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Quantum systems and their transformations

ure) quantum states (= vectors in C™, m < oo
(pure) q (

. qubit (=quantum bit) is an element of C? (— Bloch sphere)

e combined quantum system: tensor product C™ ® - .- ® C™n
e space of all Z-linear comb. of vy ® --- ® v, (v; € C™, ® bilinear)
. two qubits as given by C? ® C?

quantum operations = unitary transformations U € SU(d)

e Lie group SU(d) = {G € GL(d,C)| G~ = (G*)T, det(G) = 1}
(= closed linear matrix group)
o Lie algebra su(d) = {g € gl(d,C)| — g = (g")7, Tr(g) = 0}
e tangent space to SU(d) at the identity
e vector space with bilinear and skew-symmetric multiplication
(81, 8] := 818> — 8281 Where [g1, £>] € su(d) and
[lg1, &2], &3] + [lg3, &1], &2] + [[82, &3], £1] = O (Jacobi identity)
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Quantum computing as a control problem (1/2)

Schrodinger equation as a continuous model for quantum computing
9 U(t) = [iH(£)] U(t), where H(t) = Ho + . vi(t)H,

e unitary transformation U(t) € SU(d) (= algorithm)

e system Hamilton operator H(t), where iH(t) € su(d)

e control functions v;(t)

(for this talk) NOT interested in:

e pure state transformations:
G W(t)) = [<iH(t)] [W(t)), where [W(t)) is a pure state
e numerical computations and decoherence (and similar effects)

e in the last part we briefly consider:
% p = [—iH(t), p], where p is a mixed state
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Quantum computing as a control problem (2/2)

Schrodinger equation as a continuous model for quantum computing
9 y(t) = [—iH(1)] U(t), where H(t) = Ho + S, vi(t)H;

e unitary transformation U(t) € SU(d) (= algorithm)

e system Hamilton operator H(t), where iH(t) € su(d)

e control functions vj(t)

o find efficient control algorithms to synthesize unitary transformations
(efficient = short evolution time)

controllability (= universality), i.e., all U € SU(d) can be obtained

necessary and sufficient condition: iHp,iH, ..., iH,, generate su(d)
(Brockett (1972,1973), Jurdjevic and Sussmann (1972))
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Simulation of unitary transformations

resources (realistic for nuclear spins in nuclear magnetic resonance)
* instantaneous operations U; € SU(2)®" = SU(2) @ - - - ® SU(2)

e time-evolution w.r.t. a coupling Hamilton operator H (—iH € su(2"))

efficient control algorithm for U € SU(2") with evolution time t

o U= [HT:l (Uk eXp(—’thk)kal)] Uo and t = ZT:l ty (tk > 0)
e Lie group variant: conjugate the orbit exp(—iHtx) with instantaneous
operations Uy € SU(2)®" = piecewise change of the time evolution

Lie algebra variant: simulate H' = > | ti(UkHU ™)
e jH € su(2") and time t = > " ; tx (tx > 0)

o linearized version (first order): log(UUp~ 1) = —i > 1, tu(UkHUK ™)
e often easier to solve
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Two qubits: Mathematical structure (1/5)

Cartan decomposition g =€ @ p
e condition: [¢, €] C & [¢,p] Cp, [p,p] C ¢
e t Lie algebra, R its Lie group; but p only a subspace

example: & = SU(4) and g = su(4)
e R =SU(2) ® SU(2) = exp(t) where
¢ = spang {XI, YL, ZI, IX, IY, IZ}
e subspace p = spanp{XX, XY, XZ,YX,YY,YZ,ZX,Z2Y,Z7}

notation: e.g. XI = i(X®1I)/2
where X :=(93), Y:=(97).2:=(§ %). I:=(3?) J
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Two qubits: Mathematical structure (2/5)

control algorithms and the Weyl orbit
o U= [HT:l (Uk exp(—thk)Uk_l)] Uo and t = ZT:l ty (tk > 0)

e Weyl orbit 1W(p) = {KpK™1: K€ &} Naofpecp
e max. Abelian subalgebra a C p and p = [,z Ka K-t

example: £ ® p = su(4) ([e,e] C & [&,p] Cp, [p,p] C¥)
o ¢ = spang {XI, YL, ZL IX, IY, IZ}
o subspace p = spang {XX, XY, XZ,YX,YY, YZ, ZX, ZY, ZZ}
e max. Abelian subalgebra a = {a1XX + a2 YY + a377Z: a; e R} C p

o W[biXX + byYY + b3ZZ] = W|(b1, by, b3)] = {(b1, b2, b3),
(—bl, —by, b3), (—bl, by, —bg), (bl, —by, —b3), and all permutations}

e Weyl group 'V = symmetric group Sa (W] = 24)/
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Two qubits: Mathematical structure (3/5)

Weyl orbit 1V/(p) = {KpK™!: K€ R} Naof pep
e max. Abelian subalgebra a = {a1XX + aYY + a3Z7Z: a; e R} C p

o [leX+ b2YY+ b3ZZ] = [(blvb27b3)] — {(blabzab?))?
(—=b1,—bo, b3),(—b1, bo, —b3), (b1, —ba, —b3), and all permutations}

Kostant's convexity theorem (1973)
e M {KpK~1: K € R}] = convex closure of 1\/(p)
I« = orthogonal projection to a (w.r.t. a natural scalar product on g)

e idea: What is with {KpK~1: K € &} ?
orthogonal projection to a = convex closure of the intersection with a
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Two qubits: Mathematical structure (4/5)

Weyl orbit 1V/(p) = {KpK™!: K€ R} Naof pep
e max. Abelian subalgebra a = {31 XX + a2 YY + a3ZZ: aj € R} Cp

o W[biXX + byYY + b3ZZ] = W((b, ba, b3)] = {(bx1, b2, b3),
(—b1, —bo, b3),(—b1, ba, —b3), (b1, —b2, —b3), and all permutations}

majorization condition [after Bennett et al. (2002)]
e assume that |a;| > |az| > |a3| and |b1| > |ba| > | b3|
* 3 :=|ay|, & = |ap|, 33 := sgn(a1aza3)|as]
* (a1, ap, a3) is in the convex closure of 1V[(b1, by, b3)] iff
a1 <b1 a1+ ax+a3 < b1+b2—|—b3 and 3; + 3,33 < b1+b2 b3
o Zeier/Grassl/Beth (2004) [see also Yuan/Khaneja (2005 and 2006)]
proved the connection to the convex closure of the Weyl orbit
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Two qubits: Mathematical structure (5/5)

K2R decomposition (A = exp(a))
e max. Abelian subalgebra a = {a1XX + aYY + a3ZZ: aj e R} C p
o G=Kiexp(aiXX + aYY + a3Z7Z)K> € & (Kj € 8)

remark: K2R decomposition is not unique

e Vidal/Hammerer/Cirac (2002): sufficient to consider all
(a1, a2, a3) + m(z1, 22, z3) where z; € Z

e Vidal/Hammerer/Cirac (2002): aj € [-7/2,7/2]
= (to find the optimal control) it is sufficient to consider only
(z1,22,23) = (0,0,0) and (z1,22,23) = (—1,0,0)

o Zeier/Grassl/Beth (2004) [see also Dirr et al. (2006)] proved the
connection to the nonuniqueness of the K2R decomposition
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Two qubits: results (H = coupling Hamilton operator)

gate simulation [Khaneja/Brockett/Glaser (2001)]

One can simulate U in time t iff U = Kj exp(tW)K> such that
W € conv()W(iH)), where K; € 8 = SU(2) ® SU(2).

Hamiltonian simulation
[Bennett et al. (2002), this formulation by Zeier/Grassl/Beth (2004)]

One can simulate H' in time t iff
Ki(iH'/t)K1 ™ € conv ()V(iH)) for some K; € & = SU(2) ® SU(2).

remark [Zeier/Grassl/Beth (2004)]
Bennett et al. (2002) is a special case of Khaneja/Brockett/Glaser (2001)

y
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Two qubits: comments (1/3)

gate simulation [Khaneja/Brockett/Glaser (2001)] (H = Hamiltonian)

One can simulate U in time t iff U = Ky exp(tW)K> such that
W € conv()V(iH)), where Kj € & = SU(2) ® SU(2).

comments

e control problem is reduced to convex optimization (via Kostant)
which can be solved analytically

o Ugexp(—iHt)Ux™! (can be made to) commute with each other in
U= [[TiLy (Ukexp(—iHt ) U )] Upand t =331 & (> 0)

o idea: exp(t1p1)exp(t2p2) = exp(t1p1 + t2p2 + tita[p1, p2] /2 +---)
remember: p1, p2 € p = [p1, p2] C € = new direction lies in fast ¢
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Two qubits: comments (2/3)

further properties of p (¢ @ p = su(4), [6,¢] C & [¢,p] Cp, [p,p] C ¥)

e p is irreducible under the action of K by conjugation

e KpKl=p& GpGl=p (p,peED,GEBKeR)
& characteristic polynomials of p and p are equal

= three (real) invariants of p, p under conjugation

(as Tx(p) = Tx(p) = 0)

e cp. Makhlin (2002): three (real) invariants for two-qubit operations
under local equivalence

e related to Zhang/Vala/Sastry/Whaley (2003): detailed
characterization of non-local operations in two-qubit systems
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Two qubits: comments (3/3)

gate simulation [Khaneja/Brockett/Glaser (2001)] (H = Hamiltonian)

One can simulate U in time t iff U = Kj exp(tW)K> such that
W € conv(WW(iH)), where K; € & = SU(2) ® SU(2).

(incomplete) list of proofs

original proof in Khaneja/Brockett/Glaser (2001),
Vidal/Hammerer/Cirac (2002), more general case in Yuan/Khaneja (2005)

e Childs/Haselgrove/Nielsen (2003): proof of the lower bound relying
on majorization conditions on the spectra of U(Y ® Y)UT(Y ® Y)

e uses Thompson's theorem:
A, B hermitian than exists A’, B’ such that spec (A’) = spec (A),
spec (B') = spec (B), and exp(iA) exp(iB) = exp(iA’ + iB)
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Beyond two qubits

approach for choosing a Cartan decomposition g =€ @ p
e for two qubits: & = local part, p = non-local part

* n qubits (n > 2): local operations G & (e.g., SU(2)®" G R)

lower bounds on the evolution time

e assume that all elements of K can be applied instantaneously,
and not only the elements of SU(2)®" = we get the evolution time

e SU(2)®" C R = the evolution time can only be greater

determine suitable & [Childs et al. (2003), Zeier/Grassl/Beth (2004)]

e neven: R is conjugated to the orthogonal group O(2")
e nodd: R is conjugated to the (unitary) symplectic group
Sp(271) = {U € UR™)| UTJpoU = Jyo}, where Ji = (% & )
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Algebraic structure analysis for multi-qubit systems

Cartan decomposition g = [ & p and symmetric spaces & /£

The Cartan decomposition induces a symmetric space:
n even: SU(2")/SO(2"), n odd: SU(2")/Sp(2"1)

general case of /£ = SU(2")/SU(2)®" and [ = Lie algebra(£)

g=[®m, where [[,{] C [and [[,m] C m (but not [m,m] C [ for n > 2)
= no Cartan decomposition

de Rham cohomology of & /£ = SU(2")/SU(2)%"

e antisymmetric invariant
[in contrast to a symmetric (i.e., polynomial) invariant]

e computed for n = 2,3 [Zeier (2006)]

e potential connections to the structure of entanglement
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Our model: coupled fast and slow qubit system (1/2)

the physical system (high field case, in a double rotating frame)
o free evolution w.r.t. the Hamiltonian Hy = JI, + J(25.1)

e control Hamiltonian on the first qubit (= electron spin):
Hs = Q°(t)[Sx cos ¢s(t) + Sy sin ¢s(t)]
e control Hamiltonian on the second qubit (= nuclear spin):
Hy = Q' (t)[lx cos ¢(t) + 1, sin ¢y (t)]
o time scales Q' < J < Q° (Ho faster than some local operations!)
e first qubit = fast qubit and second qubit = slow qubit

notation: S, = (0, ®id2)/2 and I, = (id; ® 7,)/2 (v e{x,y,z})
where o == (93}), 0, == ((,) Bi), 0z '= (é&)v ido == (9
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Our model: coupled fast and slow qubit system (2/2)

how to synthesize slow transformations (first order approximation)

Ho + H; = 2JSP1, + Q' (£)(S* + SP)(I, cos ¢; + ly sin ¢;) truncates to

HY(¢y) = 2451, + Q! (£)S* (I cos ¢y + 1, sin ¢y)

q i a . 02 0
where S = (ids/2 + S,) = ( da g) Se = (ids/2 - S,) = (O; idg)
0 w —J B
energy diagram (w.r.t. lab frame) aa
H(¢1)

ws, w; = natural precession frequency of
the first and second qubit

ws+J

model = efficiency measure (time):

e count evolution under H*(¢;) Hw/l)ﬁﬁ
w) +J

e neglect fast operations and Hp T
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Mathematical structure of our model (1/2)

Cartan decomposition g = £ @ p (g = su(4), 8 =SU(4))
condition: [, €] C ¢, [¢,p] Cp, [p,p] C € (¢ Lie algebra, R its Lie group)

v

fast operations: —iS,, (1 € {x,y, z}) and —iHy =
R = exp(t) where ¢ = spang{—iS,, —i2S, I, —il,: p,v € {x,y,z}}

R =9[U(2) ® U(2)] (sometimes called SU(2) x SU(2) x U(1))
which is block-diagonal in an appropriately chosen basis

slow operations: e.g., —iH*(¢;) =
P = explp) where p = spang{—ily, 125,k 7 € {x,v}, 4 € {x, 3, 2}}
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Mathematical structure of our model (2/2)

Weyl orbit 1V/(p) = {KpK™!: K€ R} Naof pep
o max. Abelian subalgebra a = {a1(—iSPl) + ax(—iS%Iy): aj € R} C p

o Wlbi(=iS” 1) + ba(—iS*L)] = W[(b1, b)] = {(b1, ba), (b1, —b2),
(_b17 b2)7 (_b17 _b2)7 (b27 bl)? (b27 _bl)ﬂ (_b27 _b1)7 (_b27 bl)}

majorization condition: (a1, az) is in the convex closure of JV[(b1, bp)] iff
max{|a1|, [a2|} < max{|b1, [b2|} and |a1| + [a2| < |b1| + |b2|

RKAR decomposition (A = exp(a))
o G = Kyexplar(—iSPI) + ax(—iS%I)]Ko € & (Kj € R)
e is not unique = consider all (a1, a2) + m(z1, 22) where z; € Z

e majorization condition simplifies for aj, ap € [—7, 7]
= sufficient to consider only (z1,z2) = (0, 0)
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Time-optimal control of fast and slow qubit system

Zeier/Yuan/Khaneja (2008)

The minimal time to synthesize G € SU(4) is min{(|t1] + |t2])/Q'}
such that G = Ky exp[ty(—iSP1) + to(—iS? 1) K>

remarks
e slow operations: —iH“(0), we use the Weyl orbit of —iS%I:
b1 =0and bp =1 = W[(b1, b2)] = {(-1,0),(1,0),(0,-1),(0,1)}
¢ Yuan/Zeier/Khaneja/Lloyd (2009):
applied similar techniques in a tunable coupling scheme of
super-conducting qubits
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of time-optimal controls

minimum time t.;, for CNOTJ[2,1], CNOT]|1,2], and SWAP

000
0 o/t §§§§) — expl(—i25,l; + S, +il)/2] = tin = 0
(as it is contained in R = fast operations)
. 1000
e /4 (§ é § g) = exp[m(—i2S, I + 1S, + il)/2] =
exp(in S, /2) exp(—it' Ho/J) exp [—im H*(m) /Q]
(where t' = —7J/Q! mod 27 > 0)
= {iin = W/QI
_ 000
o /4 (0 g 5 8) = exp[m(i25xlx + 25,1, + i2S,1,)/2] =

z7r$z/2 —z7r5x/2 —z37rHo/(2J)ez7rSy/2 —it'Ho/J exp [—iﬂ‘Ha(ﬂ')/Ql]
« @i Sx /2 mHo/(ZJ) —imS, /2

= tmin :ﬂ/QI

25 / 37
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Control algorithms and density matrices

efficient control algorithms for U € SU(2") with execution time t
o U= [HT:l (Uk exp(—thk)Uk_l)} Ug and t = ZT:l tk (tx > 0)
e time-evolution w.r.t. a given Hamilton operator H (—iH € su(2"))

e conjugate the orbit exp(—iHtx) with instantaneous operations
Ux € SU(2)®" = SU(2) ® --- ® SU(2)

local equivalence of density matrices p and p

e local equivalent if UpU~! = j for some
U e SU(2)%"=SU(2)®---® SU(2)
e related to mixed state transformations:
% p = [—iH(t), p], where p is a mixed state

e recall: p can be written as ¢ - Id + H where —iH € su(2") and c € R
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Adjoint representation and adjoint orbits

adjoint representation
e Lie group & [i.e. SU(2")] and its Lie algebra g [i.e. su(2")]
e adjoint representation Ad(G)(g) := GgG~! (Ged,geyg)
e infinitesimal version ad(g)(g) := [g, &] (g.8€9)

adjoint orbit of g € gw.rt. RC 6
e Ad(R)(g) :={Ad(K)(8): K € R} = {KEK 1. K € &}
e especially important if & = SU(2)®" = SU(2) ® - - - ® SU(2)

example: Ad(R)-orbit of ZZI + 177 (analyzed by hand)
e support in su(2) ® su(2) ® Id and Id ® su(2) ® su(2)
e orbit is not linearly closed < What is the dimension of the orbit?
e orbit contains (e.g.) XXI £ IXY but not XXI +IYY
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Restricting representations and orbits

philosophy
e start some representation [e.g., the adjoint representation Ad(®)]
or an adjoint orbit Ad(®)(g) where g € g
e restrict & to a subgroup K
e we consider & = SU(2") and & = SU(2)®" = SU(2) ® - - - ® SU(2)

~

restricting Ad from SU(2") to SU(2)*"
e the irreducible representation Ad[SU(2")] decomposes if we restrict
e 5u(2") = [Id ®su(2)]®" =1d%" @ - - @ su(2)®"; [[d®" ¢ su(2™)]
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Decomposing the adjoint representation Ad

two qubits: & = SU(4), R = SU(2) ® SU(2)

o [Id @ su(2)]%? = 1d*? @ [su(2) ® 1d] @ [Id ® su(2)] @ [su(2) ® su(2)]
e = vector space decomposition g = £ ® p = local & nonlocal

e t=[s5u(2) ®1d] ® [Id ® su(2)] is a subalgebra of dimension 3+ 3 =6
e p = su(2) ®su(2) is an irreducible subspace of dimension 9

three qubits: & = SU(2%), & = SU(2) ® SU(2) @ SU(2)

o [d@su(2)]® =1d** @t ®m; & my ® mz ® my, where
t=[su(2) ® [d®1d] @ [Id ® su(2) ® Id] @ [Id ® Id ® su(2)]
m; = su(2) ® su(2) @ Id, where dim(m1) =9

mp = su(2) ® Id ® su(2), where dim(my) =9

m3 = Id ® su(2) ® su(2), where dim(ms) =9

my = su(2) ® su(2) ® su(2), where dim(my) = 27

e tis a subalgebra of dimension 3+3+3 =9

e m; ®my ® m3 @ my is a subspace of dimension 54 (NOT irreducible)
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Kostant's convexity theorem (revisited) (g=tdp)

Kostant's convexity theorem (1973):

e orth. projection of {KpK~!: K€ R} to a
= convex closure of {KpK~1: K€ &} Na

e 0 = max. commutative subalgebra in p and p € p

versions of Kostant’s convexity theorem
version A: project to a max. commutative subalgebra a of p

version B: project to a max. commutative subalgebra ty of g
(usually generalizations consider only version B)
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Generalizations of Kostant's convexity theorem (1/2)

dualism between irred. representations and (integral) adjoint orbits

both corresp. to integral points in t; (= max. Abelian subalgebra in g)

restrict the group & to a subgroup K
problem 1: find all t’ € t¢ corresp. to restricted adjoint orbits of t € t4

problem 2: (asymptotic decomp.) find all rational (t',t) € (¢, tg) s.t.

a) 3n € N s.t. (nt/, nt) is integral and
b) decomposition of the representation nt contains nt’

remark: if t index of the representation V =
nt index of the representation (inner tensor product) V®"
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Generalizations of Kostant's convexity theorem (2/2)

restrict the group & to a subgroup K
problem 1: find all t’ € t¢ corresp. to restricted adjoint orbits of t € t4
problem 2: (asymptotic decomp.) find all rational (t',t) € (¢, tg) s.t.

a) dn € N s.t. (nt/, nt) is integral and
b) decomposition of the representation nt contains nt’

Heckman (1980,1982): problems 1 and 2 are equivalent

Kirwan (1984): restriction of a compact Lie group to a Lie subgroup
(for convexity one has to restrict to a certain convex cone of t)

Kirwan's result gives no practical method for explicit computations!

Berenstein/Sjamaar (2000):
computational methods relying on integral cohomology groups
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Spectra and current status

spectra of reduced density matrices

density matrices: pag, pa, and pg [and more tensor components]
consider: spec pag, spec pa, and spec pg

problem: What combinations of spectra are possible?

equivalent to the discussed restrictions of representations

Keyl/Werner (2001), Klyachko (2004),
Christandl/Mitchison (2005), ...

decomposition of an adjoint orbit Ad(®)g (g € g, g integral)

dream: decompose Ad(®)g into Ad(R)-orbits using

the equivalent asymptotic decompositions of representations

status: preliminary computations



Analyzing non-locality: representation-theoretic methods Restricting representations 35 /37

Commutator relations for two and three qubits

important for the analysis of products of adjoint orbits |

two qubits [& = SU(2?), R = SU(2)#?]
e g=={tPp where t = [su(2) ® Id] & [Id ® su(2)] and p = su(2) ® su(2)
 [t,6] Ctand[t,p] Cp, [p,p] CE

three qubits [6 = SU(23), & = SU(2)*3]

o [[d®su(2)]®3 =1d*° @ t ®m; ® my @ m3 ® my, where
e t=[5u(2)®Id®I1d] & [Id ® su(2) ® Id] @ [Id ® Id ® su(2)]
o m; =su(2) ®su(2) ®Id, mp =su(2) ® Id ® su(2),
m3 = Id ® su(2) ® su(2), and my = su(2) ® su(2) ® su(2)
o [t E]CE [E,m] Cmy, [mj,m;] CE [my,my] CEDmy,
and (e.g.) [my, mp] C my (ie{1,2,3,4},j €{1,2,3})
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Summary

summary
e control algorithms for two coupled qubits with fast local control
e lower bounds for coupled multi-qubit systems with fast local control
e control algorithms for a coupled electron-nuclear spin system

e representation theory might help to understand multi-qubit systems
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http://www.org.chemie.tu-muenchen.de/people/zeier/ J

Thank you for your attention! J
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