m3 ⊕m4, where
• k = [su(2)⊗ Id⊗ Id]⊕ [Id⊗ su(2)⊗ Id]⊕ [Id⊗ Id⊗ su(2)]
• m1 = su(2)⊗ su(2)⊗ Id, m2 = su(2)⊗ Id⊗ su(2),

m3 = Id⊗ su(2)⊗ su(2), and m4 = su(2)⊗ su(2)⊗ su(2)

• [k, k] ⊂ k, [k,mi ] ⊂ mi , [mj ,mj ] ⊂ k, [m4,m4] ⊂ k⊕m4,
and (e.g.) [m1,m2] ⊂ m4 (i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3})
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Summary

summary

• control algorithms for two coupled qubits with fast local control

• lower bounds for coupled multi-qubit systems with fast local control

• control algorithms for a coupled electron-nuclear spin system

• representation theory might help to understand multi-qubit systems
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http://www.org.chemie.tu-muenchen.de/people/zeier/

Thank you for your attention!
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