Efficient Control Algorithms for Unitary Transformations: The Cartan Decomposition and Beyond

Robert Zeier

Department Chemie, Technische Universität München

July 2, 2009

Outline

- Preliminaries
- 2 Fast local control
- 3 A fast and slow qubit system
- 4 Analyzing non-locality: representation-theoretic methods
- **5** Summary

Quantum systems and their transformations

```
(pure) quantum states (= vectors in \mathbb{C}^m, m < \infty)
```

- example: qubit (=quantum bit) is an element of \mathbb{C}^2 (\to Bloch sphere)
- combined quantum system: tensor product $\mathbb{C}^{m_1} \otimes \cdots \otimes \mathbb{C}^{m_n}$
 - space of all \mathbb{Z} -linear comb. of $v_1 \otimes \cdots \otimes v_n$ $(v_j \in \mathbb{C}^{m_j}, \otimes \text{bilinear})$
 - \bullet example: two qubits as given by $\mathbb{C}^2 \otimes \mathbb{C}^2$

quantum operations = unitary transformations $U \in \mathrm{SU}(d)$

- Lie group $SU(d) = \{ G \in GL(d, \mathbb{C}) | G^{-1} = (G^*)^T, \det(G) = 1 \}$ (= closed linear matrix group)
- Lie algebra $\mathfrak{su}(d) = \{g \in \mathfrak{gl}(d,\mathbb{C}) | -g = (g^*)^T, \operatorname{Tr}(g) = 0\}$
 - ullet tangent space to $\mathrm{SU}(d)$ at the identity
 - vector space with bilinear and skew-symmetric multiplication $[g_1,g_2]:=g_1g_2-g_2g_1$ where $[g_1,g_2]\in\mathfrak{su}(d)$ and $[[g_1,g_2],g_3]+[[g_3,g_1],g_2]+[[g_2,g_3],g_1]=0$ (Jacobi identity)

Quantum computing as a control problem (1/2)

Schrödinger equation as a continuous model for quantum computing

$$\frac{d}{dt} U(t) = [-iH(t)] U(t), \text{ where } H(t) = H_0 + \sum_{j=1}^m v_j(t) H_j$$

- unitary transformation $U(t) \in \mathrm{SU}(d)$ (= algorithm)
- system Hamilton operator H(t), where $iH(t) \in \mathfrak{su}(d)$
- control functions $v_j(t)$

(for this talk) **NOT** interested in:

- pure state transformations: $\frac{d}{dt} |\Psi(t)\rangle = [-iH(t)] |\Psi(t)\rangle$, where $|\Psi(t)\rangle$ is a pure state
- numerical computations and decoherence (and similar effects)
- in the last part we briefly consider: $\frac{d}{dt} \rho = [-iH(t), \rho]$, where ρ is a mixed state

Quantum computing as a control problem (2/2)

Schrödinger equation as a continuous model for quantum computing

$$rac{d}{dt}\mathit{U}(t) = \left[-i\mathit{H}(t)\right]\mathit{U}(t), \text{ where } \mathit{H}(t) = \mathit{H}_0 + \sum_{j=1}^m \mathit{v}_j(t)\mathit{H}_j$$

- unitary transformation $U(t) \in \mathrm{SU}(d)$ (= algorithm)
- system Hamilton operator H(t), where $iH(t) \in \mathfrak{su}(d)$
- control functions $v_j(t)$
- find efficient control algorithms to synthesize unitary transformations (efficient = short evolution time)

controllability (= universality), i.e., all $U \in SU(d)$ can be obtained necessary and sufficient condition: iH_0, iH_1, \ldots, iH_m generate $\mathfrak{su}(d)$ (Brockett (1972,1973), Jurdjevic and Sussmann (1972))

Outline

- Preliminaries
- 2 Fast local control
- 3 A fast and slow qubit system
- 4 Analyzing non-locality: representation-theoretic methods
- Summary

Simulation of unitary transformations

resources (realistic for nuclear spins in nuclear magnetic resonance)

• instantaneous operations $U_i \in SU(2)^{\otimes n} = SU(2) \otimes \cdots \otimes SU(2)$

- $\frac{\text{instantaneous}}{\text{operations of CSO(2)}} = \frac{\text{SO(2)}}{\text{SO(2)}} = \frac{\text{SO(2)}}{\text{SO(2)}}$
- time-evolution w.r.t. a coupling Hamilton operator H $(-iH \in \mathfrak{su}(2^n))$

efficient control algorithm for $U \in \mathrm{SU}(2^n)$ with evolution time t

- $U = \left[\prod_{k=1}^{m} \left(U_k \exp(-iHt_k)U_k^{-1}\right)\right] U_0 \text{ and } t = \sum_{k=1}^{m} t_k \qquad (t_k \ge 0)$
- Lie group variant: conjugate the orbit $\exp(-iHt_k)$ with instantaneous operations $U_k \in \mathrm{SU}(2)^{\otimes n} \Rightarrow$ piecewise change of the time evolution

Lie algebra variant: simulate $H' = \sum_{k=1}^{m} t_k (U_k H U_k^{-1})$

- $iH' \in \mathfrak{su}(2^n)$ and time $t = \sum_{k=1}^m t_k \ (t_k \ge 0)$
- linearized version (first order): $\log(UU_0^{-1}) = -i\sum_{k=1}^m t_k(U_k H U_k^{-1})$
- often easier to solve

Two qubits: Mathematical structure (1/5)

Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$

- condition: $[\mathfrak{k},\mathfrak{k}] \subset \mathfrak{k}$, $[\mathfrak{k},\mathfrak{p}] \subset \mathfrak{p}$, $[\mathfrak{p},\mathfrak{p}] \subset \mathfrak{k}$
- £ Lie algebra, R its Lie group; but p only a subspace

example: $\mathfrak{G} = \mathrm{SU}(4)$ and $\mathfrak{g} = \mathfrak{su}(4)$

- $\mathfrak{K} = \mathrm{SU}(2) \otimes \mathrm{SU}(2) = \exp(\mathfrak{k})$ where $\mathfrak{k} = \mathrm{span}_{\mathbb{R}} \{ \mathrm{XI}, \mathrm{YI}, \mathrm{ZI}, \mathrm{IX}, \mathrm{IY}, \mathrm{IZ} \}$
- subspace $\mathfrak{p} = \operatorname{span}_{\mathbb{R}}\{XX, XY, XZ, YX, YY, YZ, ZX, ZY, ZZ\}$

notation: e.g.
$$XI = i(X \otimes I)/2$$
 where $X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $Y := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $I := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Two qubits: Mathematical structure (2/5)

control algorithms and the Weyl orbit

- $U = \left[\prod_{k=1}^m \left(U_k \exp(-iHt_k)U_k^{-1}\right)\right] U_0$ and $t = \sum_{k=1}^m t_k$ $(t_k \ge 0)$
- Weyl orbit $\mathcal{W}(p) = \{Kp K^{-1} : K \in \mathfrak{K}\} \cap \mathfrak{a} \text{ of } p \in \mathfrak{p}$
- max. Abelian subalgebra $\mathfrak{a}\subset\mathfrak{p}$ and $\mathfrak{p}=\bigcup_{K\in\mathfrak{K}}K\mathfrak{a}\ K^{-1}$

example:
$$\mathfrak{k} \oplus \mathfrak{p} = \mathfrak{su}(4)$$
 $([\mathfrak{k},\mathfrak{k}] \subset \mathfrak{k}, [\mathfrak{k},\mathfrak{p}] \subset \mathfrak{p}, [\mathfrak{p},\mathfrak{p}] \subset \mathfrak{k})$

- $\mathfrak{t} = \operatorname{span}_{\mathbb{R}} \{ \operatorname{XI}, \operatorname{YI}, \operatorname{ZI}, \operatorname{IX}, \operatorname{IY}, \operatorname{IZ} \}$
- subspace $\mathfrak{p} = \operatorname{span}_{\mathbb{R}}\{XX, XY, XZ, YX, YY, YZ, ZX, ZY, ZZ\}$
- max. Abelian subalgebra $\mathfrak{a} = \{a_1XX + a_2YY + a_3ZZ \colon a_j \in \mathbb{R}\} \subset \mathfrak{p}$
- $\mathcal{W}[b_1XX + b_2YY + b_3ZZ] = \mathcal{W}[(b_1, b_2, b_3)] = \{(b_1, b_2, b_3), (-b_1, -b_2, b_3), (-b_1, b_2, -b_3), (b_1, -b_2, -b_3), \text{ and all permutations}\}$
- Weyl group $\mathcal{W} = \text{symmetric group } S_4$ $(|\mathcal{W}| = 24)$

Two qubits: Mathematical structure (3/5)

```
Weyl orbit \mathcal{W}(p) = \{KpK^{-1} : K \in \mathfrak{K}\} \cap \mathfrak{a} \text{ of } p \in \mathfrak{p}
```

- max. Abelian subalgebra $\mathfrak{a} = \{a_1XX + a_2YY + a_3ZZ \colon a_j \in \mathbb{R}\} \subset \mathfrak{p}$
- $\mathcal{W}[b_1XX + b_2YY + b_3ZZ] = \mathcal{W}[(b_1, b_2, b_3)] = \{(b_1, b_2, b_3), (-b_1, -b_2, b_3), (-b_1, b_2, -b_3), (b_1, -b_2, -b_3), \text{ and all permutations}\}$

Kostant's convexity theorem (1973)

- $\Gamma_{\mathfrak{a}}[\{KpK^{-1}: K \in \mathfrak{K}\}] = \text{convex closure of } \mathcal{W}(p)$ $\Gamma_{\mathfrak{a}} = \text{orthogonal projection to } \mathfrak{a} \text{ (w.r.t. a natural scalar product on } \mathfrak{g})$
- idea: What is with $\{KpK^{-1}: K \in \mathfrak{K}\}$? orthogonal projection to $\mathfrak{a} = \text{convex closure of the intersection with } \mathfrak{a}$

Two qubits: Mathematical structure (4/5)

Weyl orbit
$$\mathcal{W}(p) = \{KpK^{-1} : K \in \mathfrak{K}\} \cap \mathfrak{a} \text{ of } p \in \mathfrak{p}$$

- max. Abelian subalgebra $\mathfrak{a} = \{a_1XX + a_2YY + a_3ZZ \colon a_j \in \mathbb{R}\} \subset \mathfrak{p}$
- $\mathcal{W}[b_1XX + b_2YY + b_3ZZ] = \mathcal{W}[(b_1, b_2, b_3)] = \{(b_1, b_2, b_3), (-b_1, -b_2, b_3), (-b_1, b_2, -b_3), (b_1, -b_2, -b_3), \text{ and all permutations}\}$

majorization condition [after Bennett et al. (2002)]

- ullet assume that $|a_1|\geq |a_2|\geq |a_3|$ and $|b_1|\geq |b_2|\geq |b_3|$
- $\tilde{a}_1 := |a_1|, \ \tilde{a}_2 := |a_2|, \ \tilde{a}_3 := \operatorname{sgn}(a_1 a_2 a_3)|a_3|$
- (a_1, a_2, a_3) is in the convex closure of $\mathcal{W}[(b_1, b_2, b_3)]$ iff $\tilde{a}_1 \leq \tilde{b}_1$, $\tilde{a}_1 + \tilde{a}_2 + \tilde{a}_3 \leq \tilde{b}_1 + \tilde{b}_2 + \tilde{b}_3$, and $\tilde{a}_1 + \tilde{a}_2 \tilde{a}_3 \leq \tilde{b}_1 + \tilde{b}_2 \tilde{b}_3$
- Zeier/Grassl/Beth (2004) [see also Yuan/Khaneja (2005 and 2006)] proved the connection to the convex closure of the Weyl orbit

Two qubits: Mathematical structure (5/5)

स्थित decomposition

$$(\mathfrak{A} = \exp(\mathfrak{a}))$$

- max. Abelian subalgebra $\mathfrak{a}=\{a_1\mathrm{XX}+a_2\mathrm{YY}+a_3\mathrm{ZZ}\colon a_j\in\mathbb{R}\}\subset\mathfrak{p}$
- $G = K_1 \exp(a_1 XX + a_2 YY + a_3 ZZ) K_2 \in \mathfrak{G}$ $(K_j \in \mathfrak{K})$

remark: AUR decomposition is not unique

- Vidal/Hammerer/Cirac (2002): sufficient to consider all $(a_1, a_2, a_3) + \pi(z_1, z_2, z_3)$ where $z_j \in \mathbb{Z}$
- Vidal/Hammerer/Cirac (2002): $a_j \in [-\pi/2, \pi/2]$ \Rightarrow (to find the optimal control) it is sufficient to consider only $(z_1, z_2, z_3) = (0, 0, 0)$ and $(z_1, z_2, z_3) = (-1, 0, 0)$
- Zeier/Grassl/Beth (2004) [see also Dirr et al. (2006)] proved the connection to the nonuniqueness of the RNR decomposition

Two qubits: results

(H = coupling Hamilton operator)

gate simulation [Khaneja/Brockett/Glaser (2001)]

One can simulate U in time t iff $U = K_1 \exp(tW)K_2$ such that $W \in \operatorname{conv}(W(iH))$, where $K_j \in \mathfrak{K} = \operatorname{SU}(2) \otimes \operatorname{SU}(2)$.

Hamiltonian simulation

[Bennett et al. (2002), this formulation by Zeier/Grassl/Beth (2004)]

One can simulate H' in time t iff

 $K_1(iH'/t)K_1^{-1} \in \operatorname{conv}(\mathcal{W}(iH))$ for some $K_1 \in \mathfrak{K} = \operatorname{SU}(2) \otimes \operatorname{SU}(2)$.

remark [Zeier/Grassl/Beth (2004)]

Bennett et al. (2002) is a special case of Khaneja/Brockett/Glaser (2001)

Two qubits: comments (1/3)

gate simulation [Khaneja/Brockett/Glaser (2001)] (H = Hamiltonian)

One can simulate U in time t iff $U = K_1 \exp(tW)K_2$ such that $W \in \operatorname{conv}(\mathcal{W}(iH))$, where $K_j \in \mathfrak{K} = \operatorname{SU}(2) \otimes \operatorname{SU}(2)$.

comments

- control problem is reduced to convex optimization (via Kostant) which can be solved analytically
- $U_k \exp(-iHt_k)U_k^{-1}$ (can be made to) commute with each other in $U = \left[\prod_{k=1}^m \left(U_k \exp(-iHt_k)U_k^{-1}\right)\right] U_0$ and $t = \sum_{k=1}^m t_k$ $(t_k \ge 0)$
- idea: $\exp(t_1p_1)\exp(t_2p_2) = \exp(t_1p_1 + t_2p_2 + t_1t_2[p_1, p_2]/2 + \cdots)$ remember: $p_1, p_2 \in \mathfrak{p} \Rightarrow [p_1, p_2] \subset \mathfrak{k} \Rightarrow$ new direction lies in fast \mathfrak{k}

Two qubits: comments (2/3)

further properties of \mathfrak{p} ($\mathfrak{k} \oplus \mathfrak{p} = \mathfrak{su}(4)$, $[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}$, $[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$, $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$)

- p is irreducible under the action of ℜ by conjugation
 Kp K⁻¹ = p̄ ⇔ Gp G⁻¹ = p̄ (p, p̄ ∈ p, G ∈ B, K ∈ ℜ)
- \Rightarrow three (real) invariants of p, \tilde{p} under conjugation (as $\mathrm{Tr}(p)=\mathrm{Tr}(\tilde{p})=0)$
 - cp. Makhlin (2002): three (real) invariants for two-qubit operations under local equivalence

 related to Zhang/Vala/Sastry/Whaley (2003): detailed characterization of non-local operations in two-qubit systems

Two qubits: comments (3/3)

```
gate simulation [Khaneja/Brockett/Glaser (2001)] (H = Hamiltonian)
One can simulate U in time t iff U = K_1 \exp(tW)K_2 such that W \in \text{conv}(\mathcal{W}(iH)), where K_j \in \mathfrak{K} = \text{SU}(2) \otimes \text{SU}(2).
```

```
(incomplete) list of proofs
```

original proof in Khaneja/Brockett/Glaser (2001), Vidal/Hammerer/Cirac (2002), more general case in Yuan/Khaneja (2005)

- Childs/Haselgrove/Nielsen (2003): proof of the lower bound relying on majorization conditions on the spectra of $U(Y \otimes Y)U^T(Y \otimes Y)$
- uses Thompson's theorem: A, B hermitian than exists A', B' such that $\operatorname{spec}(A') = \operatorname{spec}(A)$, $\operatorname{spec}(B') = \operatorname{spec}(B)$, and $\exp(iA) \exp(iB) = \exp(iA' + iB')$

Beyond two qubits

approach for choosing a Cartan decomposition $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$

- \bullet for two qubits: $\mathfrak{k}=\mathsf{local}$ part, $\mathfrak{p}=\mathsf{non}\text{-local}$ part
- n qubits (n > 2): local operations $\subsetneq \Re$ (e.g., $\mathrm{SU}(2)^{\otimes n} \subsetneq \Re$)

lower bounds on the evolution time

- assume that all elements of $\mathfrak R$ can be applied instantaneously, and not only the elements of $\mathrm{SU}(2)^{\otimes n} \Rightarrow$ we get the evolution time
- $SU(2)^{\otimes n} \subseteq \mathfrak{K} \Rightarrow$ the evolution time can only be greater

determine suitable £ [Childs et al. (2003), Zeier/Grassl/Beth (2004)]

- n even: \Re is conjugated to the orthogonal group $O(2^n)$
- n odd: \mathfrak{K} is conjugated to the (unitary) symplectic group $\operatorname{Sp}(2^{n-1}) = \{ U \in \operatorname{U}(2^n) | U^T J_{n/2} U = J_{n/2} \}$, where $J_k = \begin{pmatrix} 0_k & I_k \\ -I_k & 0_k \end{pmatrix}$

Algebraic structure analysis for multi-qubit systems

Cartan decomposition $\mathfrak{g}=\mathfrak{l}\oplus\mathfrak{p}$ and symmetric spaces $\mathfrak{G}/\mathfrak{L}$

The Cartan decomposition induces a symmetric space: n even: $SU(2^n)/SO(2^n)$, n odd: $SU(2^n)/Sp(2^{n-1})$

```
general case of \mathfrak{G}/\mathfrak{L} = \mathrm{SU}(2^n)/\mathrm{SU}(2)^{\otimes n} and \mathfrak{l} = \mathrm{Lie} algebra(\mathfrak{L}) \mathfrak{g} = \mathfrak{l} \oplus \mathfrak{m}, where [\mathfrak{l},\mathfrak{l}] \subset \mathfrak{l} and [\mathfrak{l},\mathfrak{m}] \subset \mathfrak{m} (but not [\mathfrak{m},\mathfrak{m}] \subset \mathfrak{l} for n > 2) \Rightarrow no Cartan decomposition
```

```
de Rham cohomology of \mathfrak{G}/\mathfrak{L} = \mathrm{SU}(2^n)/\mathrm{SU}(2)^{\otimes n}
```

- antisymmetric invariant [in contrast to a symmetric (i.e., polynomial) invariant]
- computed for n = 2, 3 [Zeier (2006)]
- potential connections to the structure of entanglement

Outline

- Preliminaries
- Past local control
- 3 A fast and slow qubit system
- 4 Analyzing non-locality: representation-theoretic methods
- **5** Summary

Our model: coupled fast and slow qubit system (1/2)

the physical system (high field case, in a double rotating frame)

- free evolution w.r.t. the Hamiltonian $H_0 = JI_z + J(2S_zI_z)$
- control Hamiltonian on the first qubit (= electron spin): $H_S = \Omega^S(t)[S_x \cos \phi_S(t) + S_y \sin \phi_S(t)]$
- control Hamiltonian on the second qubit (= nuclear spin): $H_I = \frac{\Omega^I}{(t)} [I_x \cos \phi_I(t) + I_y \sin \phi_I(t)]$
- time scales $\Omega^I \ll J \ll \Omega^S$ (H_0 faster than some local operations!)
- first qubit = fast qubit and second qubit = slow qubit

notation:
$$S_{\mu} = (\sigma_{\mu} \otimes \mathrm{id}_2)/2$$
 and $I_{\nu} = (\mathrm{id}_2 \otimes \sigma_{\nu})/2$ $(\mu, \nu \in \{x, y, z\})$ where $\sigma_x := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\mathrm{id}_2 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Our model: coupled fast and slow qubit system (2/2)

how to synthesize slow transformations (first order approximation)

$$H_0 + H_I = 2JS^{\beta}I_z + \Omega^I(t)(S^{\alpha} + S^{\beta})(I_x \cos \phi_I + I_y \sin \phi_I)$$
 truncates to

$$H^{\alpha}(\phi_I) = 2JS^{\beta}I_z + \Omega^I(t)S^{\alpha}(I_x\cos\phi_I + I_y\sin\phi_I)$$

where
$$S^{\beta} = (\mathrm{id}_4/2 + S_z) = \begin{pmatrix} \mathrm{id}_2 & 0_2 \\ 0_2 & 0_2 \end{pmatrix}$$
, $S^{\alpha} = (\mathrm{id}_4/2 - S_z) = \begin{pmatrix} 0_2 & 0_2 \\ 0_2 & \mathrm{id}_2 \end{pmatrix}$

energy diagram (w.r.t. lab frame)

$$\omega_S$$
, ω_I = natural precession frequency of the first and second qubit

 $model \Rightarrow efficiency measure (time):$

- count evolution under $H^{\alpha}(\phi_I)$
- neglect fast operations and H_0

(日) (日) (日)

Mathematical structure of our model (1/2)

```
Cartan decomposition \mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p} (\mathfrak{g}=\mathfrak{su}(4),\,\mathfrak{G}=\mathrm{SU}(4)) condition: [\mathfrak{k},\mathfrak{k}]\subset\mathfrak{k},\,[\mathfrak{k},\mathfrak{p}]\subset\mathfrak{p},\,[\mathfrak{p},\mathfrak{p}]\subset\mathfrak{k} (\mathfrak{k} Lie algebra, \mathfrak{K} its Lie group)
```

```
fast operations: -iS_{\mu} (\mu \in \{x, y, z\}) and -iH_0 \Rightarrow \Re = \exp(\mathfrak{k}) where \mathfrak{k} = \operatorname{span}_{\mathbb{R}} \{-iS_{\mu}, -i2S_{\nu}I_z, -iI_z \colon \mu, \nu \in \{x, y, z\}\}
```

 $\mathfrak{K}=\mathrm{S}[\mathrm{U}(2)\otimes\mathrm{U}(2)]$ (sometimes called $\mathrm{SU}(2)\times\mathrm{SU}(2)\times\mathrm{U}(1)$) which is block-diagonal in an appropriately chosen basis

```
slow operations: e.g., -iH^{\alpha}(\phi_I) \Rightarrow \mathfrak{P} = \exp(\mathfrak{p}) where \mathfrak{p} = \operatorname{span}_{\mathbb{R}} \{-iI_{\gamma}, -i2S_{\mu}I_{\gamma} \colon \gamma \in \{x,y\}, \mu \in \{x,y,z\}\}
```

Mathematical structure of our model (2/2)

Weyl orbit $\mathcal{W}(p) = \{KpK^{-1} : K \in \mathfrak{K}\} \cap \mathfrak{a} \text{ of } p \in \mathfrak{p}$

- max. Abelian subalgebra $\mathfrak{a}=\{a_1(-iS^{\beta}I_{x})+a_2(-iS^{\alpha}I_{x})\colon a_j\in\mathbb{R}\}\subset\mathfrak{p}$
- $\mathcal{W}[b_1(-iS^{\beta}I_x) + b_2(-iS^{\alpha}I_x)] = \mathcal{W}[(b_1, b_2)] = \{(b_1, b_2), (b_1, -b_2), (-b_1, b_2), (-b_1, -b_2), (b_2, b_1), (b_2, -b_1), (-b_2, -b_1), (-b_2, b_1)\}$

majorization condition: (a_1,a_2) is in the convex closure of $\mathcal{W}[(b_1,b_2)]$ iff $\max\{|a_1|,|a_2|\} \leq \max\{|b_1|,|b_2|\}$ and $|a_1|+|a_2|\leq |b_1|+|b_2|$

RUR decomposition

$$(\mathfrak{A} = \exp(\mathfrak{a}))$$

- $G = K_1 \exp[a_1(-iS^{\beta}I_x) + a_2(-iS^{\alpha}I_x)]K_2 \in \mathfrak{G}$ $(K_j \in \mathfrak{K})$
- is not unique \Rightarrow consider all $(a_1, a_2) + \pi(z_1, z_2)$ where $z_i \in \mathbb{Z}$
- majorization condition simplifies for $a_1, a_2 \in [-\pi, \pi]$ \Rightarrow sufficient to consider only $(z_1, z_2) = (0, 0)$

Time-optimal control of fast and slow qubit system

Zeier/Yuan/Khaneja (2008)

The minimal time to synthesize $G \in SU(4)$ is $min\{(|t_1| + |t_2|)/\Omega^I\}$ such that $G = K_1 \exp[t_1(-iS^\beta I_x) + t_2(-iS^\alpha I_x)]K_2$

remarks

- slow operations: $-i H^{\alpha}(0)$, we use the Weyl orbit of $-i S^{\alpha} I_{x}$: $b_{1}=0$ and $b_{2}=1 \Rightarrow \mathcal{W}[(b_{1},b_{2})]=\{(-1,0),(1,0),(0,-1),(0,1)\}$
- Yuan/Zeier/Khaneja/Lloyd (2009): applied similar techniques in a tunable coupling scheme of super-conducting qubits

Examples of time-optimal controls

minimum time t_{min} for CNOT[2, 1], CNOT[1, 2], and SWAP

$$e^{i\pi/4} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \exp[\pi(-i2S_xI_z + iS_x + iI_z)/2] \Rightarrow t_{\min} = 0$$
 (as it is contained in $\mathfrak{K} =$ fast operations)

$$e^{i\pi/4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \exp[\pi(-i2S_zI_X + iS_z + iI_X)/2] = \\ \exp(i\pi S_z/2) \exp(-it'H_0/J) \exp\left[-i\pi H^{\alpha}(\pi)/\Omega^I\right] \\ \text{(where } t' = -\pi J/\Omega^I \mod 2\pi \ge 0) \\ \Rightarrow t_{\min} = \pi/\Omega^I$$

$$e^{i\pi/4} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \exp[\pi(i2S_xI_x + i2S_yI_y + i2S_zI_z)/2] = \\ e^{i\pi S_z/2} e^{-i\pi S_x/2} e^{-i3\pi H_0/(2J)} e^{i\pi S_y/2} e^{-it'H_0/J} \exp[-i\pi H^{\alpha}(\pi)/\Omega^I] \\ \times e^{-i\pi S_x/2} e^{-i\pi H_0/(2J)} e^{-i\pi S_y/2} \\ \Rightarrow t_{\min} = \pi/\Omega^I$$

Outline

Preliminaries

Fast local control

- 3 A fast and slow qubit system
- 4 Analyzing non-locality: representation-theoretic methods
- Summary

Control algorithms and density matrices

efficient control algorithms for $U \in SU(2^n)$ with execution time t

•
$$U = \left[\prod_{k=1}^{m} \left(U_k \exp(-iHt_k)U_k^{-1}\right)\right] U_0 \text{ and } t = \sum_{k=1}^{m} t_k \qquad (t_k \ge 0)$$

- time-evolution w.r.t. a given Hamilton operator H $(-iH \in \mathfrak{su}(2^n))$
- conjugate the orbit $\exp(-iHt_k)$ with <u>instantaneous</u> operations $U_k \in SU(2)^{\otimes n} = SU(2) \otimes \cdots \otimes SU(2)$

local equivalence of density matrices ρ and $\tilde{\rho}$

- local equivalent if $U\rho U^{-1} = \tilde{\rho}$ for some $U \in SU(2)^{\otimes n} = SU(2) \otimes \cdots \otimes SU(2)$
- related to mixed state transformations: $\frac{d}{dt} \rho = [-iH(t), \rho]$, where ρ is a mixed state
- recall: ρ can be written as $c \cdot \mathrm{Id} + H$ where $-iH \in \mathfrak{su}(2^n)$ and $c \in \mathbb{R}$

Adjoint representation and adjoint orbits

adjoint representation

- Lie group \mathfrak{G} [i.e. $SU(2^n)$] and its Lie algebra \mathfrak{g} [i.e. $\mathfrak{su}(2^n)$]
- adjoint representation $\mathrm{Ad}(G)(\tilde{g}) := G\tilde{g}G^{-1}$ $(G \in \mathfrak{G}, \tilde{g} \in \mathfrak{g})$
- ullet infinitesimal version $\operatorname{ad}(g)(ilde{g}) := [g, ilde{g}] \qquad \qquad (g, ilde{g} \in \mathfrak{g})$

adjoint orbit of $\widetilde{g} \in \mathfrak{g}$ w.r.t. $\mathfrak{K} \subset \mathfrak{G}$

- $Ad(\mathfrak{K})(\tilde{g}) := \{Ad(K)(\tilde{g}) : K \in \mathfrak{K}\} = \{K\tilde{g}K^{-1} : K \in \mathfrak{K}\}$
- especially important if $\mathfrak{K} = \mathrm{SU}(2)^{\otimes n} = \mathrm{SU}(2) \otimes \cdots \otimes \mathrm{SU}(2)$

example: $Ad(\mathfrak{K})$ -orbit of ZZI + IZZ

(analyzed by hand)

- support in $\mathfrak{su}(2) \otimes \mathfrak{su}(2) \otimes \mathrm{Id}$ and $\mathrm{Id} \otimes \mathfrak{su}(2) \otimes \mathfrak{su}(2)$
- orbit is not linearly closed ⇔ What is the dimension of the orbit?
- orbit contains (e.g.) $XXI \pm IXY$ but not $XXI \pm IYY$

Restricting representations and orbits

philosophy

- start some representation [e.g., the adjoint representation $Ad(\mathfrak{G})$] or an adjoint orbit $Ad(\mathfrak{G})(\tilde{g})$ where $\tilde{g} \in \mathfrak{g}$
- restrict & to a subgroup &
- we consider $\mathfrak{G} = \mathrm{SU}(2^n)$ and $\mathfrak{K} = \mathrm{SU}(2)^{\otimes n} = \mathrm{SU}(2) \otimes \cdots \otimes \mathrm{SU}(2)$

restricting Ad from $SU(2^n)$ to $SU(2)^{\otimes n}$

- the irreducible representation $Ad[SU(2^n)]$ decomposes if we restrict
- $\mathfrak{su}(2^n) \Rightarrow [\mathrm{Id} \oplus \mathfrak{su}(2)]^{\otimes n} = \mathrm{Id}^{\otimes n} \oplus \cdots \oplus \mathfrak{su}(2)^{\otimes n}; \qquad [\mathrm{Id}^{\otimes n} \notin \mathfrak{su}(2^n)]$

Decomposing the adjoint representation Ad

two qubits:
$$\mathfrak{G} = SU(4)$$
, $\mathfrak{K} = SU(2) \otimes SU(2)$

- $[\mathrm{Id} \oplus \mathfrak{su}(2)]^{\otimes 2} = \mathrm{Id}^{\otimes 2} \oplus [\mathfrak{su}(2) \otimes \mathrm{Id}] \oplus [\mathrm{Id} \otimes \mathfrak{su}(2)] \oplus [\mathfrak{su}(2) \otimes \mathfrak{su}(2)]$
- \Rightarrow vector space decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} = |\mathsf{ocal} \oplus \mathsf{nonlocal}|$
 - $\mathfrak{k} = [\mathfrak{su}(2) \otimes \mathrm{Id}] \oplus [\mathrm{Id} \otimes \mathfrak{su}(2)]$ is a subalgebra of dimension 3+3=6
 - $\mathfrak{p}=\mathfrak{su}(2)\otimes\mathfrak{su}(2)$ is an irreducible subspace of dimension 9

three qubits:
$$\mathfrak{G} = \mathrm{SU}(2^3)$$
, $\mathfrak{K} = \mathrm{SU}(2) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(2)$

- $[\mathrm{Id} \oplus \mathfrak{su}(2)]^{\otimes 3} = \mathrm{Id}^{\otimes 3} \oplus \mathfrak{k} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2 \oplus \mathfrak{m}_3 \oplus \mathfrak{m}_4$, where
 - $\mathfrak{k} = [\mathfrak{su}(2) \otimes \mathrm{Id} \otimes \mathrm{Id}] \oplus [\mathrm{Id} \otimes \mathfrak{su}(2) \otimes \mathrm{Id}] \oplus [\mathrm{Id} \otimes \mathrm{Id} \otimes \mathfrak{su}(2)]$
 - $\mathfrak{m}_1 = \mathfrak{su}(2) \otimes \mathfrak{su}(2) \otimes \mathrm{Id}$, where $\dim(\mathfrak{m}_1) = 9$
 - $\mathfrak{m}_2 = \mathfrak{su}(2) \otimes \mathrm{Id} \otimes \mathfrak{su}(2)$, where $\dim(\mathfrak{m}_2) = 9$
 - $\mathfrak{m}_3 = \mathrm{Id} \otimes \mathfrak{su}(2) \otimes \mathfrak{su}(2)$, where $\dim(\mathfrak{m}_3) = 9$
 - $\mathfrak{m}_4 = \mathfrak{su}(2) \otimes \mathfrak{su}(2) \otimes \mathfrak{su}(2)$, where $\dim(\mathfrak{m}_4) = 27$
- \mathfrak{k} is a subalgebra of dimension 3+3+3=9
- $\mathfrak{m}_1 \oplus \mathfrak{m}_2 \oplus \mathfrak{m}_3 \oplus \mathfrak{m}_4$ is a subspace of dimension 54 (NOT irreducible)

Kostant's convexity theorem (revisited)

$$(\mathfrak{g}= \mathfrak{k} \oplus \mathfrak{p})$$

Kostant's convexity theorem (1973):

- orth. projection of $\{KpK^{-1}: K \in \mathfrak{K}\}$ to \mathfrak{a} = convex closure of $\{KpK^{-1}: K \in \mathfrak{K}\} \cap \mathfrak{a}$
- $\mathfrak{a} = \max$. commutative subalgebra in \mathfrak{p} and $p \in \mathfrak{p}$

versions of Kostant's convexity theorem

```
version A: project to a max. commutative subalgebra \mathfrak{a} of \mathfrak{p} version B: project to a max. commutative subalgebra \mathfrak{t}_{\mathfrak{g}} of \mathfrak{g} (usually generalizations consider only version B)
```

Generalizations of Kostant's convexity theorem (1/2)

dualism between irred. representations and (integral) adjoint orbits both corresp. to integral points in $\mathfrak{t}_{\mathfrak{g}}$ (= max. Abelian subalgebra in \mathfrak{g})

```
restrict the group {\mathfrak G} to a subgroup {\mathfrak K}
```

```
problem 1: find all t' \in \mathfrak{t}_{\mathfrak{k}} corresp. to restricted adjoint orbits of t \in \mathfrak{t}_{\mathfrak{g}} problem 2: (asymptotic decomp.) find all rational (t',t) \in (\mathfrak{t}_{\mathfrak{k}},\mathfrak{t}_{\mathfrak{g}}) s.t.
```

- a) $\exists n \in \mathbb{N}$ s.t. (nt', nt) is integral and
- b) decomposition of the representation nt contains nt'

remark: if t index of the representation $V\Rightarrow$ nt index of the representation (inner tensor product) $V^{\otimes n}$

Generalizations of Kostant's convexity theorem (2/2)

restrict the group ${\mathfrak G}$ to a subgroup ${\mathfrak K}$

```
problem 1: find all t' \in \mathfrak{t}_{\mathfrak{k}} corresp. to restricted adjoint orbits of t \in \mathfrak{t}_{\mathfrak{g}} problem 2: (asymptotic decomp.) find all rational (t',t) \in (\mathfrak{t}_{\mathfrak{k}},\mathfrak{t}_{\mathfrak{g}}) s.t.
```

- a) $\exists n \in \mathbb{N}$ s.t. (nt', nt) is integral and
- b) decomposition of the representation nt contains nt'
- Heckman (1980,1982): problems 1 and 2 are equivalent
- Kirwan (1984): restriction of a compact Lie group to a Lie subgroup (for convexity one has to restrict to a certain convex cone of $\mathfrak{t}_\mathfrak{k}$)
- Kirwan's result gives no practical method for explicit computations!
- Berenstein/Sjamaar (2000): computational methods relying on integral cohomology groups

Spectra and current status

spectra of reduced density matrices

- density matrices: ρ_{AB} , ρ_{A} , and ρ_{B} [and more tensor components]
- consider: spec ρ_{AB} , spec ρ_A , and spec ρ_B
- problem: What combinations of spectra are possible?
- equivalent to the discussed restrictions of representations
- → Keyl/Werner (2001), Klyachko (2004), Christandl/Mitchison (2005), . . .

decomposition of an adjoint orbit $\mathrm{Ad}(\mathfrak{G})g$ $(g \in \mathfrak{g}, \ g \ \mathsf{integral})$

- dream: decompose $Ad(\mathfrak{G})g$ into $Ad(\mathfrak{K})$ -orbits using the equivalent asymptotic decompositions of representations
- status: preliminary computations

Commutator relations for two and three qubits

important for the analysis of products of adjoint orbits

two qubits

$$[\mathfrak{G} = \mathrm{SU}(2^2), \mathfrak{K} = \mathrm{SU}(2)^{\otimes 2}]$$

- $\bullet \ \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} \ \text{where} \ \mathfrak{k} = [\mathfrak{su}(2) \otimes \mathrm{Id}] \oplus [\mathrm{Id} \otimes \mathfrak{su}(2)] \ \text{and} \ \mathfrak{p} = \mathfrak{su}(2) \otimes \mathfrak{su}(2)$
- $[\mathfrak{k},\mathfrak{k}] \subset \mathfrak{k}$ and $[\mathfrak{k},\mathfrak{p}] \subset \mathfrak{p}$, $[\mathfrak{p},\mathfrak{p}] \subset \mathfrak{k}$

three qubits

$$[\mathfrak{G} = \mathrm{SU}(2^3), \mathfrak{K} = \mathrm{SU}(2)^{\otimes 3}]$$

- $[\mathrm{Id} \oplus \mathfrak{su}(2)]^{\otimes 3} = \mathrm{Id}^{\otimes 3} \oplus \mathfrak{k} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2 \oplus \mathfrak{m}_3 \oplus \mathfrak{m}_4$, where
 - $\mathfrak{k} = [\mathfrak{su}(2) \otimes \operatorname{Id} \otimes \operatorname{Id}] \oplus [\operatorname{Id} \otimes \mathfrak{su}(2) \otimes \operatorname{Id}] \oplus [\operatorname{Id} \otimes \operatorname{Id} \otimes \mathfrak{su}(2)]$
 - $\mathfrak{m}_1 = \mathfrak{su}(2) \otimes \mathfrak{su}(2) \otimes \mathrm{Id}$, $\mathfrak{m}_2 = \mathfrak{su}(2) \otimes \mathrm{Id} \otimes \mathfrak{su}(2)$, $\mathfrak{m}_3 = \mathrm{Id} \otimes \mathfrak{su}(2) \otimes \mathfrak{su}(2)$, and $\mathfrak{m}_4 = \mathfrak{su}(2) \otimes \mathfrak{su}(2) \otimes \mathfrak{su}(2)$
- $[\mathfrak{k},\mathfrak{k}] \subset \mathfrak{k}$, $[\mathfrak{k},\mathfrak{m}_i] \subset \mathfrak{m}_i$, $[\mathfrak{m}_j,\mathfrak{m}_j] \subset \mathfrak{k}$, $[\mathfrak{m}_4,\mathfrak{m}_4] \subset \mathfrak{k} \oplus \mathfrak{m}_4$, and (e.g.) $[\mathfrak{m}_1,\mathfrak{m}_2] \subset \mathfrak{m}_4$ $(i \in \{1,2,3,4\}, j \in \{1,2,3\})$

Summary 36 / 37

Summary

summary

- control algorithms for two coupled qubits with fast local control
- lower bounds for coupled multi-qubit systems with fast local control
- control algorithms for a coupled electron-nuclear spin system
- representation theory might help to understand multi-qubit systems

Summary 37 / 37

http://www.org.chemie.tu-muenchen.de/people/zeier/

Thank you for your attention!