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• All models of quantum computing must fight decoherence

• But nature does allow for some stable phases of strongly correlated matter

- e.g. Mott insulators, Haldane gapped phases, superconducting phases

• Can we use such phases for quantum memories/gates? 

• Not obvious:  

- Nature abhors a degeneracy that would protect q. info

- Is dynamical processing antithetical to equilibrium phases?

• One option Topological Order

- Very difficult to engineer
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Figure 1: A scheme of quantum computation through measuring the correlations of the 2D AKLT state,
a representative state of the 2D VBS phase of spin 3

2 ’s on the 2D hexagonal lattice. After a random
sampling which assigns every spin per site to one of three axes x, y, and z, the typical configuration
of the outcomes enables us to choose the backbone structure (described by a shaded region) along
which quantum computation is deterministically simulated in terms of a quantum circuit. Our protocol
harnesses a pair (depicted as a dotted bond of the hexagonal lattice) of neighboring sites where one
is measured in a standard basis and the other is done in a complementary basis, to accommodate the
desired structure of space-time along the region of the backbone. An emergence of the time is simulated
if both two bits of information out of measurements per site are communicated to the same direction
(as depicted as the double arrows), on the other hand, an emergence of the space is simulated if two bits
of information are communicated to the opposite directions (as depicted as a pair of the single arrows
pointing apart). The figure illustrates a microscopic view of the Figure 2, and the two-qubit CNOT gate
is implemented in the middle region between two quantum logical wires running from the right to the
left.

have such a convenient yet artificial property — as often referred as one of peculiar
properties of the correlations of the 2D cluster state — that it is possible to decouple
deterministically (by measurements of only neighboring sites) a 1D-chain structure that
encodes the direction of a simulated time as a quantum logical wire of the quantum
circuit model. This peculiarity is said to be artifact of another less realistic feature of the
2D cluster state in that it cannot be the exact ground state of any two-body Hamiltonian
of spin 1

2 ’s [17, 18], and thus one cannot expect such convenience in the correlations of a
genuine 2D ground state of a naturally-occuring spin system.

The main result of our paper is summarized in the following (informal) theorem and
illustrated in the Figure 1. As elaborated in the text, we introduce a novel way to herald
the correlations suitable for deterministic quantum computation through a random sam-
pling, to tame for the first time the genuine 2D naturally-occurring correlation, which
otherwise has natural tendency to split an incoming information into two outgoing in-
formation because of certain symmetric nature of the three directions at every site of the
2D hexagonal lattice. This seems to be the reason why MQC on the 2D AKLT state has
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Outline

• Ground code measurement based computing 

- 1D Haldane phase

- Quantum computational renormalization

- 2D AKLT phase

• Symmetry Protected Topological Order

- Holonomic computing in the Haldane Phase
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• A start:  1D AKLT Hamiltonian*

- gapped in thermodynamic limit

- frustration free:  global ground state is also locally a ground state

• Ground state is a valence bond solid

- Degeneracy:  

- Open boundaries (4 fold=2 qubit edge modes)

- Closed or infinite (1 fold)

*I. Affleck, T. Kennedy, 
E.H. Lieb, H. Tasaki, CMP 
115, 477 (1988)
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• Representation of ground state as a matrix product state (MPS)
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• Add boundary spin-1/2 particles (Not actually needed)

- Ground state is unique

• Qubit initialization

- Turn off boundary term             and measure right spin-1/2

- For outcome               initialize logical 0

Measurement-based quantum computer in the gapped ground state of a two-body Hamiltonian
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We propose a scheme of the ground-code measurement-based quantum computer, which enjoys two major
advantages. (i) Every logical qubit is encoded in the gapped degenerate ground subspace of a spin-1 chain with
nearest-neighbor two-body interactions, so that it equips built-in robustness against noise. (ii) Computation is
processed by single-spin measurements along multiple chains dynamically coupled on demand, so as to keep
teleporting only logical information into a gap-protected ground state of the rest chains after the interactions
with spins to be measured are adiabatically turned off. We describe implementations using trapped atoms or
polar molecules in an optical lattice, where the gap is expected to be as large as 0.2 KHz or 4.8 KHz respectively.

PACS numbers: 03.67.Lx, 03.67.Pp, 42.50.Ex

Introduction.—Reliable quantum computers require hard-
ware with low error rates and sufficient resources to perform
software-based error correction. One appealing approach to
reduce the massive overhead for error correction is to pro-
cess quantum information in the gapped ground states of some
many-body interaction. This is the tactic used in topolog-
ical quantum computation and adiabatic quantum computa-
tion. Yet, the hardware demands for the former are substan-
tial, and the fault tolerance of the later, especially when re-
stricted to two-body interactions, is unclear [1]. On the other
hand, measurement-based quantum computation (MQC), in
particular one-way computation on the 2D cluster state [2],
runs by beginning with a highly entangled state dynamically
generated from nearest-neighbor two-body interactions and
performing computation by only single-qubit measurements
and feed forward of their outcomes. However, its bare im-
plementation may suffer decoherence of physical qubits wait-
ing for their round of measurements in the far future, that
severely damages a prominent capability to parallelize com-
putation. Although its fault-tolerant method by error correc-
tion has been well established [3], it is clearly advantageous if
some gap-protection is provided on the hardware level.

In this paper, we propose a scheme of ground-code
measurement-based quantum computer (GMQC), which en-
joys the two aforementioned advantages. Our scheme is a
conceptual advance, because measurements generally create
excitations in the system so that the desired properties, i.e.
keeping the information in the ground state and processing
the information by measurements, are not seemingly com-
patible. We demand three properties of the ground state for
GMQC. (i) There should be an energy gap which penalizes er-
rors moving outside the computational ground subspace and
logical errors should be highly non local. These properties
should persist in the thermodynamic limit to be scalable.
(ii) The interactions should be at most two-body. It is possible
that in some ground subspace of H the effective interaction
is K-local, but a demerit is the significantly reduced magni-
tude of the perturbative coupling. (iii) The interactions should
be of the nearest-neighboring type such that when every sin-

gle spin is measured through computation, the remaining en-
tangled spins containing logical information can be set in the
ground state of their Hamiltonian.
We briefly refer to entangled resource states universal for

MQC in the literature. First, the idea to use a ground state
of the two-body Hamiltonian for universal MQC is seen in
Ref. [4], where the effective five-body Hamiltonian for the 2D
cluster state is perturbatively approximated in a low energy
sector using ancillas. We do not resort to perturbation, so that
not only is the gap much larger in practice, but also the re-
source state is exact in that we could approach unit fidelity
as close as possible, by improving accuracy of analog simula-
tion of our Hamiltonian and its preparation to the ground state.
Second, the use of tensor network states beyond the 2D clus-
ter state [5, 6] has been quite motivating for us, but our key
idea of keeping the logical information in degenerate ground
states is incorporated for the first time in our paper. In partic-
ular, the 2D AKLT-type resource in Ref. [6] does not seem to
be the ground state of a two-body Hamiltonian, nor allows a
simple application of two-qubit logical gates. Most notably,
to our knowledge, there has not been known any exact gapped
ground state of a two-bodyHamiltonian which serves as a uni-
versal resource state for one-way computation.
Scheme of ground-code measurement-based QC.—

Thus, in our scheme for GMQC in Fig. 1, we adopt a hybrid
approach where the logical two-qubit gates are implemented
via dynamical couplings on demand as in the quantum circuit
model, in addition to the standardMQC for the time evolution
of each logical qubit. In other words, we utilize space-time
resources in such a joint way that a “spatially” entangled re-
source is used to simulate the logical time evolution and “tem-
poral” interaction is used to simulate the logical two-qubit in-
teractions. Consequently, our GMQC exhibits a couple of new
features in contrast with the standard one-way computation.
The basic Hamiltonian we consider is the 1D AKLT model

[7], the chain of nearest-neighbor two-body interacting spins,

H = J[
N−1
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FIG. 1: A scheme of ground-code measurement-based QC. Each log-
ical qubit is encoded in a chain of N spin-1 particles with spin-1/2
at the boundaries 0,N+1, all coupled to nearest neighbors. The ini-
tial state of the chain is a unique ground state with a constant gap
and measurement of the 0-th spin prepares the qubit in |0L〉 or |1L〉.
Thereafter computation is carried right to left inside the two-fold de-
generate ground state of each chain. Every single-qubit gate on qubit
A is performed non-deterministically at time step j by turning off the
interaction P2

Aj,Aj+1
and measuring spin A j in the appropriate basis. A

non-deterministic two-qubit gate, CPHASEB,C, at time step j is done
by turning off P2

Bj,Bj+1
, P2

Cj,Cj+1
and applying a dynamical coupling

exp(i!H int/") followed by measurement of B j,Cj . Gate failures,
which occur with bounded probabilities, are heralded, and act as the
logical identity by the adaption of subsequent measurement bases.
The final readout is made by measuring the spin-1/2 at N+1.

with J > 0 and PSj, j+1 the projector onto the spin-S irre-
ducible representation of the total spin for particles j and
j+ 1. Namely, P2

j, j+1 = 1
2(S j ·S j+1 + 1

3 (S j ·S j+1)2)+ 19
3 and

P3/2
j, j′ = 2

3 (16 + s j ·S j′), where S,s are spin-1, 1/2 representa-
tions of su(2). Without the boundary spins, the finite AKLT
spin chain has a four-fold degeneracy corresponding to a total
spin-0 (singlet) state and a triplet of spin-1 states. The bound-
ary terms P3/2 project out the spin-1 components yielding a
unique ground state such that H|G 〉 = 0. The gap #E persists
in the thermodynamic limit satisfying 3/10≤ #E/J ≤ 10/27,
and numerics suggest #E ≈ 0.350J [8]. A key feature of |G 〉
is that it can serve, using single-spin measurements only, as a
logical quantum wire which is capable of performing not only
deterministic teleportation as already remarked in Ref. [9] but
also an arbitrary logical single-qubit operation similarly to
one-way computation as shown below.

The ground state |G 〉 has a convenient matrix product state
(MPS) representation [9, 10]. Let us define |1 j〉 = −1√

2(|Szj =

1〉− |Szj = −1〉), |2 j〉 = 1√
2 (|Szj = 1〉+ |Szj = −1〉), and |3 j〉 =

|Szj = 0〉, in terms of the three eigenstates of Szj,

|G 〉 = 1
3N/2

3

$
{% j}=1

|%1〉 . . . |%N〉[12 ⊗
1

&
j=N

〈% j|Mj〉]|'−
0,N+1〉,

(2)
where |Mj〉= X |1 j〉− iY |2 j〉+Z|3 j〉 (X ,Y,Z are the Pauli ma-
trices (µ (µ= x,y,z)), and |'−〉 is the singlet (S = 0) located

on the 0-th and N+ 1-th sites. This representation is helpful
to see the action of local measurements to the “relative” state
of unmeasured parts in simulating unitary evolution of MQC
[5, 6, 11]. Note that, in Refs. [5, 6], the ground state of a
modified AKLT chain, different from the original, was consid-
ered to construct a resource state. However, their extension of
the so-called byproduct operators into a non-Pauli finite group
seems rather inconvenient, and how to enforce boundary con-
ditions in a finite open chain has yet to be addressed.
Universal computation by measurements.— Computa-

tion follows by measuring (right to left, as in reading the
Japanese comics) the single spins along each chain, where
spins are indexed by increasing value moving right to left, in
accordance with the order of unitaries in the bra-ket notation.
First we need to prepare the unique ground state |G 〉⊗n of the
n parallel decoupled 1D AKLT chains. This can be efficiently
done along each chain, by either turning on H of Eq. (1) im-
mersing the system in a reservoir and cooling it, or by making
use of its MPS description to produce it via sequential uni-
taries (which scale linearly in N) [12] before turning on H.

The initialization of every quantum logical wire is done by
first turning off the coupling P3/2

0,1 and measuring the rightmost
0-th spin-1/2 in the ẑ basis. Because of the singlet configu-
ration |'−

0,N+1〉, the −1/2 and 1/2 outcome at the 0-th site
ẑ-basis measurement induces the initialization of the quan-
tum wire (identified effectively with the preparation of the
state at the N + 1-th site, since we will see that unitary ac-
tions accumulate on this degree of freedom) to |0L〉 and |1L〉,
respectively. With one boundary spin-1/2, the ground state
is two-fold degenerate, and computation takes place in this
ground subspace, following the measurement which initial-
ized the logical qubit.

Every logical single-qubit unitary operation is implemented
by the single-spin measurement. The interaction P2

j, j+1 is
turned off before the local measurement of the j-th spin, to
guarantee that the remaining system remains in the ground
state. Since an arbitrary single-qubit operation is decomposed
into three rotations around the logical Z and X axes with three
Euler angles, we show here their measurement directions. The
rotation RZ()) = |0L〉〈0L|+ei)|1L〉〈1L| along the Z axis is ap-
plied by the single-spin measurement in an orthogonal basis,

{|*Zj ())〉} = { 1
2((1± e−i))|1 j〉+(1∓ e−i))|2 j〉), |3 j〉}. (3)

If the outcome is either the first or the second (which happens
with probability 2/3 in total), we can apply RZ()) newly on
the logical qubit with a byproduct operator X or XZ, respec-
tively. If the outcome is the third, we consider we apply the
“logical identity” with a byproduct Z. On the other hand, the
rotation RX()) = |+L〉〈+L|+ ei)|−L〉〈−L| along the X axis,
where |±L〉 = 1√

2 (|0L〉± |1L〉), is applied by the single-spin
measurement in another orthogonal basis,

{|*Xj ())〉} = { 1
2((1± ei))|2 j〉+(1∓ ei))|3 j〉), |1 j〉}. (4)

If the outcome is either the first or the second, we apply RX())
with a byproductXZ or Z, respectively, and otherwise the log-
ical identity with a byproduct X .
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• Single qubit rotations

- For                                         measure in basis

- For (+) outcome performs                ,  for (-) outcome

- Otherwise no rotation with Z byproduct.  If this happens (prob=1/3) try again

• Two qubit CPHASE

- Dynamical gate                        with                                                                     + measure

- If outcome                                         or              then performs CPHASE

-  Otherwise fail with Pauli byproduct.  If this happens (prob=5/9) try again   

• Readout by measuring left spin-1/2 particles
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FIG. 1: A scheme of ground-code measurement-based QC. Each log-
ical qubit is encoded in a chain of N spin-1 particles with spin-1/2
at the boundaries 0,N+1, all coupled to nearest neighbors. The ini-
tial state of the chain is a unique ground state with a constant gap
and measurement of the 0-th spin prepares the qubit in |0L〉 or |1L〉.
Thereafter computation is carried right to left inside the two-fold de-
generate ground state of each chain. Every single-qubit gate on qubit
A is performed non-deterministically at time step j by turning off the
interaction P2

Aj,Aj+1
and measuring spin A j in the appropriate basis. A

non-deterministic two-qubit gate, CPHASEB,C, at time step j is done
by turning off P2

Bj,Bj+1
, P2

Cj,Cj+1
and applying a dynamical coupling

exp(i!H int/") followed by measurement of B j,Cj . Gate failures,
which occur with bounded probabilities, are heralded, and act as the
logical identity by the adaption of subsequent measurement bases.
The final readout is made by measuring the spin-1/2 at N+1.

with J > 0 and PSj, j+1 the projector onto the spin-S irre-
ducible representation of the total spin for particles j and
j+ 1. Namely, P2

j, j+1 = 1
2(S j ·S j+1 + 1

3 (S j ·S j+1)2)+ 19
3 and

P3/2
j, j′ = 2

3 (16 + s j ·S j′), where S,s are spin-1, 1/2 representa-
tions of su(2). Without the boundary spins, the finite AKLT
spin chain has a four-fold degeneracy corresponding to a total
spin-0 (singlet) state and a triplet of spin-1 states. The bound-
ary terms P3/2 project out the spin-1 components yielding a
unique ground state such that H|G 〉 = 0. The gap #E persists
in the thermodynamic limit satisfying 3/10≤ #E/J ≤ 10/27,
and numerics suggest #E ≈ 0.350J [8]. A key feature of |G 〉
is that it can serve, using single-spin measurements only, as a
logical quantum wire which is capable of performing not only
deterministic teleportation as already remarked in Ref. [9] but
also an arbitrary logical single-qubit operation similarly to
one-way computation as shown below.

The ground state |G 〉 has a convenient matrix product state
(MPS) representation [9, 10]. Let us define |1 j〉 = −1√

2(|Szj =

1〉− |Szj = −1〉), |2 j〉 = 1√
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where |Mj〉= X |1 j〉− iY |2 j〉+Z|3 j〉 (X ,Y,Z are the Pauli ma-
trices (µ (µ= x,y,z)), and |'−〉 is the singlet (S = 0) located

on the 0-th and N+ 1-th sites. This representation is helpful
to see the action of local measurements to the “relative” state
of unmeasured parts in simulating unitary evolution of MQC
[5, 6, 11]. Note that, in Refs. [5, 6], the ground state of a
modified AKLT chain, different from the original, was consid-
ered to construct a resource state. However, their extension of
the so-called byproduct operators into a non-Pauli finite group
seems rather inconvenient, and how to enforce boundary con-
ditions in a finite open chain has yet to be addressed.
Universal computation by measurements.— Computa-

tion follows by measuring (right to left, as in reading the
Japanese comics) the single spins along each chain, where
spins are indexed by increasing value moving right to left, in
accordance with the order of unitaries in the bra-ket notation.
First we need to prepare the unique ground state |G 〉⊗n of the
n parallel decoupled 1D AKLT chains. This can be efficiently
done along each chain, by either turning on H of Eq. (1) im-
mersing the system in a reservoir and cooling it, or by making
use of its MPS description to produce it via sequential uni-
taries (which scale linearly in N) [12] before turning on H.

The initialization of every quantum logical wire is done by
first turning off the coupling P3/2

0,1 and measuring the rightmost
0-th spin-1/2 in the ẑ basis. Because of the singlet configu-
ration |'−

0,N+1〉, the −1/2 and 1/2 outcome at the 0-th site
ẑ-basis measurement induces the initialization of the quan-
tum wire (identified effectively with the preparation of the
state at the N + 1-th site, since we will see that unitary ac-
tions accumulate on this degree of freedom) to |0L〉 and |1L〉,
respectively. With one boundary spin-1/2, the ground state
is two-fold degenerate, and computation takes place in this
ground subspace, following the measurement which initial-
ized the logical qubit.

Every logical single-qubit unitary operation is implemented
by the single-spin measurement. The interaction P2

j, j+1 is
turned off before the local measurement of the j-th spin, to
guarantee that the remaining system remains in the ground
state. Since an arbitrary single-qubit operation is decomposed
into three rotations around the logical Z and X axes with three
Euler angles, we show here their measurement directions. The
rotation RZ()) = |0L〉〈0L|+ei)|1L〉〈1L| along the Z axis is ap-
plied by the single-spin measurement in an orthogonal basis,

{|*Zj ())〉} = { 1
2((1± e−i))|1 j〉+(1∓ e−i))|2 j〉), |3 j〉}. (3)

If the outcome is either the first or the second (which happens
with probability 2/3 in total), we can apply RZ()) newly on
the logical qubit with a byproduct operator X or XZ, respec-
tively. If the outcome is the third, we consider we apply the
“logical identity” with a byproduct Z. On the other hand, the
rotation RX()) = |+L〉〈+L|+ ei)|−L〉〈−L| along the X axis,
where |±L〉 = 1√

2 (|0L〉± |1L〉), is applied by the single-spin
measurement in another orthogonal basis,

{|*Xj ())〉} = { 1
2((1± ei))|2 j〉+(1∓ ei))|3 j〉), |1 j〉}. (4)

If the outcome is either the first or the second, we apply RX())
with a byproductXZ or Z, respectively, and otherwise the log-
ical identity with a byproduct X .
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FIG. 1: A scheme of ground-code measurement-based QC. Each log-
ical qubit is encoded in a chain of N spin-1 particles with spin-1/2
at the boundaries 0,N+1, all coupled to nearest neighbors. The ini-
tial state of the chain is a unique ground state with a constant gap
and measurement of the 0-th spin prepares the qubit in |0L〉 or |1L〉.
Thereafter computation is carried right to left inside the two-fold de-
generate ground state of each chain. Every single-qubit gate on qubit
A is performed non-deterministically at time step j by turning off the
interaction P2

Aj,Aj+1
and measuring spin A j in the appropriate basis. A

non-deterministic two-qubit gate, CPHASEB,C, at time step j is done
by turning off P2

Bj,Bj+1
, P2

Cj,Cj+1
and applying a dynamical coupling

exp(i!H int/") followed by measurement of B j,Cj . Gate failures,
which occur with bounded probabilities, are heralded, and act as the
logical identity by the adaption of subsequent measurement bases.
The final readout is made by measuring the spin-1/2 at N+1.
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unique ground state such that H|G 〉 = 0. The gap #E persists
in the thermodynamic limit satisfying 3/10≤ #E/J ≤ 10/27,
and numerics suggest #E ≈ 0.350J [8]. A key feature of |G 〉
is that it can serve, using single-spin measurements only, as a
logical quantum wire which is capable of performing not only
deterministic teleportation as already remarked in Ref. [9] but
also an arbitrary logical single-qubit operation similarly to
one-way computation as shown below.

The ground state |G 〉 has a convenient matrix product state
(MPS) representation [9, 10]. Let us define |1 j〉 = −1√
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modified AKLT chain, different from the original, was consid-
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ẑ-basis measurement induces the initialization of the quan-
tum wire (identified effectively with the preparation of the
state at the N + 1-th site, since we will see that unitary ac-
tions accumulate on this degree of freedom) to |0L〉 and |1L〉,
respectively. With one boundary spin-1/2, the ground state
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with a byproductXZ or Z, respectively, and otherwise the log-
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If the outcome is either the first or the second, we ap-
ply RX(θ) with a byproduct XZ or Z, respectively, and
otherwise the logical identity with a byproduct X .

Suppose we initialize the logical wire |0L〉 by the 0-th
site −1/2 outcome (otherwise, we consider the wire is ini-
tialized |0L〉 with the byproduct X from the beginning).
According to Eq. (1), before the j-th spin is measured,
we have a state |ψ(j)〉 = 〈10|

∏1
k=j−1〈γk|G〉 given by
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where Υ is the accumulated byproduct operator, and
the measurement directions of |γk(θk)〉 must have been
adapted from θk to −θk when non-commuting byprod-
ucts from previous measurements are propagated to the
left through the current one.

We describe important properties of the residual

Hamiltonian H(j) = J [
∑N−1

k=j P 2
k,k+1 + P 3/2

N,N+1] through
the measurement stage of the j-th spin. First, H(j) is
gapped as before and is two-fold degenerate. Defining the

string operators Σµ(j) = eiπ
PN

k=j Sµ
k ⊗σµ

N+1, we find that
[Σµ(j), H(j)] = 0 whereas {Σx(j),Σz(j)}+ = 0. At each
stage j, the pair Σx,z(j) forms a representation of su(2),
and the degenerate ground states are only connected
by nonlocal operators. For every single quantum wire,
we utilize “time-dependent” logical encoding such that
〈ψ(j)|Σµ(j)|ψ(j)〉 = 〈0N+1|u†Υ†σµ

N+1Υu|0N+1〉, where
u is the total single-qubit rotation until the j−1-th gate.

Second, the logical state is not disturbed when turn-
ing off the interaction coupling the bulk to the j-th spin.
We can decouple with the time-dependent Hamiltonian
H(j; t) = J(1−c(t))P 2

j,j+1+H(j+1) , where c(t) is mono-
tonically increasing in t ∈ [0, 1] with c(0) = 0, c(1) = 1.
Now P 2

j,j+1 does not commute with H(j + 1). However,
the AKLT Hamiltonian has the property that the ground
states also minimize its positive summands, i.e., it is
frustration-free [7]. Hence, P gr(0) = P gr(t)∀t < 1 and
∂νH(j;t)

∂tν P gr(t) = 0∀ν, t, where P gr(t) = |G(t)〉〈G(t)| are
projectors onto the ground subspaces of H(j; t). Thus,
turning off the end interaction term does not couple to
excited states, and can be done in a constant time in-
dependent of the system size. Even if there are some
unwanted initial perturbations on H(j; t), the gap pro-
vides robustness if performed adiabatically. The same
argument applies to turning off the boundary terms.

Third, notice that |ψ(j + 1)〉 of Eq. (4) can be written
for the general outcome |r0〉 (r = 0, 1) of the 0-th site
measurement as 1√
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k′=j R(θ̃k′) due to the invariance of |Ψ−〉 under the
bilateral unitaries. But this is equivalent to the state
obtained by beginning in the unique ground state of

H(j + 1) + P 3/2
0,j+1, turning off P 3/2

0,j+1, measuring the 0-

th spin in the basis {V |r0〉, V X |r0〉}, with result V |r0〉.
This state is in the ground subspace of H(j + 1).

Logical two-qubit operations are made dynamically by
coupling two spin-1 particles in adjacent chains (say A
and B) followed by their local measurements (equiva-
lently, by a two-spin measurement). First P 2

Aj ,Aj+1
and

P 2
Bj ,Bj+1

are turned off. We introduce the physical inter-

action exp(iH intπ/χ) between spins Aj and Bj , where
H int = χ|Sz

Aj
= 1〉〈Sz

Aj
= 1| ⊗ |Sz

Bj
= 1〉〈Sz

Bj
= 1|,

and measure both spins Aj and Bj in the standard basis
{|1〉, |2〉, |3〉}. If the both outcomes are in either |1〉 or
|2〉, which occurs with overall probability (2/3)2 = 4/9,
we successfully apply the logical Controlled-Phase gate
CPHASEA,B = 14 − 2|1L

A1L
B〉〈1L

A1L
B|. Notice that, in

the span by |1Aj 1Bj 〉, |1Aj2Bj 〉, |2Aj 1Bj 〉, and |2Aj 2Bj 〉,
exp(iH intπ/χ) acts as Γ = 14 − 1

2 (12 − X) ⊗ (12 − X)
and as the identity elsewhere. We see that this in-
duces 〈αAj | ⊗ 〈βBj |Γ|MAj 〉 ⊗ |MBj 〉 = ΥCPHASEAj ,Bj

with the byproduct operator Υ = XZ ⊗ XZ, XZ ⊗ X ,
X ⊗ XZ, or X ⊗ X in the aforementioned span. Other-
wise (namely, if at least one outcome is in |3〉), we end
up with applying the logical identity with the byproduct
〈αAj |MAj 〉 ⊗ 〈βBj |MBj 〉.

To prove that computation is kept in the ground sub-
space, imagine that we began in a separable state of two
chains A and B initialized in |0L〉. After CPHASE is suc-
cessfully applied and byproducts for A and B are propa-
gated, the joint state is

1
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This state is a superposition of logical states each of
which is in the kernel of [HA(j + 1) + HB(j + 1)] and
hence is in the ground subspace of the two chains.

It can be verified that for any quantum circuit realized
with our universal set of gates, the probability for each
successful single-, two-qubit gates is constant at 2/3, 4/9
throughout computation, respectively. We can efficiently
perform the entire computation, by trying every gate un-
til success, at the same time deterministically teleporting
(by the standard basis measurement) other logical qubits
to be spatially aligned for subsequent two-qubit gates.
A remarkable new feature is that the general single-,
two-qubit operations are probabilistic, while the logical
identity (teleportation) is essentially deterministic with
the adaptive measurements. This variable computational
depth originates from the “correlated logical times” due
to a non-zero two-point correlation of the AKLT chain,
which decays as (−1/3)|j−j′| between sites j and j′.

At the end of computation, the joint state of left-
most boundary spins is ΥU |0L〉⊗n, where Υ is the to-
tal byproduct and U the target unitary operator. The
final logical measurement, w.l.o.g. in the computational
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ply RX(θ) with a byproduct XZ or Z, respectively, and
otherwise the logical identity with a byproduct X .

Suppose we initialize the logical wire |0L〉 by the 0-th
site −1/2 outcome (otherwise, we consider the wire is ini-
tialized |0L〉 with the byproduct X from the beginning).
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where Υ is the accumulated byproduct operator, and
the measurement directions of |γk(θk)〉 must have been
adapted from θk to −θk when non-commuting byprod-
ucts from previous measurements are propagated to the
left through the current one.

We describe important properties of the residual
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N,N+1] through
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N+1, we find that
[Σµ(j), H(j)] = 0 whereas {Σx(j),Σz(j)}+ = 0. At each
stage j, the pair Σx,z(j) forms a representation of su(2),
and the degenerate ground states are only connected
by nonlocal operators. For every single quantum wire,
we utilize “time-dependent” logical encoding such that
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ing off the interaction coupling the bulk to the j-th spin.
We can decouple with the time-dependent Hamiltonian
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tonically increasing in t ∈ [0, 1] with c(0) = 0, c(1) = 1.
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j,j+1 does not commute with H(j + 1). However,
the AKLT Hamiltonian has the property that the ground
states also minimize its positive summands, i.e., it is
frustration-free [7]. Hence, P gr(0) = P gr(t)∀t < 1 and
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∂tν P gr(t) = 0∀ν, t, where P gr(t) = |G(t)〉〈G(t)| are
projectors onto the ground subspaces of H(j; t). Thus,
turning off the end interaction term does not couple to
excited states, and can be done in a constant time in-
dependent of the system size. Even if there are some
unwanted initial perturbations on H(j; t), the gap pro-
vides robustness if performed adiabatically. The same
argument applies to turning off the boundary terms.
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with the byproduct operator Υ = XZ ⊗ XZ, XZ ⊗ X ,
X ⊗ XZ, or X ⊗ X in the aforementioned span. Other-
wise (namely, if at least one outcome is in |3〉), we end
up with applying the logical identity with the byproduct
〈αAj |MAj 〉 ⊗ 〈βBj |MBj 〉.

To prove that computation is kept in the ground sub-
space, imagine that we began in a separable state of two
chains A and B initialized in |0L〉. After CPHASE is suc-
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hence is in the ground subspace of the two chains.

It can be verified that for any quantum circuit realized
with our universal set of gates, the probability for each
successful single-, two-qubit gates is constant at 2/3, 4/9
throughout computation, respectively. We can efficiently
perform the entire computation, by trying every gate un-
til success, at the same time deterministically teleporting
(by the standard basis measurement) other logical qubits
to be spatially aligned for subsequent two-qubit gates.
A remarkable new feature is that the general single-,
two-qubit operations are probabilistic, while the logical
identity (teleportation) is essentially deterministic with
the adaptive measurements. This variable computational
depth originates from the “correlated logical times” due
to a non-zero two-point correlation of the AKLT chain,
which decays as (−1/3)|j−j′| between sites j and j′.
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most boundary spins is ΥU |0L〉⊗n, where Υ is the to-
tal byproduct and U the target unitary operator. The
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If the outcome is either the first or the second, we ap-
ply RX(θ) with a byproduct XZ or Z, respectively, and
otherwise the logical identity with a byproduct X .

Suppose we initialize the logical wire |0L〉 by the 0-th
site −1/2 outcome (otherwise, we consider the wire is ini-
tialized |0L〉 with the byproduct X from the beginning).
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left through the current one.
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If the outcome is either the first or the second, we ap-
ply RX(θ) with a byproduct XZ or Z, respectively, and
otherwise the logical identity with a byproduct X .

Suppose we initialize the logical wire |0L〉 by the 0-th
site −1/2 outcome (otherwise, we consider the wire is ini-
tialized |0L〉 with the byproduct X from the beginning).
According to Eq. (1), before the j-th spin is measured,
we have a state |ψ(j)〉 = 〈10|

∏1
k=j−1〈γk|G〉 given by

1√
3N−j+1

3∑

{αk}=1

|αj〉 · · · |αN 〉[
j∏

k=N

〈αk|Mk〉Υ
1∏

k′=j−1

R(θk′)]|0L〉,

(4)
where Υ is the accumulated byproduct operator, and
the measurement directions of |γk(θk)〉 must have been
adapted from θk to −θk when non-commuting byprod-
ucts from previous measurements are propagated to the
left through the current one.

We describe important properties of the residual

Hamiltonian H(j) = J [
∑N−1

k=j P 2
k,k+1 + P 3/2

N,N+1] through
the measurement stage of the j-th spin. First, H(j) is
gapped as before and is two-fold degenerate. Defining the

string operators Σµ(j) = eiπ
PN

k=j Sµ
k ⊗σµ

N+1, we find that
[Σµ(j), H(j)] = 0 whereas {Σx(j),Σz(j)}+ = 0. At each
stage j, the pair Σx,z(j) forms a representation of su(2),
and the degenerate ground states are only connected
by nonlocal operators. For every single quantum wire,
we utilize “time-dependent” logical encoding such that
〈ψ(j)|Σµ(j)|ψ(j)〉 = 〈0N+1|u†Υ†σµ

N+1Υu|0N+1〉, where
u is the total single-qubit rotation until the j−1-th gate.

Second, the logical state is not disturbed when turn-
ing off the interaction coupling the bulk to the j-th spin.
We can decouple with the time-dependent Hamiltonian
H(j; t) = J(1−c(t))P 2

j,j+1+H(j+1) , where c(t) is mono-
tonically increasing in t ∈ [0, 1] with c(0) = 0, c(1) = 1.
Now P 2

j,j+1 does not commute with H(j + 1). However,
the AKLT Hamiltonian has the property that the ground
states also minimize its positive summands, i.e., it is
frustration-free [7]. Hence, P gr(0) = P gr(t)∀t < 1 and
∂νH(j;t)

∂tν P gr(t) = 0∀ν, t, where P gr(t) = |G(t)〉〈G(t)| are
projectors onto the ground subspaces of H(j; t). Thus,
turning off the end interaction term does not couple to
excited states, and can be done in a constant time in-
dependent of the system size. Even if there are some
unwanted initial perturbations on H(j; t), the gap pro-
vides robustness if performed adiabatically. The same
argument applies to turning off the boundary terms.

Third, notice that |ψ(j + 1)〉 of Eq. (4) can be written
for the general outcome |r0〉 (r = 0, 1) of the 0-th site
measurement as 1√

3N−j

∑3
{αk}=1 |αj+1〉 · · · |αN 〉〈r0|[V †⊗

∏j+1
k=N 〈αk|Mk〉]|Ψ−

0,N+1〉, where V is the form of

Υ̃
∏1

k′=j R(θ̃k′) due to the invariance of |Ψ−〉 under the
bilateral unitaries. But this is equivalent to the state
obtained by beginning in the unique ground state of

H(j + 1) + P 3/2
0,j+1, turning off P 3/2

0,j+1, measuring the 0-

th spin in the basis {V |r0〉, V X |r0〉}, with result V |r0〉.
This state is in the ground subspace of H(j + 1).

Logical two-qubit operations are made dynamically by
coupling two spin-1 particles in adjacent chains (say A
and B) followed by their local measurements (equiva-
lently, by a two-spin measurement). First P 2

Aj ,Aj+1
and

P 2
Bj ,Bj+1

are turned off. We introduce the physical inter-

action exp(iH intπ/χ) between spins Aj and Bj , where
H int = χ|Sz

Aj
= 1〉〈Sz

Aj
= 1| ⊗ |Sz

Bj
= 1〉〈Sz

Bj
= 1|,

and measure both spins Aj and Bj in the standard basis
{|1〉, |2〉, |3〉}. If the both outcomes are in either |1〉 or
|2〉, which occurs with overall probability (2/3)2 = 4/9,
we successfully apply the logical Controlled-Phase gate
CPHASEA,B = 14 − 2|1L

A1L
B〉〈1L

A1L
B|. Notice that, in

the span by |1Aj 1Bj 〉, |1Aj2Bj 〉, |2Aj 1Bj 〉, and |2Aj 2Bj 〉,
exp(iH intπ/χ) acts as Γ = 14 − 1

2 (12 − X) ⊗ (12 − X)
and as the identity elsewhere. We see that this in-
duces 〈αAj | ⊗ 〈βBj |Γ|MAj 〉 ⊗ |MBj 〉 = ΥCPHASEAj ,Bj

with the byproduct operator Υ = XZ ⊗ XZ, XZ ⊗ X ,
X ⊗ XZ, or X ⊗ X in the aforementioned span. Other-
wise (namely, if at least one outcome is in |3〉), we end
up with applying the logical identity with the byproduct
〈αAj |MAj 〉 ⊗ 〈βBj |MBj 〉.

To prove that computation is kept in the ground sub-
space, imagine that we began in a separable state of two
chains A and B initialized in |0L〉. After CPHASE is suc-
cessfully applied and byproducts for A and B are propa-
gated, the joint state is

1
3N−j

∑3
{αAk

,βB"
}=1 |αAj+1

〉|βBj+1
〉 · · · |αAN 〉|βBN 〉

×
∏j+1

k=N 〈αAk
|MAk

〉
∏j+1

%=N 〈βB"
|MB"

〉
× (ΥA ⊗ ΥB)1

2 (14 + ZAN+1
+ ZBN+1

− ZAN+1
ZBN+1

)
×

∏1
k′=j RA(θk′ )|0L

A〉 ⊗
∏1

%′=j RB(θ%′)|0L
B〉.

This state is a superposition of logical states each of
which is in the kernel of [HA(j + 1) + HB(j + 1)] and
hence is in the ground subspace of the two chains.

It can be verified that for any quantum circuit realized
with our universal set of gates, the probability for each
successful single-, two-qubit gates is constant at 2/3, 4/9
throughout computation, respectively. We can efficiently
perform the entire computation, by trying every gate un-
til success, at the same time deterministically teleporting
(by the standard basis measurement) other logical qubits
to be spatially aligned for subsequent two-qubit gates.
A remarkable new feature is that the general single-,
two-qubit operations are probabilistic, while the logical
identity (teleportation) is essentially deterministic with
the adaptive measurements. This variable computational
depth originates from the “correlated logical times” due
to a non-zero two-point correlation of the AKLT chain,
which decays as (−1/3)|j−j′| between sites j and j′.

At the end of computation, the joint state of left-
most boundary spins is ΥU |0L〉⊗n, where Υ is the to-
tal byproduct and U the target unitary operator. The
final logical measurement, w.l.o.g. in the computational
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• Experimental realization in entangled photonic networks

Optical one-way quantum computing with a simulated valence-bond solid
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One-way quantum computation proceeds by sequentially measuring individual spins (qubits) in
an entangled many-spin resource state [1]. It remains a challenge, however, to e⇤ciently produce
such resource states. Is it possible to reduce the task of generating these states to simply cooling a
quantum many-body system to its ground state? Cluster states, the canonical resource for one-way
quantum computing, do not naturally occur as ground states of physical systems [2, 3]. This led
to a significant e�ort to identify alternative resource states that appear as ground states in spin
lattices [4–8]. An appealing candidate is a valence-bond-solid state described by A⌅eck, Kennedy,
Lieb, and Tasaki (AKLT) [9]. It is the unique, gapped ground state for a two-body Hamiltonian
on a spin-1 chain, and can be used as a resource for one-way quantum computing [4–7]. Here, we
experimentally generate a photonic AKLT state and use it to implement single-qubit quantum logic
gates.

In the standard circuit model of quantum computa-
tion [10], information is carried by two-level systems
called qubits. The computation proceeds dynamically
via unitary single-qubit logic gates and multiple-qubit
entangling gates. Apart from these entangling gates the
qubits are fully isolated from each other. Computations
in the one-way model, on the other hand, are performed
via single-qubit measurements on a strongly-correlated,
i.e., entangled, resource state. The one-way model has
led to some of the highest estimated error thresholds for
fault-tolerant quantum computation [11, 12], and to a
series of experimental demonstrations of quantum logic
gates [13–18], wherein the technical requirements can be
much simpler than for the circuit model. This is particu-
larly true of optical implementations, where the resource
requirements for one-way quantum computing are sig-
nificantly lower [19], and the predicted error thresholds
significantly higher [20], than for any other approach to
quantum computation.

Because qubits in the one-way model are not isolated
but rather interact strongly with each other, this ap-
proach lends itself more naturally for implementations
in condensed-matter systems. But, out of the vast va-
riety of strongly-coupled quantum many-body systems,
can we find one that has a ground state we can use as a
resource for quantum computing? That seems unlikely if
this ground state is to be the cluster state, because the
cluster state is not the ground state of a strongly-coupled
many-body system with a Hamiltonian consisting of two-
body interactions [2, 3]. As a result, the search for al-
ternative resource states has attracted a lot of interest
recently. Although up to now little is known about the
requirements potential resource states for the one-way
model have to meet, and although most states are in fact
useless for this task [21], a handful of alternative states
have been identified [4–8]. All of these states can be

... ...
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FIG. 1: AKLT states. (a) The AKLT state [9] is a valence-
bond solid and can be represented by a chain of spin- 12 singlet
states where adjoining qubits of neighbouring pairs are pro-
jected on the triplet subspace, i.e. the subspace symmetric
with respect to swapping of the two qubits. At either end of
the chain a boundary qubit remains, ensuring that the ground
state is non-degenerate. (b) One can simulate an AKLT state
with a chain of sources producing singlet states and projecting
pairs of particles on the triplet subspace.

described in the framework of projected entangled pair
states [4, 22] or matrix product states [5, 6].

A promising candidate is the ground state of a spin
model studied by A⇥eck, Kennedy, Lieb, and Tasaki
(AKLT) [9]. This valence-bond-solid state (see Fig-
ure 1a) appears as the unique gapped ground state
of a rotationally-invariant nearest-neighbour two-body
Hamiltonian on a spin-1 chain. The AKLT state pos-
sesses diverging localisable entanglement length [23] and,
remarkably, can serve as a resource for one-way quantum
computation [6, 7, 24]. Because the Hamiltonian is frus-
tration free, i.e. the ground state minimises the energy of
each local term of the Hamiltonian, measurements in the
course of the computation leave the remaining particles in
their ground state. Operations leaving the computational
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Quantum computational renormalization in 
the Haldane phase

• AKLT Hamiltonian is one point in a family of SO(3) symmetric spin-1 chains

• The entire Haldane phase is gapped and has exponentially decaying correlation 
functions.  But only at  AKLT does the ground state have the simple MPS 
description we need for measurement based computing.

• Can we use other ground states in the Haldane phase? 

AKLT

Quantum computational renormalization in the Haldane phase
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Single-spin measurements on the ground state of an interacting spin lattice can be used to per-
form a quantum computation. We show how such measurements can mimic renormalization group
transformations and remove the short-ranged variations of the state that can reduce the fidelity of
a computation. This suggests that the quantum computational ability of a spin lattice could be a
robust property of a quantum phase. We illustrate our idea with the ground state of a rotationally-
invariant spin-1 chain, which can serve as a quantum computational wire not only at the A⇥eck-
Kennedy-Lieb-Tasaki point, but within the Haldane phase.

PACS numbers: 03.67.Lx,75.10.Kt,64.60.ae

Measurement-based quantum computation (MQC)
proceeds by performing a sequence of single-spin (local)
measurements on an entangled resource state of a lattice
or graph. The canonical example of such a resource is the
cluster state [1] on a 2D square lattice, although recently
alternatives have been proposed [2–6]. Ideally, such a re-
source would be natural, appearing as the stable ground
state of a realistic (experimentally accessible) spin lattice.
It would also be robust, insensitive to variations in the
parameters of the Hamiltonian, such that its quantum
computational ability is attributed to a quantum phase
in a similar manner to superconductivity and quantum
magnetism. Evidence of such a quantum computational
phase has been suggested in a handful of artificial mod-
els [5–7]. A central problem in this approach, however,
is that short-ranged variations in a phase, irrelevant to
the low-energy physics, will in general be extremely dele-
terious for MQC, where the e�ect of every single-spin
measurement is significant for the computation.

In this Letter, we show how local measurements within
MQC can transform a ground state in such a way as
to physically implement a renormalization group (RG)
transformation, identifying such a quantum computa-
tional phase and correcting for the short-ranged varia-
tions. As a specific example, we consider rotationally-
and translationally-invariant spin-1 chains, which possess
a Haldane phase containing the A⌅eck-Kennedy-Lieb-
Tasaki (AKLT) spin-1 ground state [8]. As shown in [9],
measurements on the AKLT state can simulate an arbi-
trary single-qubit gate sequence in the quantum circuit
model, i.e. it is a quantum computational wire [4, 10],
and forms a basic constituent of MQC when such chains
can be coupled. We show that ground states within
this phase can also function as quantum computational
wires by appropriately modifying the AKLT measure-
ment sequences. This modification can be interpreted
as quantum computationally simulating a renormaliza-
tion group transformation, distilling out the long-range

degrees of freedom which are common to the entire Hal-
dane phase as shown by various classical algorithmic RG
methods [11–14]. Although specific to this spin-1 model,
our result suggests that a similar technique may be ap-
plicable in any phase for which a known resource state is
a fixed point of an RG flow. We note that, unlike state
filtering techniques to distill a resource state with local
measurements [3, 6, 10, 15], which are strongly dependent
on the precise description of the initial state, our method
implements a parameter-independent RG that functions
robustly within the phase.

The Haldane phase and logic gates.—The AKLT model
was originally proposed to analyze the so-called 1D Hal-
dane phase of a spin-1 chain, which displays several char-
acteristic features (see e.g. [16]) such as a spectral gap
independent of the system size, a diluted antiferromag-
netic order often measured by the string order parame-
ter, and an e�ective spin- 1

2 degree of freedom (the edge
state) appearing on the boundary of the chain. A generic
translationally- and rotationally-invariant Hamiltonian
with nearest-neighbor two-body interactions on a spin-
1 chain, which takes the form

H(�) = J
⇤

j

�
Sj · Sj+1 � �(Sj · Sj+1)2

⇥
, (1)

has a gapped Haldane phase for J > 0 and �1 < � < 1.
At the AKLT point � = � 1

3 , each term in Eq. (1) is the
projector onto the spin-2 subspace of neighboring sites,
modulo an additive constant and scale factor. Moreover,
H(� 1

3 ) is frustration-free, and its ground states have ef-
ficient matrix product state (MPS) descriptions [17].

The ground states of finite chains are nearly fourfold
degenerate, corresponding to a tensor product of two
two-dimensional edge states. Each edge state can thus
be thought of as a qubit. To associate one qubit to a
chain, say on the right, we may fix the left edge by as-
suming an additional spin- 1

2 particle which terminates
the chain, along with an s · S coupling. The encoded
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FIG. 1: (a) Different phases of the ground state of Hamilto-
nian (1), according to the “angle” θ defined in the text. (b)
Type of Hamiltonian (3) as a function of the gradient of the
electric field, ∆, for U0 = 0.75U2. The solid line is obtained
naturally, the dashed line is for the dual model obtained when
working on the upper part of the spectrum, and the dotted
line marks the location of the possible nematic phase.

Finding an experimental setup for checking the validity
and observing the several phases of the QB Hamiltonian
and of spin ladders is considered a very important chal-
lenge in the field. In this paper we propose to solve this
problem using cold atoms confined in an optical lattice
[9]. As shown before, a Mott phase [14] of cold atoms in
a lattice can be described using ferromagnetic spin s = 1

2
[10, 11] or s = 1 [12, 13] Hamiltonians. Here we describe
how to access a wider family of models, including Hal-
dane phases of antiferromagnetic s = 1 chains and s = 1

2
ladders. We also design a technique to prepare adiabat-
ically the atoms in the ground state, an important task
since these spins cannot be cooled. Finally we study how
to detect the different spin phases, and to directly ob-
serve correlation and excitation properties. This is in
sharp contrast with standard experiments in condensed
matter where one neither has a controllable implemen-
tation of the QB Hamiltonian (1) nor a direct way to
perform measurements that so far have been regarded as
mere theoretical tools.

Let us first consider how to engineer Hamiltonian (1)
using spin s = 1 bosons in an array of one-dimensional
optical lattices. For a strong confinement and low den-
sities, the effective Hamiltonian is the Bose-Hubbard
model [14]

H = −J
∑

〈j,l〉,α

(a†
jαalα + a†

lαajα) +
∑

j,α

(Ej + Bjα)a†
jαajα

+
∑

S=0,2

US

2

∑

j,α,β,γ,δ

(Ψ(S)
σ,γδajγajδ)

†(Ψ(S)
σ,αβajαajβ). (2)

First of all, while the indices j and l run over the lattice
sites, the Greek letters label the projection along the Z
axis of either the spin of an atom (α, β, γ, δ = −1, 0, +1),
or of a pair of them (σ = −2,−1, 0, 1, 2). Then the first
term in the Hamiltonian is the single-particle hopping
term and J is the tunneling amplitude to a neighbor-
ing site. The second term models the interaction be-
tween bosons in a single site: two bosons can only in-
teract if their total spin is either 0 or 2, because the

J’

J

J

J’

J’

2I (x)

1I (x)

I +I(a) (b)

X
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1 2

FIG. 2: (a) A ladder is the combination of two spin chains
that interact with each other. Interactions along a chain and
between legs can be different. (b) We can build a ladder
combining a 3D lattice, I2(x), with an additional 1D optical
lattice, I1(x), that has twice the period of the first one. This
induces a tunable hopping J

′, different from the longitudinal
one, J , and suppresses hopping between neighboring ladders.

state S = 1 is antisymmetric. Furthermore, the inter-
action may be different for each value of the total spin.
Both statements are summarized in the presence of spin-
dependent interaction constants, US, and in the tensors

Ψ(S)
σ,γδ = 〈S, σ|s, γ; s, β〉, which are the Clebsch-Gordan

coefficients between the states |s = 1, γ〉 ⊗ |s = 1, β〉 and
|S = 0, 2; σ〉. Finally, we have included effective elec-
tric and magnetic fields, Ej and Bjα, that can be engi-
neered using Stark shifts and spatially dependent mag-
netic fields, as in current experiments [9].

We will assume that the lattice has been loaded with
one atom per site [15], and that the tunneling has been
strongly suppressed, J % US. With a perturbative cal-
culation around states with unit occupation [11, 12, 13]
we obtain the QB Hamiltonian (1) with constants

α = 1
2C2, αβ = − 1

6 (2C0 + C2), CS =
J2US

∆2 − U2
S

(3)

This result is valid only if the gradient of the magnetic
field is small, |Bj+1 − Bj| % |US|, and the gradient of
the electric field is constant, ∆ = Ej+1 − Ej , and not
resonant with the interaction, |nUS ±∆| & J, ∀n ∈ Z.

In the absence of electric or magnetic fields the model
reduces to that of [12] and [13], and we are restricted to
a fixed value of θ, typically in the ferromagnetic sector.
However, with our tools it is possible to explore many
other phases and achieve almost all values of θ [Fig. 3].
The idea is to change the gradient of the electric field and
use a duality HAF = −HF between ferro and antiferro-
magnetic models: The highest energy state of a ferromag-
netic model (α < 0) is the same and exhibits the same
dynamics as the ground state of the dual model (−α,−β),
since (i∂t − HF )ψ(t) = 0 ⇔ (i∂t − HAF )ψ&(t) = 0.
This equivalence is possible in current experiments, be-
cause dissipation is negligible and decoherence affects
equally both ends of the spectrum.

A similar procedure is used for implementing ladders
[6] of spin s = 1

2 . A ladder is nothing but the combination
of two spin chains (legs) that interact with each other. To

J

�J�
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• Haldane phase

• Note: the SWAP operator between two spin-1 particles

- Perturbations away from AKLT point                        are perturbations by SWAP, so the ground 
states are roughly coherent superpositions (up to kth order) of SWAP on spins separated by k.

• Buffering protocol

- Measure spins flanking target spin in basis commuting with target rotation  

Quantum computational renormalization in the Haldane phase

Stephen D. Bartlett,1 Gavin K. Brennen,2 Akimasa Miyake,3 and Joseph M. Renes4
1School of Physics, The University of Sydney, Sydney, NSW 2006, Australia

2Centre for Quantum Computer Technology, Macquarie University, Sydney, NSW 2109, Australia
3Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo Ontario, N2L 2Y5, Canada

4Institut für Angewandte Physik, Technische Universität Darmstadt, Hochschulstr. 4a, 64289 Darmstadt, Germany
(Dated: 20 July 2010)

Single-spin measurements on the ground state of an interacting spin lattice can be used to per-
form a quantum computation. We show how such measurements can mimic renormalization group
transformations and remove the short-ranged variations of the state that can reduce the fidelity of
a computation. This suggests that the quantum computational ability of a spin lattice could be a
robust property of a quantum phase. We illustrate our idea with the ground state of a rotationally-
invariant spin-1 chain, which can serve as a quantum computational wire not only at the A⇥eck-
Kennedy-Lieb-Tasaki point, but within the Haldane phase.
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Measurement-based quantum computation (MQC)
proceeds by performing a sequence of single-spin (local)
measurements on an entangled resource state of a lattice
or graph. The canonical example of such a resource is the
cluster state [1] on a 2D square lattice, although recently
alternatives have been proposed [2–6]. Ideally, such a re-
source would be natural, appearing as the stable ground
state of a realistic (experimentally accessible) spin lattice.
It would also be robust, insensitive to variations in the
parameters of the Hamiltonian, such that its quantum
computational ability is attributed to a quantum phase
in a similar manner to superconductivity and quantum
magnetism. Evidence of such a quantum computational
phase has been suggested in a handful of artificial mod-
els [5–7]. A central problem in this approach, however,
is that short-ranged variations in a phase, irrelevant to
the low-energy physics, will in general be extremely dele-
terious for MQC, where the e�ect of every single-spin
measurement is significant for the computation.

In this Letter, we show how local measurements within
MQC can transform a ground state in such a way as
to physically implement a renormalization group (RG)
transformation, identifying such a quantum computa-
tional phase and correcting for the short-ranged varia-
tions. As a specific example, we consider rotationally-
and translationally-invariant spin-1 chains, which possess
a Haldane phase containing the A⌅eck-Kennedy-Lieb-
Tasaki (AKLT) spin-1 ground state [8]. As shown in [9],
measurements on the AKLT state can simulate an arbi-
trary single-qubit gate sequence in the quantum circuit
model, i.e. it is a quantum computational wire [4, 10],
and forms a basic constituent of MQC when such chains
can be coupled. We show that ground states within
this phase can also function as quantum computational
wires by appropriately modifying the AKLT measure-
ment sequences. This modification can be interpreted
as quantum computationally simulating a renormaliza-
tion group transformation, distilling out the long-range

degrees of freedom which are common to the entire Hal-
dane phase as shown by various classical algorithmic RG
methods [11–14]. Although specific to this spin-1 model,
our result suggests that a similar technique may be ap-
plicable in any phase for which a known resource state is
a fixed point of an RG flow. We note that, unlike state
filtering techniques to distill a resource state with local
measurements [3, 6, 10, 15], which are strongly dependent
on the precise description of the initial state, our method
implements a parameter-independent RG that functions
robustly within the phase.

The Haldane phase and logic gates.—The AKLT model
was originally proposed to analyze the so-called 1D Hal-
dane phase of a spin-1 chain, which displays several char-
acteristic features (see e.g. [16]) such as a spectral gap
independent of the system size, a diluted antiferromag-
netic order often measured by the string order parame-
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state) appearing on the boundary of the chain. A generic
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degenerate, corresponding to a tensor product of two
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chain, say on the right, we may fix the left edge by as-
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Measurement-based quantum computation (MQC)
proceeds by performing a sequence of single-spin (local)
measurements on an entangled resource state of a lattice
or graph. The canonical example of such a resource is the
cluster state [1] on a 2D square lattice, although recently
alternatives have been proposed [2–6]. Ideally, such a re-
source would be natural, appearing as the stable ground
state of a realistic (experimentally accessible) spin lattice.
It would also be robust, insensitive to variations in the
parameters of the Hamiltonian, such that its quantum
computational ability is attributed to a quantum phase
in a similar manner to superconductivity and quantum
magnetism. Evidence of such a quantum computational
phase has been suggested in a handful of artificial mod-
els [5–7]. A central problem in this approach, however,
is that short-ranged variations in a phase, irrelevant to
the low-energy physics, will in general be extremely dele-
terious for MQC, where the e�ect of every single-spin
measurement is significant for the computation.

In this Letter, we show how local measurements within
MQC can transform a ground state in such a way as
to physically implement a renormalization group (RG)
transformation, identifying such a quantum computa-
tional phase and correcting for the short-ranged varia-
tions. As a specific example, we consider rotationally-
and translationally-invariant spin-1 chains, which possess
a Haldane phase containing the A⌅eck-Kennedy-Lieb-
Tasaki (AKLT) spin-1 ground state [8]. As shown in [9],
measurements on the AKLT state can simulate an arbi-
trary single-qubit gate sequence in the quantum circuit
model, i.e. it is a quantum computational wire [4, 10],
and forms a basic constituent of MQC when such chains
can be coupled. We show that ground states within
this phase can also function as quantum computational
wires by appropriately modifying the AKLT measure-
ment sequences. This modification can be interpreted
as quantum computationally simulating a renormaliza-
tion group transformation, distilling out the long-range

degrees of freedom which are common to the entire Hal-
dane phase as shown by various classical algorithmic RG
methods [11–14]. Although specific to this spin-1 model,
our result suggests that a similar technique may be ap-
plicable in any phase for which a known resource state is
a fixed point of an RG flow. We note that, unlike state
filtering techniques to distill a resource state with local
measurements [3, 6, 10, 15], which are strongly dependent
on the precise description of the initial state, our method
implements a parameter-independent RG that functions
robustly within the phase.
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be thought of as a qubit. To associate one qubit to a
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the chain, along with an s · S coupling. The encoded
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Pauli operators then take the form of string operators
�k = ⌅k ⇤ ei�Sk ⇤ · · · ⇤ ei�Sk , for k ⌥ {x, y, z}. This is
depicted in Fig. 1, which also details the protocol of [9]
to perform logical operations on the encoded qubit by
subjecting the ground state to a sequence of single-spin
measurements. During the MQC, we do not consider dy-
namics under H(�); it only specifies a family of resource
states. However, controlling H(�) at the boundary re-
alizes a quantum computational wire without the RG
methods presented here [18], and may be useful for pro-
viding protection against errors during computation [9].

(a)

(b)
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FIG. 1: (Color online.) Single qubit operations on a Haldane-
phase spin chain. A chain of spin-1 particles terminated on
the left by a spin- 1

2 particle encodes one qubit on its right
edge. Single spin measurements, shown in (a), implement sin-
gle qubit operations on the AKLT chain, with measurement
in the basis {|S

êi=0 }3
i=1 for some Cartesian basis {ê

i

}3
i=1

leading to ⇤ rotation around the outcome axis [9]. Each out-
come occurs with probability 1/3. Fixing a “standard” basis
{x̂, ŷ, ẑ} (called {|x ,|y ,|z } in the spin-1 state space), the
first two outcomes of measurement in a basis {x̂⇥, ŷ⇥, ẑ} ro-
tated by ⇥ around the ẑ axis (spin-1 states {|⇥ , |⇥ + ⇤ , |z },
for |⇥ ⇤ 1

2

ˆ
(1+e�i✓) |x + (1�e�i✓) |y 

˜
) result in the same

rotation R
z

(⇥) of the qubit, followed by a corresponding
byproduct ⇤ rotation of it around x̂ or ŷ (which can be later
corrected). The third outcome is just a byproduct ẑ rotation.
Induced rotations become noisy for � ⇧= � 1

3 , but can be im-
proved by bu�ering, depicted in (b). Here the left and right
spins are measured first, and the rotation measurement (mid-
dle) is only attempted when these are both ẑ. Failing this,
the middle spin is measured in the standard basis, and the
attempt is repeated in the next block. Concatenating block-3
bu⇥ering is equivalent to block-9 bu⇥ering, as shown in (c).

As the protocol described in Fig. 1 is rotationally sym-
metric (it works for any Cartesian axis), it is reason-
able to apply it to the ground state of any rotationally-
invariant Hamiltonian within the Haldane phase. Indeed,
measuring each spin in the same fixed basis implements
the resulting ⇤ rotations, i.e. logical identity operations
modulo Pauli byproducts, with unit fidelity at any point
in the Haldane phase. However, as shown in Fig. 2
(blocksize 1), the gate fidelity decays when measuring
in more than one basis away from the AKLT point.

Such behavior is not unexpected, owing to the relation
between rotation fidelity and string operator expectation
values as detailed in the caption to Fig. 2. Rz(⇥) fidelity
is related to expectations of �x0 ⇤ ⌅x and �z ⇤ ⌅z (for
doubly-terminated chains), where x̂� = x̂ cos ⇥ + ŷ sin ⇥,

and for ⇥ �= 2⇤n the former is not guaranteed to take on
nonzero values throughout the phase. This formulation
using string operators also connects the perfect fidelity
of standard basis operations to the infinite localizable
entanglement length of any ground state in the phase [19].
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bu⇥ering success probability versus � for blocklengths L = 1
(no bu⇥ering), 3, and 9 on a chain of length 12. The L =3 fi-
delity decrease for � < � 1

3 can be attributed to a one-o⇥ e⇥ect
in our renormalization map, as described in Fig. 3. In (b) the
bu⇥ering probability is normalized by the AKLT value 1/3L;
the L =9 factor decays to roughly 10�5 as � ⌅�1, though not
plotted explicitly due to space constraints. Rotation fidelity
is computed by entangling the chain with a ficticious termi-
nation spin on the right edge and calculating the overlap of
the measured chain with the ideal output state. The unique,
entangled ground state of the doubly-terminated chain can
be quickly found using sparse matrix methods. This over-
lap can, in turn, be evaluated using the expectation of string
operators, which for rotation by ⇥ about the ẑ axis (mea-
surement in the {x̂⇥, ŷ⇥, ẑ} basis), are �

x

0 ⇥ ⌅
x

and �
z

⇥ ⌅
z

.
The initial state is an eigenstate of �

z

⇥ ⌅
z

and remains so
after the measurement, which implies that the square of the
fidelity of the output state with the ideal state is given by
F 2 = 1

2 (1 + ��
x

0 ⇥ ⌅
x

 ).

Short-ranged variations and bu�ered logical gates.—
The reason for the reduced fidelity can be understood
by qualitatively examining the variations in the ground
state away from the AKLT point. The left-terminated,
length-N AKLT chain has the exact MPS description⇥⇥G(� 1

3 )
�
⌃

⇤
{bj} |bN � · · · |b1� ⇤ (⌅bN ⇤ · · ·⇤ ⌅b1) |⇧�, for

|⇧� an arbitrary spin- 1
2 state, ⌅k the Pauli spin operators

(except ⌅y⌅⌅x⌅z), and bj ⌥ {x, y, z} for j ⌥ {1, . . . , N}.
Observe that the physical swap operation of the spins

j and j+1 is Sj,j+1 := Sj ·Sj+1 +(Sj ·Sj+1)2� , so that
changing the relative weight � in Eq. (1) essentially cor-
responds to a perturbation by swaps. Heuristically, the
ground state |G(�)� for � ⇧ � 1

3 is a coherent superpo-
sition of the AKLT state and various partially swapped
AKLT states with reordered matrix products. Standard
basis measurements are una⇥ected since di⇥erent order-
ings of the anticommuting Pauli operators di⇥er at most
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the middle spin is measured in the standard basis, and the
attempt is repeated in the next block. Concatenating block-3
bu⇥ering is equivalent to block-9 bu⇥ering, as shown in (c).

As the protocol described in Fig. 1 is rotationally sym-
metric (it works for any Cartesian axis), it is reason-
able to apply it to the ground state of any rotationally-
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and for ⇥ �= 2⇤n the former is not guaranteed to take on
nonzero values throughout the phase. This formulation
using string operators also connects the perfect fidelity
of standard basis operations to the infinite localizable
entanglement length of any ground state in the phase [19].

0.97

0.98

0.99

1
(a) Bu�ered �/2 Rotation Fidelity 1

3
9

-1 -2/3 AKLT 0 1/3 2/3 1
0.01

0.1

1

10 (b) Bu�ering Probability (relative to AKLT)

FIG. 2: (a) Fidelity of ⇡

2 rotation, the worst case, and (b)
bu⇥ering success probability versus � for blocklengths L = 1
(no bu⇥ering), 3, and 9 on a chain of length 12. The L =3 fi-
delity decrease for � < � 1

3 can be attributed to a one-o⇥ e⇥ect
in our renormalization map, as described in Fig. 3. In (b) the
bu⇥ering probability is normalized by the AKLT value 1/3L;
the L =9 factor decays to roughly 10�5 as � ⌅�1, though not
plotted explicitly due to space constraints. Rotation fidelity
is computed by entangling the chain with a ficticious termi-
nation spin on the right edge and calculating the overlap of
the measured chain with the ideal output state. The unique,
entangled ground state of the doubly-terminated chain can
be quickly found using sparse matrix methods. This over-
lap can, in turn, be evaluated using the expectation of string
operators, which for rotation by ⇥ about the ẑ axis (mea-
surement in the {x̂⇥, ŷ⇥, ẑ} basis), are �
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corrected). The third outcome is just a byproduct ẑ rotation.
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(no bu⇥ering), 3, and 9 on a chain of length 12. The L =3 fi-
delity decrease for � < � 1

3 can be attributed to a one-o⇥ e⇥ect
in our renormalization map, as described in Fig. 3. In (b) the
bu⇥ering probability is normalized by the AKLT value 1/3L;
the L =9 factor decays to roughly 10�5 as � ⌅�1, though not
plotted explicitly due to space constraints. Rotation fidelity
is computed by entangling the chain with a ficticious termi-
nation spin on the right edge and calculating the overlap of
the measured chain with the ideal output state. The unique,
entangled ground state of the doubly-terminated chain can
be quickly found using sparse matrix methods. This over-
lap can, in turn, be evaluated using the expectation of string
operators, which for rotation by ⇥ about the ẑ axis (mea-
surement in the {x̂⇥, ŷ⇥, ẑ} basis), are �

x

0 ⇥ ⌅
x

and �
z

⇥ ⌅
z

.
The initial state is an eigenstate of �

z

⇥ ⌅
z

and remains so
after the measurement, which implies that the square of the
fidelity of the output state with the ideal state is given by
F 2 = 1

2 (1 + ��
x

0 ⇥ ⌅
x

 ).

Short-ranged variations and bu�ered logical gates.—
The reason for the reduced fidelity can be understood
by qualitatively examining the variations in the ground
state away from the AKLT point. The left-terminated,
length-N AKLT chain has the exact MPS description⇥⇥G(� 1

3 )
�
⌃

⇤
{bj} |bN � · · · |b1� ⇤ (⌅bN ⇤ · · ·⇤ ⌅b1) |⇧�, for

|⇧� an arbitrary spin- 1
2 state, ⌅k the Pauli spin operators

(except ⌅y⌅⌅x⌅z), and bj ⌥ {x, y, z} for j ⌥ {1, . . . , N}.
Observe that the physical swap operation of the spins

j and j+1 is Sj,j+1 := Sj ·Sj+1 +(Sj ·Sj+1)2� , so that
changing the relative weight � in Eq. (1) essentially cor-
responds to a perturbation by swaps. Heuristically, the
ground state |G(�)� for � ⇧ � 1

3 is a coherent superpo-
sition of the AKLT state and various partially swapped
AKLT states with reordered matrix products. Standard
basis measurements are una⇥ected since di⇥erent order-
ings of the anticommuting Pauli operators di⇥er at most

�

Fidelity:   Overlap of target 
qubit state with obtained 

measured state

AKLT probability=          
for L buffering

3�L
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• Consider L=3 buffering as an RG flow

• Buffered rotation measurements act as the desired measurements on the 
renormalized spin via postselection

• RG map

- Block spins into L=3 blocks, project on J=1 subspace of 3 spin-1s, trace over irrep label

- Yields new spin-1s and a chain 1/3 the length

Radial length of Bloch vector is 
weight of J=1 subspace on g.s.

Vertical height is buffering success 
probability given projection onto J=1
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FIG. 3: Bloch vector of the label space HL reduced density

operator before (dashed) and after (solid) a single RG step

for �1 ⇤ � ⇤ 1. The state |⇥s⌃ of Eq. (2) defines the vertical

axis, while the horizontal corresponds to the superposition

|+⌃ ⇥ 1�
2
(|⇥s⌃ + |⇥s⌃), for |⇥s⌃= 1�

6
(
�

5 |0⌃+ |1⌃); the y axis

is not shown, as the reduced density operator coe⌅cients are

real in this basis. Note that the Heisenberg antiferromag-

net (HAF) is marked on both curves in the inset. The norm

of the Bloch vector, i.e. the radial distance from the origin,

provides the weight of the symmetric three-spin J=1 sector in

the (pre- and post-renormalized) ground state |G(�)⌃, and the

projection onto the vertical axis indicates the bu�ering success

probability, given successful J=1 projection. Observe that

for � > � 1
3 , the RG approximately maps Bloch vectors closer

to the AKLT point along the original curve parametrized by
�, meaning the correlation of the reduced state is e�ectively

renormalized to another � closer to the AKLT point. Mean-

while, the first iteration takes � <� 1
3 to � >� 1

3 . Accordingly,

we expect that iteration of our RG map generates a flow to-

ward the AKLT point. This RG flow can also be understood

in terms of the longer bu�ering block size, which “corrects”

more swapped terms in the perturbative picture.

and “failure” outcomes are di�erent, the failure probabil-
ity of the gate given successful bu�ering will be di�erent
from 1/3 away from the AKLT point; interestingly, it can
actually improve, as shown in Fig. 2(b). In general the
J ⇤=1 component of the measurement will have non-zero
overlap with the J ⇤=1 component of the state |G(�)⇧, so
that the gate fidelity is still less than unity. This is par-
ticularly relevant for �⇥�1, where |G(�)⇧ has increased
weight on the symmetric three-spin J=2 subspace.

Conclusion.—We have shown that our renormaliza-
tion protocol removes the short-ranged variations in the
(rotationally-invariant) Haldane phase, generating a flow
toward the AKLT point. Correspondingly, in a practi-
cal setting our bu�ering procedure can be used to ensure
a target gate fidelity (chosen by fault-tolerance consid-
erations) for any |�|<1, with attendant decrease in the
success probability, as shown in Fig. 2. In this sense, the
quantum computational ability of the spin-chain is a ro-
bust property of the phase. While we have only given
results for a single 1D chain, it is straightforward to in-
clude a coupling cphase gate as described in [9]. Diago-
nal in the z basis, this gate can thus also be protected by
bu�ering. The resulting fidelity improvement almost ex-
actly follows that of single-qubit rotations as in Fig. 2(a).

Our quantum computational RG has several unique
features compared with classical RG methods [11–14].
First, it is a renormalization of a class of states rather
than Hamiltonians [21], though, as Fig. 3 shows, it
is insensitive to how the “label space” state is treated.
Remarkably, the map is time-ordered (adaptive in the
choices of later measurements), in contrast with the con-
ventional real-space RG that renormalizes the state or
Hamiltonian uniformly in space. This is crucial to physi-
cally implement RG in the present context, both because
the gates in a quantum circuit provide an implicit time
ordering, and due to the need to compensate for the in-
herent randomness of measurement outcomes.

Focussing on the rotationally invariant Hamiltonians
of Eq. (1) is well-motivated by physical realizations [20].
For example, for spin-1 bosonic atoms trapped in a 1D
optical lattice with tunneling-induced interations, rota-
tional invariance is already present in the microscopic
Hamiltonian; � is determined by the relative size of the
scattering lengths aStot=0 and aStot=2, since s-wave scat-
tering is the dominant interaction channel for isotropic
trapping wells. In realizations using microwave induced
dipole-dipole interacting trapped polar molecules, spher-
ical symmetry is provided by the choice of polarization,
intensity, and frequency of the applied fields.
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2D AKLT state 
• Spin-3/2 on honeycomb lattice

- Exponentially decaying correlation functions

- Ground state has tensor network description

- Gapped?

388 Kennedy, Lieb, and Tasaki 

Remarks. 1. We refer to states of the form (2.9) as VBS states, since 
these states contain a valence bond (i.e., a singlet pair) for each bond in the 
lattice. The polynomial representation (2.9) of the VBS states was 
introduced by Arovas eta/. (3) The new features of our Theorem 2.1 are the 
assertions that all the ground states of H are given in (2.9) and that 45 is 
unique. 

2. There is another way to think of these VBS states. Following refs. 
1 and 2, we think of each spin S as the symmetrization of the product of 2S 
spin-1/2's. We first consider an extended (or unphysical) Hilbert space 
which has 2S spin-1/2's at each site of A. The projection operator 

= @ i ~ ,  where ~ is the symmetrization operator for the 2S spin-1/2's of 
the site i, projects this unphysical Hilbert space onto the physical Hilbert 
space for spin S at each site. The VBS states can now be written as follows: 

Here the valence bond V 0 denotes the singlet state which can be formed 
using a spin 1/2 at site i and a spin 1/2 at site j. The representation (2.10) 
follows in a straightforward, but tedious way from Theorem 2.1. Since we 
shall have no need of (2.10) here, we shall not bother to prove the 
equivalence. Note that, unlike the situation for 45 in Theorem 2.1, the state 
gtOA in (2.10) is not unique in general. Following ref. 2, we can represent 
these VBS states diagrammatically as shown in Fig. 1. 

3. Theorem 2.1 was conjectured in ref. 2 and proven for the one- 
dimensional spin-1 case. The proof we give here not only covers the general 
case, but is also considerably simpler than the proof in ref. 2. Our proof, 

II~, f _  , r " _ ~  

iI:i t 
Fig. 1. The VBS state on the hexagonal lattice. Each dot represents a spin 1/2. The solid 
lines indicate singlet pairs, and the dotted circles indicate the symmetrization of three spin 
1/2's to form a spin 3/2. 

H =
X

hj,ki

P 3
j,k

3

II. 2D VALENCE BOND SOLID GROUND
STATE

The 2D VBS phase can be modeled by a nearest-
neighboring two-body Hamiltonian of the antiferromag-
netic Heisenberg-type isotropic interaction (i.e. J > 0)
[4, 21],

H = J
n.n.⇧

(k,k�)

�
Sk · Sk� +

116

243
(Sk · Sk�)2 +

16

243
(Sk · Sk�)3

⇥
,

(1)
where Sk is the spin-32 irreducible representation of su(2)
at the site k, and the summation is taken over all the
nearest neighboring pairs (k, k⇥) of spin 3

2 ’s on the 2D
hexagonal lattice. The particular weights to the bi-
quadratic and bicubic terms are chosen conventionally
to be the projector onto the subspace of the total spin 3
for every pair of (k, k⇥). However the 2D VBS phase itself
is supposed to persist around this AKLT point without
a fine tuning of these weights, in the same way as the
1D case. It is important to mention that our 2D VBS
phase should be distinguished from the 2D valence bond
crystals (VBC) phase, since VBC is usually used to re-
fer to the phase that consists of the valence bonds in a
broader sense, namely including not only the VBS phase
but also the dimer phase etc. However, there are con-
siderable di⇥erences between VBS and the dimer phase,
for example, regarding the global nature of entanglement
and the origin of the ground-state degeneracy (with an
open boundary condition).

The 2D AKLT ground state is such a VBS wavefunc-
tion that the symmetrization of three spin 1

2 ’s to repre-
sent the physical spin 3

2 per site is made on the singlet
pairs of (virtual) spin 1

2 ’s, each of which is distributed
along every bond of the hexagonal lattice. The construc-
tion can be visualized like in the Figure 3.2 of Ref. [4] for
instance. It is straightforward, for our convenience, to
describe it as a tensor network state via the celebrated
Schwinger boson method [20],

|G⌦ =
⇧

�k,�k�

tr

⇤
B

⌃

k⇤⇧
A⇧[�k] |�k⌦

⌃

k�⇤⌃
A⌃[�k� ] |�k�⌦

⌅
,

(2)
where �k(k�) at the site k (or k⇥) runs over
3
2

z
, 1
2

z
,� 1

2

z
,� 3

2

z
, and the trace is taken by the contrac-

tion of the tensors according to their geographic locations
on the 2D hexagonal lattice. The boundary condition is
assumed to be open in that we are simply given a finite
bulk portion of the lattice, and, the boundary tensor B
is set to be the identity according the Appendix A. The
tensors at the site with the ⌃-shaped or ⌥-shaped bonds

are found to be given by

A⇧[
3
2

z
] = |0z⌦ 1z| ⌅  1z| ,

A⇧[
1
2

z
] =

�1�
3
(|0z⌦ 1z| ⌅  0z|+ Z ⌅  1z|) ,

A⇧[� 1
2

z
] =

1�
3
(�|1z⌦ 0z| ⌅  1z|+ Z ⌅  0z|) ,

A⇧[� 3
2

z
] = |1z⌦ 0z| ⌅  0z| ,

(3)

A⌃[
3
2

z
] = �|0z⌦ 1z| ⌅ |0z⌦ ,

A⌃[
1
2

z
] =

1�
3
(�|0z⌦ 1z| ⌅ |1z⌦ + Z ⌅ |0z⌦) ,

A⌃[� 1
2

z
] =

1�
3
(|1z⌦ 0z| ⌅ |0z⌦ + Z ⌅ |1z⌦) ,

A⌃[� 3
2

z
] = |1z⌦ 0z| ⌅ |1z⌦ ,

(4)

respectively. Here the first ket and bra correspond to
degrees of the freedom by the left and the right, and
the second ket and bra correspond to those by the up
and the down, respectively. The Pauli matrices are de-
fined as Z = |0z⌦ 0z| � |1z⌦ 1z|, X = |0z⌦ 1z| + |1z⌦ 0z|,
and Y = iXZ with the imaginary unit i =

�
�1, and

an element of the Pauli group, including the identity,
will be denoted as � later. In this tensor network de-
scription, the e⇥ective spin 1

2 labeled by |0z⌦ , |1z⌦ should
better be understood as a manifestation of the fraction-
alized degree of freedom, the edge state, emergent at the
boundary across a single bond. Later it will turn out that
these tensors are interpreted as the logical action on these
emergent edge states (in other words, degenerate ground
states), when the spin is measured in the direction by its
argument.
The set of tensors in terms of the other bases has

exactly the same structure (up to a possible overall
phase) because of the rotational symmetry. In defining
|0/1x⌦ = 1⌥

2
(|0z⌦ ± |1z⌦) and |0/1y⌦ = 1⌥

2
(|0z⌦ ± i |1z⌦),

A⇧[�
x] = A⇧[�

z]|z ⌅�x, A⌃[�
x] = �A⌃[�

z]|z ⌅�x,

A⇧[�
y] = �iA⇧[�

z]|z ⌅�y, A⌃[�
y] = A⌃[�

z]|z ⌅�y,
(5)

where � = 3
2 ,

1
2 ,�

1
2 ,�

3
2 and our notation, for example for

the Sx basis, is meant to describe the tensors obtained
in replacing |0/1z⌦ and  0/1z| into |0/1x⌦ and  0/1x| as
well as Z into X in Eqs. (3) and (4).
The 2D AKLT state inherits various characteristics

from the 1D VBS state. For example, its correlations
measured in terms of the two-point function was shown
to decay exponentially in lattice distance with the cor-
relation length ⇥ = 1/ ln(3/2) ⇧ 2.47 [21]. Furthermore,
in very contrast with the dimer phase, it also realizes
a fractionalized degree of freedom on every boundary,
called the edge state, as mentioned above. A numerical
calculation [22] of the entanglement entropy confirms a
qualitative nature of edge states. On the other hand,
the spectral gap to the excited states in the 2D AKLT
model is widely believed to persist in the thermodynam-
ical limit, but has yet to be proved.

3/2 particles. The tensors are then given by A[s] = ⌥s|Q|u/d, l, r�|u/d�⌥l|⌥r|.
A[3/2] = |1�u|1�l⌥1|r, (3)

A[1/2] =
1⌦
3
(|1�u|1�l⌥0|r + |1�u|0�l⌥1|r + |0�u|1�l⌥1|r) , (4)

A[�1/2] =
1⌦
3
(|1�u|0�l⌥0|r + |0�u|1�l⌥0|r + |1�u|0�l⌥0|r) , (5)

A[�3/2] = |0�u|0�l⌥0|r, (6)

and, on the ⌃ sites, the tensors are given by

A[3/2] = |0�d|0�l⌥0|r, (7)

A[1/2] = � 1⌦
3
(|1�d|0�l⌥0|r + |0�d|1�l⌥0|r + |1�d|0�l⌥0|r) , (8)

A[�1/2] =
1⌦
3
(|1�d|1�l⌥0|r + |0�d|1�l⌥1|r + |1�d|0�l⌥1|r) , (9)

A[�3/2] = �|1�d|1�l⌥1|r, (10)

which, by relabeling the basis states may written as

A[z⇤] = |0�u/d|0�l⌥0|r, (11)

A[z⇧] = 1⌦
3

�
|1�u/d|0�l⌥0|r + |0�u/d|1�l⌥0|r + |1�u/d|0�l⌥0|r

⇥
, (12)

A[z⌃] = 1⌦
3

�
|1�u/d|1�l⌥0|r + |0�u/d|1�l⌥1|r + |1�u/d|0�l⌥1|r

⇥
, (13)

A[z⌅] = |1�u/d|1�l⌥1|r. (14)

By repeating the above derivation starting with the X spin-1/2 basis |±�, we
obtain a di�erent set of tensors

A[x⇤] = |+�u/d|+�l⌥+|r, (15)

A[x⇧] = 1⌦
3

�
|��u/d|+�l⌥+|r + |+�u/d|��l⌥+|r + |��u/d|+�l⌥+|r

⇥
, (16)

A[x⌃] = 1⌦
3

�
|��u/d|��l⌥+|r + |+�u/d|��l⌥�|r + |��u/d|+�l⌥�|r

⇥
, (17)

A[x⌅] = |��u/d|��l⌥�|r. (18)

Likewise in the Y spin-1/2 basis |±i� we obtain

A[y+] = |+i�u/d|+i�l⌥+i|r, (19)

A[y⇧] = 1⌦
3

�
|�i�u/d|+i�l⌥+i|r + |+i�u/d|�i�l⌥+i|r + |�i�u/d|+i�l⌥+i|r

⇥
,

(20)

A[y⌃] = 1⌦
3

�
|�i�u/d|�i�l⌥+i|r + |+i�u/d|�i�l⌥�i|r + |�i�u/d|+i�l⌥�i|r

⇥
,

(21)

A[y⌅] = |�i�u/d|�i�l⌥�i|r. (22)

2
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?A [m] the same but with all bits flipped

boundary condition

Tuesday, 12 February 13



MBQC in 2D AKLT state

• Recently 2 groups showed how to use a 2D AKLT state for measurement based 
computing

T.-C. Wei, I. Affleck, R. Raussendorf, 
PRL 106, 070501 (2011)

A. Miyake, Ann. Phys. 326, 1656 (2011)  (also fig. source)

������������	�
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���������������	�
����������������

Figure 1: A scheme of quantum computation through measuring the correlations of the 2D AKLT state,
a representative state of the 2D VBS phase of spin 3

2 ’s on the 2D hexagonal lattice. After a random
sampling which assigns every spin per site to one of three axes x, y, and z, the typical configuration
of the outcomes enables us to choose the backbone structure (described by a shaded region) along
which quantum computation is deterministically simulated in terms of a quantum circuit. Our protocol
harnesses a pair (depicted as a dotted bond of the hexagonal lattice) of neighboring sites where one
is measured in a standard basis and the other is done in a complementary basis, to accommodate the
desired structure of space-time along the region of the backbone. An emergence of the time is simulated
if both two bits of information out of measurements per site are communicated to the same direction
(as depicted as the double arrows), on the other hand, an emergence of the space is simulated if two bits
of information are communicated to the opposite directions (as depicted as a pair of the single arrows
pointing apart). The figure illustrates a microscopic view of the Figure 2, and the two-qubit CNOT gate
is implemented in the middle region between two quantum logical wires running from the right to the
left.

have such a convenient yet artificial property — as often referred as one of peculiar
properties of the correlations of the 2D cluster state — that it is possible to decouple
deterministically (by measurements of only neighboring sites) a 1D-chain structure that
encodes the direction of a simulated time as a quantum logical wire of the quantum
circuit model. This peculiarity is said to be artifact of another less realistic feature of the
2D cluster state in that it cannot be the exact ground state of any two-body Hamiltonian
of spin 1

2 ’s [17, 18], and thus one cannot expect such convenience in the correlations of a
genuine 2D ground state of a naturally-occuring spin system.

The main result of our paper is summarized in the following (informal) theorem and
illustrated in the Figure 1. As elaborated in the text, we introduce a novel way to herald
the correlations suitable for deterministic quantum computation through a random sam-
pling, to tame for the first time the genuine 2D naturally-occurring correlation, which
otherwise has natural tendency to split an incoming information into two outgoing in-
formation because of certain symmetric nature of the three directions at every site of the
2D hexagonal lattice. This seems to be the reason why MQC on the 2D AKLT state has

3

Spins reduced to qubits by filtering POVM

Identify logical wires based on correlations 
of filtering outcomes
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Deformations of 2D AKLT Hamiltonian

• A one parameter family of Hamiltonians which are frustration free

• Changes tensor network for ground state

• Two phases*

-                Disordered phase

-                Neel ordered       

• Homogeneous and Isotropic: All summands hj,k are the same for all nearest neighbor
pairs.

• Parity invariant: [hj,k, SWAP (j, k)] = 0.

• U(1) symmetry: [hj,k, e
iφ(Sz

j +Sz
k
)] = 0.

• Z2 symmetry: hj,k invariant under spin flip: Sz
j + Sz

k → −Sz
j − Sz

k .

There is a ten dimensional continuous manifold of such Hamiltonians but when restricting to
those which have optimal ground states, the manifold is reduced to one with five continuous
and one discrete parameters (see Eq. 13 of [4]). We find it convenient to express the summands
in a complete spherical tensor basis using the spin−S irreducible representations of SU(2):

h =
3

∑

S,S′=0

S+S′

∑

k=|S−S′|

k
∑

q=−k

α(k)
q (S, S ′)T (k)

q (S, S ′),

where

T (k)
q (S, S ′) =

√

2k + 1

2S + 1

∑

m

〈S, m + q|k, q; S ′, m〉|S, m + q〉〈S ′, m|

and α(k)
q (S, S ′) = tr[hT (k)

q (S, S ′)]. This basis is convenient because the U(1) symmetry appears
in having only q = 0 tensors in the decomposition and rotational symmetry implies tensors
with k = 0 and S = S ′ only. Writing out the Hamiltonian with the above constraints we find

h = α(0)
0 (1, 1)T (0)

0 (1, 1) + α(2)
0 (1, 1)T (2)

0 (1, 1) + α(0)
0 (3, 3)T (0)

0 (3, 3) + α(2)
0 (3, 3)T (2)

0 (3, 3)

+α(4)
0 (3, 3)T (4)

0 (3, 3) + α(6)
0 (3, 3)T (6)

0 (3, 3) + α(0)
0 (1, 3)(T (0)

0 (1, 3) + T (0)
0 (3, 1))

+α(2)
0 (1, 3)(T (2)

0 (1, 3) + T (2)
0 (3, 1)).

(1)

where

α(0)
0 (1, 1) = 1

5
√

3

(

(a2 − 3)2λ0 + 4(a2 + 2
√

3a + 3)λ1

)

α(2)
0 (1, 1) = 1

5

√

2
3

(

2(a2 + 2
√

3a + 3)λ1 − (a2 − 3)2λ0

)

α(0)
0 (3, 3) = 1

5
√

7

(

(3a2 + 1)2λ0 + (6a2 − 8
√

3a + 8)λ1 + 10(2λ2 + λ3)
)

α(2)
0 (3, 3) = 1

15
√

7

(

− 2
√

3(3a2 + 1)2λ0 − 3(3
√

3a2 − 12a + 4
√

3)λ1 + 25
√

3λ3

)

α(4)
0 (3, 3) = 1

5

√

2
77

(

3(3a2 + 1)2λ0 + (3a2 − 4
√

3a + 4)λ1 − 70λ2 + 15λ3

)

α(6)
0 (3, 3) = 1

3
√

77

(

− 2
√

3(3a2 + 1)2λ0 + 3(3
√

3a2 − 12a + 4
√

3)λ1 +
√

3(λ3 − 12λ2)
)

α(0)
0 (1, 3) = 1

5
√

21

(

(−9a4 + 24a2 + 9)λ0 − 4(3a2 +
√

3a − 6)λ1

)

α(2)
0 (1, 3) = 2

5
√

21

(√
3(3a4 − 8a2 − 3)λ0 − 3(

√
3a2 + a − 2

√
3)λ1

)

(2)

Here we using the parameterization in Eq. 13 of Ref.[4] relabeled λ0 ≡ λ+
02, λ1 ≡ λ+

12, λ2 ≡
λ+

2 and we work in the sector with the discrete index σ = −1. The continuous parameters
λ0, λ1, λ2, λ3 > 0 and a is a continuous real parameter. At the AKLT point the Hamiltonian is
described by the parameterization λ3 = 5λ1 = 2λ2 = 20λ0, a = −

√
3 and h = λ3

√
7T (0)

0 (3, 3),
which proportional to the projector P (3); but regardless of the other parameters, at a = −

√
3

the Hamiltonian is block diagonal in the S = 3 sector and in fact the ground state is the same
as exactly at the AKLT point. Remarkably this is true everywhere: by construction the ground
state only depends on the discrete index σ and the one parameter a.

In the limit a2 → ∞ the ground state is in a Neel ordered phase described by alternating
long range spin correlations. Numerics predict a phase transition at a2

c = 6.46.

2

3/2 particles. The tensors are then given by A[s] = ⌥s|Q|u/d, l, r�|u/d�⌥l|⌥r|.
A[3/2] = |1�u|1�l⌥1|r, (3)

A[1/2] =
1⌦
3
(|1�u|1�l⌥0|r + |1�u|0�l⌥1|r + |0�u|1�l⌥1|r) , (4)

A[�1/2] =
1⌦
3
(|1�u|0�l⌥0|r + |0�u|1�l⌥0|r + |1�u|0�l⌥0|r) , (5)

A[�3/2] = |0�u|0�l⌥0|r, (6)

and, on the ⌃ sites, the tensors are given by

A[3/2] = |0�d|0�l⌥0|r, (7)

A[1/2] = � 1⌦
3
(|1�d|0�l⌥0|r + |0�d|1�l⌥0|r + |1�d|0�l⌥0|r) , (8)

A[�1/2] =
1⌦
3
(|1�d|1�l⌥0|r + |0�d|1�l⌥1|r + |1�d|0�l⌥1|r) , (9)

A[�3/2] = �|1�d|1�l⌥1|r, (10)

which, by relabeling the basis states may written as

A[z⇤] = |0�u/d|0�l⌥0|r, (11)

A[z⇧] = 1⌦
3

�
|1�u/d|0�l⌥0|r + |0�u/d|1�l⌥0|r + |1�u/d|0�l⌥0|r

⇥
, (12)

A[z⌃] = 1⌦
3

�
|1�u/d|1�l⌥0|r + |0�u/d|1�l⌥1|r + |1�u/d|0�l⌥1|r

⇥
, (13)

A[z⌅] = |1�u/d|1�l⌥1|r. (14)

By repeating the above derivation starting with the X spin-1/2 basis |±�, we
obtain a di�erent set of tensors

A[x⇤] = |+�u/d|+�l⌥+|r, (15)

A[x⇧] = 1⌦
3

�
|��u/d|+�l⌥+|r + |+�u/d|��l⌥+|r + |��u/d|+�l⌥+|r

⇥
, (16)

A[x⌃] = 1⌦
3

�
|��u/d|��l⌥+|r + |+�u/d|��l⌥�|r + |��u/d|+�l⌥�|r

⇥
, (17)

A[x⌅] = |��u/d|��l⌥�|r. (18)

Likewise in the Y spin-1/2 basis |±i� we obtain

A[y+] = |+i�u/d|+i�l⌥+i|r, (19)

A[y⇧] = 1⌦
3

�
|�i�u/d|+i�l⌥+i|r + |+i�u/d|�i�l⌥+i|r + |�i�u/d|+i�l⌥+i|r

⇥
,

(20)

A[y⌃] = 1⌦
3

�
|�i�u/d|�i�l⌥+i|r + |+i�u/d|�i�l⌥�i|r + |�i�u/d|+i�l⌥�i|r

⇥
,

(21)

A[y⌅] = |�i�u/d|�i�l⌥�i|r. (22)

2

a2 < 6.52

a2 > 6.52

�1
a

*H. Niggemann, A. Klümper, J. Zittartz, Z. 
Phys. B 104, 103 (1997).
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Strategy for MBQC in disordered phase
• Filtering to project spins onto qubit subspaces

- At  AKLT point (           )

- At other points in the phase need to balance weights of tensors toward AKLT state

Figure 4: As |a| increases above
⇧
3 the number of Z particles increases com-

pared to the number of X and Y particles. Eventually the state will be useless
for MBQC (not enough connected blocks).

and that
F †
xFx + F †

yFy + F †
zFz = I . (40)

We may define a set of 4 measurement operators as {M1, FxM0, FyM0, FzM0}
because

M†
1M1 +M†

0F
†
xFxM0 +M†

0F
†
yFyM0 +M†

0F
†
zFzM0 = M†

1M1 +M†
0

�
F †
xFx + F †

yFy + F †
zFz

⇥
M0 ,

(41)

= M†
0M0 +M†

1M1 , (42)

= I . (43)

Note that FzM0 =
⇤
3

|a| Fz and M1 =
⇧

3
2 (1�

3
a2 )Fz and so

M†
1M1 +M†

0F
†
zFzM0 =

3

2

⇤
1� 1

a2

⌅
F †
zFz . (44)

Thus the two outcomes M1 and FzM0 can be replaced with a single one, giving
the three-outcome POVM

{F �
x, F

�
y, F

�
z} := {FxM0, FyM0,

⌃
3

2
(1� 1

a2
)Fz}. (45)

Note that at a =
⇧
3 we obtain the original 3/2-filter. Hence we regard (45) as

a generalised 3/2-filter for deformed AKLT states.
This defines a POVM for all values of a except a = 0. Also, it seems like the
first two operators are positive for all values of a however the third outcome
is not positive when a2 < 1 (but this doesn’t matter). Note that at the point
a = 1 the POVM becomes a 2 outcome POVM.

5.2 Measurement probabilities

The above tensors for the deformed AKLT state are unnormalized and it is not
obvious to me what the normalisation factor should be (it depends on a). We

9

2

X Z Z Z Z Y Z Y Y Y

X X X X Y Z Z Y X Z

Y Z X X Z Z Z Y Z Y

Y Y Y X X Y Z Z Z Z

X X Z Z Y Z Y Z Z Z

Z Z X Y Y Y Y Z X Z

Y Y Y X X X Y Z Z Z

X Z Z X X X Z Y Z X

Z X X Z X Z Y Y Z Z

Y X X X Z Z X Y Y Y

X

Z Y

Z

Y

Y Y X Z

YZ

X Y

X Z Y Z

ZX X

Y X Y

XZ ZY

ZX Z X Z

Z X

FIG. 1. Converting filter outcomes to a graph state. I know this is not a good illustration (I’m working on a smaller 4 by 4
lattice for clarity.

These operators satisfy the completion relation F †
xFx+F †

yFy +F †
zFz = I and thus form a valid set of measurement

operators. The measurement, applied globally, projects each spin-3/2 system onto a two dimensional, or qubit,
subspace. We label each particle either X, Y , or Z according to the outcome of this measurement. The resulting
collection of spin-3/2 particles encodes a graph state, which was proven in [5] using the stabilizer formalism, and can
also be proven using a tensor network description described in [3] .

The graph state is encoded as follows. We say that a bond exists between a pair of particles if they are nearest
neighbours and we define a cluster to be a connected set of particles with the same label. Then each cluster encodes
a single qubit in the graph state. We draw an edge between two encoded qubits if an odd number of bonds connect
the corresponding clusters. This is illustrated in Fig 1. Note the measurements are non-deterministic, and we almost
certainly obtain di�erent outcomes with repeated trials of the experiment.

2. Using the stochastic graph state as resources

In the second stage of this protocol, we use the stochastic graph state for MBQC. In [5], the authors explain how
arbitrary quantum computations may be performed by showing how to convert the post-filter graph state into a
cluster state on a square lattice, which is itself a universal resource. In [3], ‘backbone’ paths are identified through
the graph state along which correlation space qubits can propagate and interact, again enabling universal quantum
computation. Both approaches boil down to using the stochastic graph state as a resource. Whether this is possible
depends the stochastic graph states having certain desirable properties. We will show how the same approach can be
applied to deformed AKLT states.

B. Generalized reduction scheme

Here we generalize the above protocol to show how deformed 2D AKLT states can be reduced to stochastic graph
states using a modified version of the {Fx, Fy, Fz} measurement. For a ⇥ 1 we define three measurement operators as

Fx(a) =

⌅
4

3

�
a2

1 + a2

⇥
D(a)FxD(a) ,

Fy(a) =

⌅
4

3

�
a2

1 + a2

⇥
D(a)FxD(a) ,

Fz(a) = a

⇤
(a2 � 1)

6
D(a)FzD(a) . (6)

Numerical prefactors are included to ensure that Fx(a)†Fx(a) + Fy(a)†Fy + Fz(a)†Fz(a) = I. It is easy to verify
D(a)|3/2, b⇧ and D(a)|� 3/2, b⇧ are orthogonal states when b is x, y or z. Thus, Fx(a), Fy(a), and Fz(a) like Fx, Fy,
Fz are projections onto qubit subspaces.

1

I. INTRODUCTION

II. MODEL DEFINITIONS

Consider a collection of spin-3/2 particles on a honeycomb lattice interacting under the Hamiltonain

HAKLT =
⌅

<i,j>

P J=3
i,j , (1)

where the sum is over each pair of nearest neighbours and

P J=3
i,j =

243

1440
�Si · �Sj +

29

360
(�Si · �Sj)

2 +
1

90
(�Si · �Sj)

3 +
99

1152
, (2)

projects nearest neighbours i and j onto the seven dimensional subspace of total spin three. We will call this model
the 2D AKLT model after the authors A⇤eck, Kennedy, Lieb and Tasaki who originally proposed it [1]. The AKLT
model can be thought of as a deformation of the Heisenberg model H =

⇤ �Si · �Sj that preserves full rotational
symmetry. Note, however, that the AKLT model and the Heisenberg model are not believed to be in the same phase:
the Heisenberg model has a Neel ordered ground state, while the AKLT model does not. For this reason, the AKLT
model has been regarded as a more realistic model for certain systems, e.g. Bi3Mn4O12 [2] .The ground state of this
model |�AKLT ⌃, which we will call the 2D AKLT state, is a valence-bond solid, or PEPS.

Niggemann et. al. studied a deformation of the 2D AKLT Hamiltonian in 1997 [4] that preserves U(1) symme-
try (arbitrary rotations about the z-axis) and Z2 symmetry (reflections in the xy-plane) but breaks full rotational
symmetry. The deformed Hamiltonian may be written as

H(a) = D(a)⇥NHD(a)⇥N , (3)

where D(a) = diag(
�
3/a, 1, 1,

�
3/a) in the Sz basis and a > 0 is a free parameter. At a =

�
3 we have the original

AKLT model so H(
�
3) = HAKLT . The ground state |�(a)⌃ of the deformed 2D AKLT model is obtained simply by

applying the inverse deformation to the 2D AKLT state

|�(a)⌃ = (D(a)�1)⇥N |�AKLT ⌃ . (4)

Using Monte Carlo sampling, Niggemann et. al found the ground states had exponentially decaying correlation
functions below a critical value of a2 = 6.46, while had non-decaying correlation functions and Neel order above this
value. Thus, Hamiltonians in the a2 < 6.46 region are suspected to be gapped, while Hamiltonians in the a2 > 6.46
region are suspected to be gapless. However these conjectures have not been rigorously proven.

We will refer to the appearance of Neel order and non-decaying correlation functions a2 = 6.46 as the phase
transition in this model. We will label the region a2 < 6.46 as the AKLT phase, and the region a2 > 6.46 as the Neel
ordered phase.

III. PROTOCOL

A. Protocol at AKLT point

The 2D AKLT state has been shown to be a universal resource for measurement-based quantum computation [3, 5].
We will summarize the protocol for measurement-based quantum computing on the 2D AKLT state by breaking it
into two stages: reducing to a stochastic graph state, then using this graph state for computation.

1. Reduction to stochastic graph state

In the first stage, a three outcome filtering measurement is performed on every particle. Define |m, b⌃ to be the
state satisfying m|m, b⌃ = Sb|m, b⌃ where Sb is the spin-3/2 component along the b axis, b can be x, y or z, and m
can be 3

2 ,
1
2 , �

1
2 or � 3

2 . The measurement operators for the initial filtering are chosen to be {Fx, Fy, Fz} where

Fb =
⇧
2/3

�
|3
2
, b⌃⇧3

2
, b|+ |�3

2
, b⌃⇧�3

2
, b|

⇥
. (5)
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FIG. 1. Converting filter outcomes to a graph state. I know this is not a good illustration (I’m working on a smaller 4 by 4
lattice for clarity.

These operators satisfy the completion relation F †
xFx+F †

yFy +F †
zFz = I and thus form a valid set of measurement

operators. The measurement, applied globally, projects each spin-3/2 system onto a two dimensional, or qubit,
subspace. We label each particle either X, Y , or Z according to the outcome of this measurement. The resulting
collection of spin-3/2 particles encodes a graph state, which was proven in [5] using the stabilizer formalism, and can
also be proven using a tensor network description described in [3] .

The graph state is encoded as follows. We say that a bond exists between a pair of particles if they are nearest
neighbours and we define a cluster to be a connected set of particles with the same label. Then each cluster encodes
a single qubit in the graph state. We draw an edge between two encoded qubits if an odd number of bonds connect
the corresponding clusters. This is illustrated in Fig 1. Note the measurements are non-deterministic, and we almost
certainly obtain di�erent outcomes with repeated trials of the experiment.

2. Using the stochastic graph state as resources

In the second stage of this protocol, we use the stochastic graph state for MBQC. In [5], the authors explain how
arbitrary quantum computations may be performed by showing how to convert the post-filter graph state into a
cluster state on a square lattice, which is itself a universal resource. In [3], ‘backbone’ paths are identified through
the graph state along which correlation space qubits can propagate and interact, again enabling universal quantum
computation. Both approaches boil down to using the stochastic graph state as a resource. Whether this is possible
depends the stochastic graph states having certain desirable properties. We will show how the same approach can be
applied to deformed AKLT states.

B. Generalized reduction scheme

Here we generalize the above protocol to show how deformed 2D AKLT states can be reduced to stochastic graph
states using a modified version of the {Fx, Fy, Fz} measurement. For a ⇥ 1 we define three measurement operators as

Fx(a) =

⌅
4

3

�
a2

1 + a2

⇥
D(a)FxD(a) ,

Fy(a) =

⌅
4

3

�
a2

1 + a2

⇥
D(a)FxD(a) ,

Fz(a) = a

⇤
(a2 � 1)

6
D(a)FzD(a) . (6)

Numerical prefactors are included to ensure that Fx(a)†Fx(a) + Fy(a)†Fy + Fz(a)†Fz(a) = I. It is easy to verify
D(a)|3/2, b⇧ and D(a)|� 3/2, b⇧ are orthogonal states when b is x, y or z. Thus, Fx(a), Fy(a), and Fz(a) like Fx, Fy,
Fz are projections onto qubit subspaces.
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I. INTRODUCTION

II. MODEL DEFINITIONS

Consider a collection of spin-3/2 particles on a honeycomb lattice interacting under the Hamiltonain

HAKLT =
⌅

<i,j>

P J=3
i,j , (1)

where the sum is over each pair of nearest neighbours and

P J=3
i,j =

243

1440
�Si · �Sj +

29

360
(�Si · �Sj)

2 +
1

90
(�Si · �Sj)

3 +
99

1152
, (2)

projects nearest neighbours i and j onto the seven dimensional subspace of total spin three. We will call this model
the 2D AKLT model after the authors A⇤eck, Kennedy, Lieb and Tasaki who originally proposed it [1]. The AKLT
model can be thought of as a deformation of the Heisenberg model H =

⇤ �Si · �Sj that preserves full rotational
symmetry. Note, however, that the AKLT model and the Heisenberg model are not believed to be in the same phase:
the Heisenberg model has a Neel ordered ground state, while the AKLT model does not. For this reason, the AKLT
model has been regarded as a more realistic model for certain systems, e.g. Bi3Mn4O12 [2] .The ground state of this
model |�AKLT ⌃, which we will call the 2D AKLT state, is a valence-bond solid, or PEPS.

Niggemann et. al. studied a deformation of the 2D AKLT Hamiltonian in 1997 [4] that preserves U(1) symme-
try (arbitrary rotations about the z-axis) and Z2 symmetry (reflections in the xy-plane) but breaks full rotational
symmetry. The deformed Hamiltonian may be written as

H(a) = D(a)⇥NHD(a)⇥N , (3)

where D(a) = diag(
�
3/a, 1, 1,

�
3/a) in the Sz basis and a > 0 is a free parameter. At a =

�
3 we have the original

AKLT model so H(
�
3) = HAKLT . The ground state |�(a)⌃ of the deformed 2D AKLT model is obtained simply by

applying the inverse deformation to the 2D AKLT state

|�(a)⌃ = (D(a)�1)⇥N |�AKLT ⌃ . (4)

Using Monte Carlo sampling, Niggemann et. al found the ground states had exponentially decaying correlation
functions below a critical value of a2 = 6.46, while had non-decaying correlation functions and Neel order above this
value. Thus, Hamiltonians in the a2 < 6.46 region are suspected to be gapped, while Hamiltonians in the a2 > 6.46
region are suspected to be gapless. However these conjectures have not been rigorously proven.

We will refer to the appearance of Neel order and non-decaying correlation functions a2 = 6.46 as the phase
transition in this model. We will label the region a2 < 6.46 as the AKLT phase, and the region a2 > 6.46 as the Neel
ordered phase.

III. PROTOCOL

A. Protocol at AKLT point

The 2D AKLT state has been shown to be a universal resource for measurement-based quantum computation [3, 5].
We will summarize the protocol for measurement-based quantum computing on the 2D AKLT state by breaking it
into two stages: reducing to a stochastic graph state, then using this graph state for computation.

1. Reduction to stochastic graph state

In the first stage, a three outcome filtering measurement is performed on every particle. Define |m, b⌃ to be the
state satisfying m|m, b⌃ = Sb|m, b⌃ where Sb is the spin-3/2 component along the b axis, b can be x, y or z, and m
can be 3

2 ,
1
2 , �

1
2 or � 3

2 . The measurement operators for the initial filtering are chosen to be {Fx, Fy, Fz} where

Fb =
⇧
2/3

�
|3
2
, b⌃⇧3

2
, b|+ |�3

2
, b⌃⇧�3

2
, b|

⇥
. (5)
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• Statistical model

- Probability of obtaining filter outcome set     with deformation a is

- Equivalent to FKSW classical statistical mechanics model (3 state Potts + Random cluster)

3

The reduction protocol involves performing this measuremnt on every particle of the deformed ground state
(D(a)�1)⇥N |⇥AKLT ⇧. The action of this measurement is simplified by the fact that each measurement operator
is a product of three operators. The first operator D(a) will globally undo the deformation (D(a)�1)⇥N , restoring
the deformed ground state to the 2D AKLT state. The second operator will apply one of the filtering operators
{Fx, Fy, Fz} to the now undeformed AKLT state, i.e. it will project each spin-3/2 particle onto a qubit subspace. The
final D(a) operator simply maps each qubit subspace onto a di�erent (although isomorphic) qubit subspace. Hence the
resulting state after measuring every particle of the deformed AKLT state |⇥(a)⇧ in {Fx(a), Fy(a), Fz(a)} is equivalent
to the state obtained by measuring the undeformed state |⇥AKLT ⇧ in {Fx, Fy, Fz} and getting the same outcomes,
up to local unitaries. Thus it appears the resulting stochastic graph state can be used the same way as the states
produced at the AKLT point. However, while the same states are produced, the statistics of these measurements are
dependent on the value of a. These statistics are critical to the computational power of the state, as we will explain
in the following section.

C. Statistical model

Since each particle is measured with a three outcome POVM, the total number of possible outcomes is 3N where N
is the number of spin-3/2 particles. Some of these outcomes correspond to computationally useful graph states (e.g.
if every cluster had size one), while some will not (e.g. if every measurement outcome was Z). At the AKLT point it
was shown in [5] that the probability of obtaining a particular filter outcome i is

p(�) =
1

Z 2|V (⇥)|�|E(⇥)| , (7)

where |V (�)| is the number of clusters for a given outcome, |E(�)| is the number of inter-cluster bonds, and Z is a

normalisation factor
⇤3N

j=1 2
|V (j)|�|E(j)|. A typical filter outcome, sampled from this distribution, is shown in Fig. 2.

We can use Eq. (6) to compare the norms (hence probabilities) of the post-filter states away from the AKLT point
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FIG. 2. A typical reduction outcome at the AKLT point. In (a) each node corresponds to a spin-3/2 particle, and edges
are drawn between nearest neighbours. The nodes are coloured according to which outcome was obtained: X outcomes are
magenta, Y outcomes are yellow and Z outcomes are cyan. In (b) the resulting graph state is drawn. Each node corresponds
to a qubit (a cluster of like measurment outcomes), and edges correspond to graph state edges. The graph has many crossing
paths, making it useful for MBQC.

to those at the AKLT point. The probability of obtaining a particular filter outcome � with deformation a is

p(�) =
1

Z

�
a2 � 1

2

⇥Nz(⇥)

2|V (⇥)|�|E(⇥)| , (8)

where |V (�)| and |E(�)| are as above, Nz(�) is the total number of Z filter outcomes. These statistics are equivalent
to a Potts-like spin model in the canonical ensemble

p(�) =
1

Z e��(V (⇥)+E(⇥)+BNz(⇥)) , (9)

�
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The reduction protocol involves performing this measuremnt on every particle of the deformed ground state
(D(a)�1)⇥N |⇥AKLT ⇧. The action of this measurement is simplified by the fact that each measurement operator
is a product of three operators. The first operator D(a) will globally undo the deformation (D(a)�1)⇥N , restoring
the deformed ground state to the 2D AKLT state. The second operator will apply one of the filtering operators
{Fx, Fy, Fz} to the now undeformed AKLT state, i.e. it will project each spin-3/2 particle onto a qubit subspace. The
final D(a) operator simply maps each qubit subspace onto a di�erent (although isomorphic) qubit subspace. Hence the
resulting state after measuring every particle of the deformed AKLT state |⇥(a)⇧ in {Fx(a), Fy(a), Fz(a)} is equivalent
to the state obtained by measuring the undeformed state |⇥AKLT ⇧ in {Fx, Fy, Fz} and getting the same outcomes,
up to local unitaries. Thus it appears the resulting stochastic graph state can be used the same way as the states
produced at the AKLT point. However, while the same states are produced, the statistics of these measurements are
dependent on the value of a. These statistics are critical to the computational power of the state, as we will explain
in the following section.
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Since each particle is measured with a three outcome POVM, the total number of possible outcomes is 3N where N
is the number of spin-3/2 particles. Some of these outcomes correspond to computationally useful graph states (e.g.
if every cluster had size one), while some will not (e.g. if every measurement outcome was Z). At the AKLT point it
was shown in [5] that the probability of obtaining a particular filter outcome i is
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FIG. 2. A typical reduction outcome at the AKLT point. In (a) each node corresponds to a spin-3/2 particle, and edges
are drawn between nearest neighbours. The nodes are coloured according to which outcome was obtained: X outcomes are
magenta, Y outcomes are yellow and Z outcomes are cyan. In (b) the resulting graph state is drawn. Each node corresponds
to a qubit (a cluster of like measurment outcomes), and edges correspond to graph state edges. The graph has many crossing
paths, making it useful for MBQC.
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The reduction protocol involves performing this measuremnt on every particle of the deformed ground state
(D(a)�1)⇥N |⇥AKLT ⇧. The action of this measurement is simplified by the fact that each measurement operator
is a product of three operators. The first operator D(a) will globally undo the deformation (D(a)�1)⇥N , restoring
the deformed ground state to the 2D AKLT state. The second operator will apply one of the filtering operators
{Fx, Fy, Fz} to the now undeformed AKLT state, i.e. it will project each spin-3/2 particle onto a qubit subspace. The
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resulting state after measuring every particle of the deformed AKLT state |⇥(a)⇧ in {Fx(a), Fy(a), Fz(a)} is equivalent
to the state obtained by measuring the undeformed state |⇥AKLT ⇧ in {Fx, Fy, Fz} and getting the same outcomes,
up to local unitaries. Thus it appears the resulting stochastic graph state can be used the same way as the states
produced at the AKLT point. However, while the same states are produced, the statistics of these measurements are
dependent on the value of a. These statistics are critical to the computational power of the state, as we will explain
in the following section.

C. Statistical model

Since each particle is measured with a three outcome POVM, the total number of possible outcomes is 3N where N
is the number of spin-3/2 particles. Some of these outcomes correspond to computationally useful graph states (e.g.
if every cluster had size one), while some will not (e.g. if every measurement outcome was Z). At the AKLT point it
was shown in [5] that the probability of obtaining a particular filter outcome i is
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FIG. 2. A typical reduction outcome at the AKLT point. In (a) each node corresponds to a spin-3/2 particle, and edges
are drawn between nearest neighbours. The nodes are coloured according to which outcome was obtained: X outcomes are
magenta, Y outcomes are yellow and Z outcomes are cyan. In (b) the resulting graph state is drawn. Each node corresponds
to a qubit (a cluster of like measurment outcomes), and edges correspond to graph state edges. The graph has many crossing
paths, making it useful for MBQC.
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FIG. 3. Resulting graphs sampled from Eq. (8) at (a) a2 = 1, (b) a2 = 5.70 and (c) a2 = 6.96 on a 20� 20 lattice. For clarity,
some edges have not been displayed. Graphs (a) and (b) are in the computationally useful region, while (c) is not. In (a)
there are no Z outcomes and crossing paths are more sparse than at the AKLT point. In (b) there are large Z clusters, which
appear as cyan nodes with many outgoing edges. In (c) we are in the supercritical region and there is a conspicuous spanning
Z cluster. Most edges end on this cluster, resulting in a graph that is not useful for MBQC (it does not contain a honeycomb
subgraph).I can make these graphs clearer by removing annoying outlying nodes that aren’t connected to anything.

where the E(⇥) term is the Potts Hamiltonian, V (⇥) is a non-local cluster counting term, BNz(⇥) is an external field
term with strength B = log2 (a

2 � 1)�1, and the inverse temperature � = loge 2 is constant. This shows that varying
a to deform the AKLT model is like varying an external magnetic field in terms of the statistics of the filter outcomes.

D. Identifying computationally powerful ground states

We already know the ground state at the AKLT point is a universal resources for MBQC. Here we will show that
ground states at di�erent values of a are also universal resources. The reduction process in section III B produces
stochastic graph states with statistics given by Eq. (8). For some filter outcomes it is possible to convert the stochastic
graph state to a cluster state on a honeycomb lattice, which is itself a universal resouce. A ground state at a given
value of a is universal if we can reduce it to a honeycomb cluster state e⇤ciently, i.e. if we can produce honeycomb
cluster states of size N from a ground state with poly(N) particles in poly(N) time. There are two conditions that
will ensure this is possible [5]

1. The maximum cluster size scales no faster than logarithmically with the lattice size.

2. The probability of the stochastic graph state having a crossing path tends to one in the limit of large N .

Condition 1 ensures that producing graph states with an arbitrary number of qubits is possible. It also rules out the
possibility of an infinite cluster, which would produce useless star shaped graphs states (see Fig. 3c for an example).
If condition 1 is satisfied then condition 2 will imply the existence of a macroscopic number of crossing paths in both
lattice dimensions, a feature that will guarantee the existence of a honeycomb subgraph [], and hence the universality
of the state.

We did Monte Carlo sampling over the distribution (8) to determine the values of a that had ground states satisfying
these two conditions. Samples of resulting graph states are displayed in figure 3 details of Monte Carlo samplings in
the appendix?. We found that maximum cluster sizes scaled logarithmically in the region 1 ⇤ a2 < 6.46, while an
infinite spanning cluster appeared at a ⌅ 6.46. The probability of obtaining a spanning cluster as a function of a is
graphed in Fig. 4 for various lattice sizes. We also found that condition 2 was always satisfied: graphs (even small
ones) had crossing paths with probability one. Our conclusion is that there is computationally powerful region that
starts at a2 = 1 and ends at a2 = 6.46 ± 0.05, the upper limit exactly corresponding to the boundary between the
AKLT phase and the Neel phase.
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2. The probability of the stochastic graph state having a crossing path tends to one in the limit of large N .
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starts at a2 = 1 and ends at a2 = 6.46 ± 0.05, the upper limit exactly corresponding to the boundary between the
AKLT phase and the Neel phase.

4

(a) Y

X

Y

Y

Y

X

X

Y Y

Y X

Y

X Y X

X X X X

X Y X X Y

YY X X X Y

X

X

Y X Y

X

Y X Y X

X Y Y X Y Y Y

YX

Y

X X Y X

X X Y X

X Y X

XX X Y

X X

Y X

YX X X Y

X Y X Y Y Y

X X Y

Y Y Y

Y X Y X

Y

(b)

Z

Y

X Y X

Z

X

Y Z Y X Z Y X Z XY

X X Z Y Z Y Y Z Y Y

Z X Y

Z

X X Z Y Z X Z Y

Z X Y Y X Y Z Y

Y X Z X X

Z Y Y X

Y Z X X Y Y X X

X Z Y X Y Y Y

Y Y X Z X Y X X

YX Z Y Y X Y Z X

Z Z Y

ZX Y X Y

Y X Y Z X Z X

Y X Y X Y Y Z X Y X

Y Z X Z X Y X Z Y

X Y Z X Y Z X Z Y

Y Y X Y Z Y X Y X Y

X Z X X Y Z

X Y Y Z X

(c)

Z

X Y Y

Z

X

Y X Y

X

Y X Y X X

X Y Y X

Y Y X Y X Y X Y

X X X Y X Y

Y Z Y

Y X Y Y

X Z X Y

X Z

X

X

Y Z X

Y Y

Y Z X Y

XY X Y Y X

X X

X Y X Y

Y Z X Y

X X Z Y Y X

FIG. 3. Resulting graphs sampled from Eq. (8) at (a) a2 = 1, (b) a2 = 5.70 and (c) a2 = 6.96 on a 20� 20 lattice. For clarity,
some edges have not been displayed. Graphs (a) and (b) are in the computationally useful region, while (c) is not. In (a)
there are no Z outcomes and crossing paths are more sparse than at the AKLT point. In (b) there are large Z clusters, which
appear as cyan nodes with many outgoing edges. In (c) we are in the supercritical region and there is a conspicuous spanning
Z cluster. Most edges end on this cluster, resulting in a graph that is not useful for MBQC (it does not contain a honeycomb
subgraph).I can make these graphs clearer by removing annoying outlying nodes that aren’t connected to anything.

where the E(⇥) term is the Potts Hamiltonian, V (⇥) is a non-local cluster counting term, BNz(⇥) is an external field
term with strength B = log2 (a

2 � 1)�1, and the inverse temperature � = loge 2 is constant. This shows that varying
a to deform the AKLT model is like varying an external magnetic field in terms of the statistics of the filter outcomes.

D. Identifying computationally powerful ground states

We already know the ground state at the AKLT point is a universal resources for MBQC. Here we will show that
ground states at di�erent values of a are also universal resources. The reduction process in section III B produces
stochastic graph states with statistics given by Eq. (8). For some filter outcomes it is possible to convert the stochastic
graph state to a cluster state on a honeycomb lattice, which is itself a universal resouce. A ground state at a given
value of a is universal if we can reduce it to a honeycomb cluster state e⇤ciently, i.e. if we can produce honeycomb
cluster states of size N from a ground state with poly(N) particles in poly(N) time. There are two conditions that
will ensure this is possible [5]

1. The maximum cluster size scales no faster than logarithmically with the lattice size.

2. The probability of the stochastic graph state having a crossing path tends to one in the limit of large N .

Condition 1 ensures that producing graph states with an arbitrary number of qubits is possible. It also rules out the
possibility of an infinite cluster, which would produce useless star shaped graphs states (see Fig. 3c for an example).
If condition 1 is satisfied then condition 2 will imply the existence of a macroscopic number of crossing paths in both
lattice dimensions, a feature that will guarantee the existence of a honeycomb subgraph [], and hence the universality
of the state.

We did Monte Carlo sampling over the distribution (8) to determine the values of a that had ground states satisfying
these two conditions. Samples of resulting graph states are displayed in figure 3 details of Monte Carlo samplings in
the appendix?. We found that maximum cluster sizes scaled logarithmically in the region 1 ⇤ a2 < 6.46, while an
infinite spanning cluster appeared at a ⌅ 6.46. The probability of obtaining a spanning cluster as a function of a is
graphed in Fig. 4 for various lattice sizes. We also found that condition 2 was always satisfied: graphs (even small
ones) had crossing paths with probability one. Our conclusion is that there is computationally powerful region that
starts at a2 = 1 and ends at a2 = 6.46 ± 0.05, the upper limit exactly corresponding to the boundary between the
AKLT phase and the Neel phase.

4

(a) Y

X

Y

Y

Y

X

X

Y Y

Y X

Y

X Y X

X X X X

X Y X X Y

YY X X X Y

X

X

Y X Y

X

Y X Y X

X Y Y X Y Y Y

YX

Y

X X Y X

X X Y X

X Y X

XX X Y

X X

Y X

YX X X Y

X Y X Y Y Y

X X Y

Y Y Y

Y X Y X

Y

(b)

Z

Y

X Y X

Z

X

Y Z Y X Z Y X Z XY

X X Z Y Z Y Y Z Y Y

Z X Y

Z

X X Z Y Z X Z Y

Z X Y Y X Y Z Y

Y X Z X X

Z Y Y X

Y Z X X Y Y X X

X Z Y X Y Y Y

Y Y X Z X Y X X

YX Z Y Y X Y Z X

Z Z Y

ZX Y X Y

Y X Y Z X Z X

Y X Y X Y Y Z X Y X

Y Z X Z X Y X Z Y

X Y Z X Y Z X Z Y

Y Y X Y Z Y X Y X Y

X Z X X Y Z

X Y Y Z X

(c)

Z

X Y Y

Z

X

Y X Y

X

Y X Y X X

X Y Y X

Y Y X Y X Y X Y

X X X Y X Y

Y Z Y

Y X Y Y

X Z X Y

X Z

X

X

Y Z X

Y Y

Y Z X Y

XY X Y Y X

X X

X Y X Y

Y Z X Y

X X Z Y Y X

FIG. 3. Resulting graphs sampled from Eq. (8) at (a) a2 = 1, (b) a2 = 5.70 and (c) a2 = 6.96 on a 20� 20 lattice. For clarity,
some edges have not been displayed. Graphs (a) and (b) are in the computationally useful region, while (c) is not. In (a)
there are no Z outcomes and crossing paths are more sparse than at the AKLT point. In (b) there are large Z clusters, which
appear as cyan nodes with many outgoing edges. In (c) we are in the supercritical region and there is a conspicuous spanning
Z cluster. Most edges end on this cluster, resulting in a graph that is not useful for MBQC (it does not contain a honeycomb
subgraph).I can make these graphs clearer by removing annoying outlying nodes that aren’t connected to anything.

where the E(⇥) term is the Potts Hamiltonian, V (⇥) is a non-local cluster counting term, BNz(⇥) is an external field
term with strength B = log2 (a

2 � 1)�1, and the inverse temperature � = loge 2 is constant. This shows that varying
a to deform the AKLT model is like varying an external magnetic field in terms of the statistics of the filter outcomes.

D. Identifying computationally powerful ground states

We already know the ground state at the AKLT point is a universal resources for MBQC. Here we will show that
ground states at di�erent values of a are also universal resources. The reduction process in section III B produces
stochastic graph states with statistics given by Eq. (8). For some filter outcomes it is possible to convert the stochastic
graph state to a cluster state on a honeycomb lattice, which is itself a universal resouce. A ground state at a given
value of a is universal if we can reduce it to a honeycomb cluster state e⇤ciently, i.e. if we can produce honeycomb
cluster states of size N from a ground state with poly(N) particles in poly(N) time. There are two conditions that
will ensure this is possible [5]

1. The maximum cluster size scales no faster than logarithmically with the lattice size.

2. The probability of the stochastic graph state having a crossing path tends to one in the limit of large N .

Condition 1 ensures that producing graph states with an arbitrary number of qubits is possible. It also rules out the
possibility of an infinite cluster, which would produce useless star shaped graphs states (see Fig. 3c for an example).
If condition 1 is satisfied then condition 2 will imply the existence of a macroscopic number of crossing paths in both
lattice dimensions, a feature that will guarantee the existence of a honeycomb subgraph [], and hence the universality
of the state.

We did Monte Carlo sampling over the distribution (8) to determine the values of a that had ground states satisfying
these two conditions. Samples of resulting graph states are displayed in figure 3 details of Monte Carlo samplings in
the appendix?. We found that maximum cluster sizes scaled logarithmically in the region 1 ⇤ a2 < 6.46, while an
infinite spanning cluster appeared at a ⌅ 6.46. The probability of obtaining a spanning cluster as a function of a is
graphed in Fig. 4 for various lattice sizes. We also found that condition 2 was always satisfied: graphs (even small
ones) had crossing paths with probability one. Our conclusion is that there is computationally powerful region that
starts at a2 = 1 and ends at a2 = 6.46 ± 0.05, the upper limit exactly corresponding to the boundary between the
AKLT phase and the Neel phase.

4

(a) Y

X

Y

Y

Y

X

X

Y Y

Y X

Y

X Y X

X X X X

X Y X X Y

YY X X X Y

X

X

Y X Y

X

Y X Y X

X Y Y X Y Y Y

YX

Y

X X Y X

X X Y X

X Y X

XX X Y

X X

Y X

YX X X Y

X Y X Y Y Y

X X Y

Y Y Y

Y X Y X

Y

(b)

Z

Y

X Y X

Z

X

Y Z Y X Z Y X Z XY

X X Z Y Z Y Y Z Y Y

Z X Y

Z

X X Z Y Z X Z Y

Z X Y Y X Y Z Y

Y X Z X X

Z Y Y X

Y Z X X Y Y X X

X Z Y X Y Y Y

Y Y X Z X Y X X

YX Z Y Y X Y Z X

Z Z Y

ZX Y X Y

Y X Y Z X Z X

Y X Y X Y Y Z X Y X

Y Z X Z X Y X Z Y

X Y Z X Y Z X Z Y

Y Y X Y Z Y X Y X Y

X Z X X Y Z

X Y Y Z X

(c)

Z

X Y Y

Z

X

Y X Y

X

Y X Y X X

X Y Y X

Y Y X Y X Y X Y

X X X Y X Y

Y Z Y

Y X Y Y

X Z X Y

X Z

X

X

Y Z X

Y Y

Y Z X Y

XY X Y Y X

X X

X Y X Y

Y Z X Y

X X Z Y Y X

FIG. 3. Resulting graphs sampled from Eq. (8) at (a) a2 = 1, (b) a2 = 5.70 and (c) a2 = 6.96 on a 20� 20 lattice. For clarity,
some edges have not been displayed. Graphs (a) and (b) are in the computationally useful region, while (c) is not. In (a)
there are no Z outcomes and crossing paths are more sparse than at the AKLT point. In (b) there are large Z clusters, which
appear as cyan nodes with many outgoing edges. In (c) we are in the supercritical region and there is a conspicuous spanning
Z cluster. Most edges end on this cluster, resulting in a graph that is not useful for MBQC (it does not contain a honeycomb
subgraph).I can make these graphs clearer by removing annoying outlying nodes that aren’t connected to anything.

where the E(⇥) term is the Potts Hamiltonian, V (⇥) is a non-local cluster counting term, BNz(⇥) is an external field
term with strength B = log2 (a

2 � 1)�1, and the inverse temperature � = loge 2 is constant. This shows that varying
a to deform the AKLT model is like varying an external magnetic field in terms of the statistics of the filter outcomes.

D. Identifying computationally powerful ground states

We already know the ground state at the AKLT point is a universal resources for MBQC. Here we will show that
ground states at di�erent values of a are also universal resources. The reduction process in section III B produces
stochastic graph states with statistics given by Eq. (8). For some filter outcomes it is possible to convert the stochastic
graph state to a cluster state on a honeycomb lattice, which is itself a universal resouce. A ground state at a given
value of a is universal if we can reduce it to a honeycomb cluster state e⇤ciently, i.e. if we can produce honeycomb
cluster states of size N from a ground state with poly(N) particles in poly(N) time. There are two conditions that
will ensure this is possible [5]

1. The maximum cluster size scales no faster than logarithmically with the lattice size.

2. The probability of the stochastic graph state having a crossing path tends to one in the limit of large N .

Condition 1 ensures that producing graph states with an arbitrary number of qubits is possible. It also rules out the
possibility of an infinite cluster, which would produce useless star shaped graphs states (see Fig. 3c for an example).
If condition 1 is satisfied then condition 2 will imply the existence of a macroscopic number of crossing paths in both
lattice dimensions, a feature that will guarantee the existence of a honeycomb subgraph [], and hence the universality
of the state.

We did Monte Carlo sampling over the distribution (8) to determine the values of a that had ground states satisfying
these two conditions. Samples of resulting graph states are displayed in figure 3 details of Monte Carlo samplings in
the appendix?. We found that maximum cluster sizes scaled logarithmically in the region 1 ⇤ a2 < 6.46, while an
infinite spanning cluster appeared at a ⌅ 6.46. The probability of obtaining a spanning cluster as a function of a is
graphed in Fig. 4 for various lattice sizes. We also found that condition 2 was always satisfied: graphs (even small
ones) had crossing paths with probability one. Our conclusion is that there is computationally powerful region that
starts at a2 = 1 and ends at a2 = 6.46 ± 0.05, the upper limit exactly corresponding to the boundary between the
AKLT phase and the Neel phase.

3

The reduction protocol involves performing this measuremnt on every particle of the deformed ground state
(D(a)�1)⇥N |⇥AKLT ⇧. The action of this measurement is simplified by the fact that each measurement operator
is a product of three operators. The first operator D(a) will globally undo the deformation (D(a)�1)⇥N , restoring
the deformed ground state to the 2D AKLT state. The second operator will apply one of the filtering operators
{Fx, Fy, Fz} to the now undeformed AKLT state, i.e. it will project each spin-3/2 particle onto a qubit subspace. The
final D(a) operator simply maps each qubit subspace onto a di�erent (although isomorphic) qubit subspace. Hence the
resulting state after measuring every particle of the deformed AKLT state |⇥(a)⇧ in {Fx(a), Fy(a), Fz(a)} is equivalent
to the state obtained by measuring the undeformed state |⇥AKLT ⇧ in {Fx, Fy, Fz} and getting the same outcomes,
up to local unitaries. Thus it appears the resulting stochastic graph state can be used the same way as the states
produced at the AKLT point. However, while the same states are produced, the statistics of these measurements are
dependent on the value of a. These statistics are critical to the computational power of the state, as we will explain
in the following section.

C. Statistical model

Since each particle is measured with a three outcome POVM, the total number of possible outcomes is 3N where N
is the number of spin-3/2 particles. Some of these outcomes correspond to computationally useful graph states (e.g.
if every cluster had size one), while some will not (e.g. if every measurement outcome was Z). At the AKLT point it
was shown in [5] that the probability of obtaining a particular filter outcome i is

p(�) =
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where |V (�)| is the number of clusters for a given outcome, |E(�)| is the number of inter-cluster bonds, and Z is a

normalisation factor
⇤3N

j=1 2
|V (j)|�|E(j)|. A typical filter outcome, sampled from this distribution, is shown in Fig. 2.

We can use Eq. (6) to compare the norms (hence probabilities) of the post-filter states away from the AKLT point
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FIG. 2. A typical reduction outcome at the AKLT point. In (a) each node corresponds to a spin-3/2 particle, and edges
are drawn between nearest neighbours. The nodes are coloured according to which outcome was obtained: X outcomes are
magenta, Y outcomes are yellow and Z outcomes are cyan. In (b) the resulting graph state is drawn. Each node corresponds
to a qubit (a cluster of like measurment outcomes), and edges correspond to graph state edges. The graph has many crossing
paths, making it useful for MBQC.

to those at the AKLT point. The probability of obtaining a particular filter outcome � with deformation a is

p(�) =
1

Z

�
a2 � 1

2

⇥Nz(⇥)

2|V (⇥)|�|E(⇥)| , (8)

where |V (�)| and |E(�)| are as above, Nz(�) is the total number of Z filter outcomes. These statistics are equivalent
to a Potts-like spin model in the canonical ensemble
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paths, making it useful for MBQC.

to those at the AKLT point. The probability of obtaining a particular filter outcome � with deformation a is

p(�) =
1

Z

�
a2 � 1

2

⇥Nz(⇥)

2|V (⇥)|�|E(⇥)| , (8)

where |V (�)| and |E(�)| are as above, Nz(�) is the total number of Z filter outcomes. These statistics are equivalent
to a Potts-like spin model in the canonical ensemble

p(�) =
1

Z e��(V (⇥)+E(⇥)+BNz(⇥)) , (9)
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Numerical Results

• Reduction at AKLT point (20x20 spin lattice)

- Universal resource for MBQC

3

The reduction protocol involves performing this measuremnt on every particle of the deformed ground state
(D(a)�1)⇥N |⇥AKLT ⇧. The action of this measurement is simplified by the fact that each measurement operator
is a product of three operators. The first operator D(a) will globally undo the deformation (D(a)�1)⇥N , restoring
the deformed ground state to the 2D AKLT state. The second operator will apply one of the filtering operators
{Fx, Fy, Fz} to the now undeformed AKLT state, i.e. it will project each spin-3/2 particle onto a qubit subspace. The
final D(a) operator simply maps each qubit subspace onto a di�erent (although isomorphic) qubit subspace. Hence the
resulting state after measuring every particle of the deformed AKLT state |⇥(a)⇧ in {Fx(a), Fy(a), Fz(a)} is equivalent
to the state obtained by measuring the undeformed state |⇥AKLT ⇧ in {Fx, Fy, Fz} and getting the same outcomes,
up to local unitaries. Thus it appears the resulting stochastic graph state can be used the same way as the states
produced at the AKLT point. However, while the same states are produced, the statistics of these measurements are
dependent on the value of a. These statistics are critical to the computational power of the state, as we will explain
in the following section.

C. Statistical model

Since each particle is measured with a three outcome POVM, the total number of possible outcomes is 3N where N
is the number of spin-3/2 particles. Some of these outcomes correspond to computationally useful graph states (e.g.
if every cluster had size one), while some will not (e.g. if every measurement outcome was Z). At the AKLT point it
was shown in [5] that the probability of obtaining a particular filter outcome i is

p(�) =
1

Z 2|V (⇥)|�|E(⇥)| , (7)

where |V (�)| is the number of clusters for a given outcome, |E(�)| is the number of inter-cluster bonds, and Z is a

normalisation factor
⇤3N

j=1 2
|V (j)|�|E(j)|. A typical filter outcome, sampled from this distribution, is shown in Fig. 2.

We can use Eq. (6) to compare the norms (hence probabilities) of the post-filter states away from the AKLT point
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FIG. 2. A typical reduction outcome at the AKLT point. In (a) each node corresponds to a spin-3/2 particle, and edges
are drawn between nearest neighbours. The nodes are coloured according to which outcome was obtained: X outcomes are
magenta, Y outcomes are yellow and Z outcomes are cyan. In (b) the resulting graph state is drawn. Each node corresponds
to a qubit (a cluster of like measurment outcomes), and edges correspond to graph state edges. The graph has many crossing
paths, making it useful for MBQC.

to those at the AKLT point. The probability of obtaining a particular filter outcome � with deformation a is

p(�) =
1

Z

�
a2 � 1

2

⇥Nz(⇥)

2|V (⇥)|�|E(⇥)| , (8)

where |V (�)| and |E(�)| are as above, Nz(�) is the total number of Z filter outcomes. These statistics are equivalent
to a Potts-like spin model in the canonical ensemble

p(�) =
1

Z e��(V (⇥)+E(⇥)+BNz(⇥)) , (9)

a2 = 3
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• Reduction on 20x20 spin lattice

a2 = 6.96a2 = 5.70a2 = 1

Universal Universal Not universal
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FIG. 3. Resulting graphs sampled from Eq. (8) at (a) a2 = 1, (b) a2 = 5.70 and (c) a2 = 6.96 on a 20� 20 lattice. For clarity,
some edges have not been displayed. Graphs (a) and (b) are in the computationally useful region, while (c) is not. In (a)
there are no Z outcomes and crossing paths are more sparse than at the AKLT point. In (b) there are large Z clusters, which
appear as cyan nodes with many outgoing edges. In (c) we are in the supercritical region and there is a conspicuous spanning
Z cluster. Most edges end on this cluster, resulting in a graph that is not useful for MBQC (it does not contain a honeycomb
subgraph).I can make these graphs clearer by removing annoying outlying nodes that aren’t connected to anything.

where the E(⇥) term is the Potts Hamiltonian, V (⇥) is a non-local cluster counting term, BNz(⇥) is an external field
term with strength B = log2 (a

2 � 1)�1, and the inverse temperature � = loge 2 is constant. This shows that varying
a to deform the AKLT model is like varying an external magnetic field in terms of the statistics of the filter outcomes.

D. Identifying computationally powerful ground states

We already know the ground state at the AKLT point is a universal resources for MBQC. Here we will show that
ground states at di�erent values of a are also universal resources. The reduction process in section III B produces
stochastic graph states with statistics given by Eq. (8). For some filter outcomes it is possible to convert the stochastic
graph state to a cluster state on a honeycomb lattice, which is itself a universal resouce. A ground state at a given
value of a is universal if we can reduce it to a honeycomb cluster state e⇤ciently, i.e. if we can produce honeycomb
cluster states of size N from a ground state with poly(N) particles in poly(N) time. There are two conditions that
will ensure this is possible [5]

1. The maximum cluster size scales no faster than logarithmically with the lattice size.

2. The probability of the stochastic graph state having a crossing path tends to one in the limit of large N .

Condition 1 ensures that producing graph states with an arbitrary number of qubits is possible. It also rules out the
possibility of an infinite cluster, which would produce useless star shaped graphs states (see Fig. 3c for an example).
If condition 1 is satisfied then condition 2 will imply the existence of a macroscopic number of crossing paths in both
lattice dimensions, a feature that will guarantee the existence of a honeycomb subgraph [], and hence the universality
of the state.

We did Monte Carlo sampling over the distribution (8) to determine the values of a that had ground states satisfying
these two conditions. Samples of resulting graph states are displayed in figure 3 details of Monte Carlo samplings in
the appendix?. We found that maximum cluster sizes scaled logarithmically in the region 1 ⇤ a2 < 6.46, while an
infinite spanning cluster appeared at a ⌅ 6.46. The probability of obtaining a spanning cluster as a function of a is
graphed in Fig. 4 for various lattice sizes. We also found that condition 2 was always satisfied: graphs (even small
ones) had crossing paths with probability one. Our conclusion is that there is computationally powerful region that
starts at a2 = 1 and ends at a2 = 6.46 ± 0.05, the upper limit exactly corresponding to the boundary between the
AKLT phase and the Neel phase.
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• Probability of spanning cluster as function of deformation a

- Logarithmic sized clusters inside disordered (universal) phase
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FIG. 4. Probability of a spanning cluster vs a for various lattice sizes. The probability tends to a step function as N � ⇥
with a discontinuity at a = 6.46. This shows there is an infinite cluster above this point, thus graph states produced above this
point are not computationally useful.

IV. SIGNIFICANT VALUES OF a

1. a2 = 3, a2 = ⇥

At a2 = 3 we have the perfect AKLT state. This is the optimal point in the protocol, producing the most qubits. In
contrast, as a2 ⇤ ⌃ the inverse deformation D(a)�1 tends towards a projection onto the space spanned by | ± 3

2 , z⌦
resulting in a GHZ ground state 1/

�
2(|⌅⇧⌅⇧ . . .⌦ + (�1)N/2|⇧⌅⇧⌅ . . .⌦) where |⌅⌦ = | 32 , z⌦ and |⇧⌦ = |� 3

2 , z⌦. Any
measurement sequence on this state can be simulated e⇥ciently on a classical computer.

2. a2 = 1

Note the filtering measurement in Eq. (6) at a2 = 1 has only two outcomes, Fx(1) and Fy(1). We define the
orthonormal basis

|0⌦ :=
⇤

2

3
D(1)|3

2
, x⌦ = 1

2

�
|3
2
, z⌦ + |�1

2
, z⌦ + |1

2
, z⌦ + |�3

2
, z⌦

⇥
,

|1⌦ :=
⇤

2

3
D(1)|�3

2
, x⌦ = 1

2

�
|3
2
, z⌦ � |�1

2
, z⌦ + |1

2
, z⌦ � |�3

2
, z⌦

⇥
,

|2⌦ :=
⇤

2

3
D(1)|3

2
, y⌦ = 1

2

�
|3
2
, z⌦ + i|�1

2
, z⌦ � |1

2
, z⌦ � i|�3

2
, z⌦

⇥
,

|3⌦ :=
⇤

2

3
D(1)|�3

2
, y⌦ = 1

2

�
|3
2
, z⌦ � i|�1

2
, z⌦ � |1

2
, z⌦ + i|�3

2
, z⌦

⇥
. (10)

Then we can write Fx(1) = |0⌦ 0| + |1⌦ 1| and Fy(1) = |2⌦ 2| + |3⌦ 3|, which are projections onto orthogonal spaces.
Hence the a2 = 1 ground state in our protocol is unique in that it only requires projective measurements.

3. a2 < 1

The filtering measurement in Eq. (6) is not valid for a2 < 1. In this region we define a new measurement with the
operators

{aFx(a), aFy(a), E(a)} (11)

Universal

Not universal

Monte-carlo 
samplings
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Symmetry Protected Topological Order

• Quantum Order

- Gapless:  Critical systems

- e.g.: gs of transverse Ising model or Heisenberg model at criticality 

- Gapped

- Short range entangled: Locally unitarily connected to product states   

- e.g.:  cluster states, ferromagnetic gs

- Long range entangled

- Topological ordered (2D,3D...):  No local order parameter

- e.g. quantum Hall states, p+ip superconductors, string-net models

- Symmetry Protected Topological Order (1D,2D,3D,...):  gs degeneracy protected by a symmetry

- e.g. topological insulators, Haldane phase

•  For up to date classifications follow Xiao-Gang Wen on cond-mat
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Holonomic QC in Haldane chains
• Spin chain qubit

- Spin-1 chain with boundary spin-1/2:  degenerate logical qubit in ground states

- Hamiltonian has       symmetry (   rotations about any orthogonal axis triad)

• Single qubit rotations

- Apply            during adiabatic drag out then dragreverse process with

- Geometric gate:

2

FIG. 1: Spin-chain qubit encoding and logical operations. a In the Haldane phase, ground states of spin-1 chains correspond
to edge-localized spin-1/2 degrees of freedom and are used as encoded qubits. Blue spheres represent the spin-1 objects, and
the yellow bands their coupling. The encoded qubit is represented as an arrow piercing the Bloch sphere, and its localization
by Bloch spheres at successive spin-1 elements on the end of the chain. b Adiabatically decoupling the boundary spin from its
immediate neighbor while simultaneously turning on a local field, shown in red, realizes a single qubit operation, transferring
the encoded qubit to the slightly shorter chain while e�ecting a � rotation about the local field axis. The time-reversed
process works similarly, and combining � rotations around di�erent axes enables the execution of any single-qubit operation.
c Appropriate adiabatic coupling of boundary spins of neighboring chains (shown in green) and simultaneous decoupling from
their respective chains realizes a cphase gate followed by a joint � rotation about the x̂ axis (pointing out of the page). This
is your only reference to orientation in terms of the page, so I’m not sure how to read it. d Measurement and initialization
of the encoded qubit can be performed using a method developed by one of us in [8]. The coupling to the boundary spin
is adiabatically switched o� and subsequently a measurement made of the boundary spin in the basis |Sz = m⇥. The result
m = 1 (m = �1) corresponds to a projection of the qubit onto |0⇥ (|1⇥), while m = 0 corresponds to a ẑ-axis � rotation. The
rotation can be undone by recoupling the boundary spin as in a, and so the readout operation can be repeated until a nonzero
m outcome is obtained.

ing the two-body interaction of the cphase gate and a
handful of local field settings for single-qubit logic, along
with turning o� the coupling of boundary spins and their
neighbors. Critically, only two-body couplings are in-
volved, a feature absent in previous proposals of adiabatic
holonomically-controlled architectures [10, 11, 13, 14].
There, the necessity of more than 2-body interactions
is overcome with by the use of perturbation gadgets, but
the fact that ideal gate operation is only achieved in the
limit of zero perturbation implies very delicate control of
the energy scale would be required in practice.

Finally, initialization of a computation requires prepar-
ing the system in the ground state, which can be done
either by active cooling or by preparing a ground state at
some convenient point in the phase, e.g. the AKLT point,
and then altering the Hamiltonian to a more convenient
form, e.g. the spin-1 Heisenberg antiferromagnet.

The extra overhead relative to a simpler architecture
brings with it several advantages. As already mentioned,
the architecture is immune to noise and disorder which
respect the symmetry and do not take the system out
of the Haldane phase. This helps to avoid dephasing,
as the degeneracy of the encoded states is better main-
tained. The holonomic nature of the gates makes them
inherently resistent to timing errors and intensity fluc-
tuations. Additionally, logical gates are also resistent to
spurious fields generated during the dynamics and having
the symmetry appropriate to the gate being performed.

This is especially appealing because the logical gates can
be implemented by dynamically turning on and o� con-
trol fields having fixed orientation. Errors in the field
directions are then unknown quenched (systematic) er-
rors which can be made arbitrarily small by composite
pulse sequences [16].

Logical operations apart from initialization and read-
out maintain the degeneracy and gap of the energy spec-
trum, so we may hope that both leakage and logical er-
rors can be suppressed by operating the system at low
temperatures. A full thermal stability analysis is be-
yond the scope of this Letter, but a simple analysis pre-
sented in the Methods section shows that single-site noise
does not translate into logical error without an energy
penalty [17]. More specifically, rotations a⌅icting bulk
spins create superpositions between ground and excited
states, but do not a�ect the logical information. As such,
this noise may be dealt with by cooling the bulk spins.
Rotations of the boundary spin directly a�ect the en-
coded information, but larger rotations are suppressed
because they require more energy. If the encoded qubits
are then used in an active error-correction scheme, upon
digitization of errors small rotations become no error with
high probability, meaning the rate of errors decreases
with decreasing energy of the noise. This limited pro-
tection against single-site noise unfortunately does not
extend to two sites, a fact which is to be expected as the
gate operations themselves involve only two sites.

3

We illustrate our proposal with an implementation
based on ultracold polar molecules trapped in optical lat-
tices. Spin-1 systems are formed from electronic ground
states of alkaline earth mono-halides dressed with excited
rotational states giving rise to a nonzero molecular dipole
moment [18]. Excited states of neighboring molecules are
dipole-dipole coupled, but due to hyperfine structure this
coupling is electron spin dependent, giving rise to binary
spin-1 interactions. By tuning the frequency, polariza-
tion and intensity of the dressing field one can induce a
particular spin interaction in the ground rotational hy-
perfine states and using multiple fields allows for more
complex interactions. Using this method one may engi-
neer a good approximation to the AKLT Hamiltonian, al-
beit with error terms creating not-insignificant coupling
between nearest neighbors, as well as next-nearest and
next-next-nearest. Fortunately these error terms still re-
spect the D2 symmetry and the extended symmetry of
the cphase gate, ensuring high gate fidelity.

By making use of strong few body interactions in the
encoding of each logical qubit (but not between logical
qubits), the symmetry protected holonomic mechanism
reduces memory error and logical gate error rates without
introducing new error channels outside the assumptions
of the standard fault tolerant threshold theorems [19].
This hardware assisted approach should make it easier to
reach the thresholds needed for fault tolerant quantum
computation.

I. METHODS

A. Architecture

We now discuss the architecture in more detail. Con-
sider a chain of n spin-1 particles terminated by a sin-
gle spin-1/2 particle, with spins each coupled to nearest
neighbors via the Heisenberg coupling with Hamiltonian

Hn = J
n�1⌃

j=1

�Sj · �Sj+1 + J �Sn ·�sn+1, (1)

for J > 0. This Hamiltonian, which is D2-invariant
and gapped, describes a Haldane phase that is distinct
from the trivial phase in that local perturbations that
respect the D2 symmetry cannot connect these phases
without closing the gap. For long, unterminated chains,
the ground state is nearly fourfold degenerate, with the
degeneracy being an exponentially-decreasing function of
the chain length. The four states correspond to two frac-
tionalized spin-1/2 degrees of freedom, one at each edge.
In order to model the state of one edge only, we have
terminated the other end of the chain with a fictitious
spin-1/2. This can be thought of as purifying the state
of the other edge with the termination spin to a sin-
gle entangled state. Though presented here as merely
a mathematical device, the extra spin-1/2 system could
be realized as part of the system. we should probably

say more here. one can show numerically that measuring
the termination spin in a terminated chain results in a
ground state of the unterminated chain.

The fractionalized edge degrees of freedom can be used
to encode qubits, with logical Pauli operators ⇥̄ bm = � bm

n
for the length-n chain defined as global � rotations
around the ⌥m axis:

� bm
n =

⇤ n⇧

j=1

ei�Scm
j

⌅
⌅ ⇥ bm (2)

As these operators are the generators of the SPTO sym-
metry, the qubit encoding is well-defined throughout the
phase.

The encoded qubit can be manipulated by adiabati-
cally weakening the boundary spin coupling and turning
on a local term, as in the Hamiltonian

Hn(t) = f(t)(S ẑ
1 )2 + g(t)�S1 · �S2 + Hn�1, (3)

with monotonic f, g obeying f(0)=g(T )=0 and
f(T )=g(0)=1. This squeezes the qubit into a slightly
shorter chain, as the boundary spin is now in a
product state with the rest. Note that Eq. 3 is
D2-invariant, so the degeneracy is again assured by
the symmetry of the Haldane phase. To determine
the e⇥ect of the single-qubit dynamics, we make use
of two conserved quantites: �bz

n and �bx
n. The for-

mer is clearly conserved; to see that the latter is,
too, note that [(Sz)2, ei�Sx

] = 0 and in particular,
ei�Sx |Sz=0⌥ = � |Sz=0⌥. Now imagine the qubit
starts in a +1 eigenstate of �bz

n, i.e. the state |⇤(0)⌥ =
|0̄⌥n ⇧

⇥⇥�bz
n=+1, Hn = 0

�
. After the adiabatic dynamics

it becomes |⇤(T )⌥ =
⇥⇥�bz

n=+1, (Sz
1 )2=0, Hn�1=0

�
.

But due to the product form of �bz
n, this is nothing

other than the state |Sz=0⌥ ⌅
⇥⇥�bz

n�1=+1, Hn�1=0
�
,

meaning |⇤(T )⌥ = |Sz=0⌥ ⌅ |0̄⌥n�1. By the same
argumentation, |1̄⌥n ⌃ |Sz=0⌥ ⌅ |1̄⌥n�1. Using the
other conserved quantity, we can consider the e⇥ect on a
qubit initialized in the +1 eigenstate of �bx

n, |+̄⌥n. Since
ei�Sx |Sz=0⌥ = � |Sz=0⌥, the eigenvalue of �bx

n�1 in the
final step must be �1, so |+̄⌥n ⌃ |Sz=0⌥ ⌅ |�̄⌥n�1.
Therefore, the e⇥ect of the dynamics is to perform a
� rotation of the qubit about the ⌥z axis. Since this
also works in reverse, we can perform any single qubit
operation by uncoupling and recoupling the boundary
spin. Aligning the local field to ⌥m during the forward
stage and to ⌥m⇥ during the reverse results in a qubit
rotation of 2 cos�1(⌥m · ⌥m⇥) around the axis ⌥m⇤ ⌥m⇥.

Two-qubit operations can be similarly realized, ap-
propriately coupling the ends of two neighboring chains
while decoupling them from their respective chains which
results in a cphase gate followed by a joint � rotation
about the ⌥x axis. The Hamiltonian for this process, HAB

consists of the time-independent part HA
n�1 + HB

n�1 and
a time-dependent part

HAB(t) = f(t)WAB + g(t)(�SA
1 · �SA

2 + �SB
1 · �SB

2 ), (4)
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FIG. 1: Spin-chain qubit encoding and logical operations. a In the Haldane phase, ground states of spin-1 chains correspond
to edge-localized spin-1/2 degrees of freedom and are used as encoded qubits. Blue spheres represent the spin-1 objects, and
the yellow bands their coupling. The encoded qubit is represented as an arrow piercing the Bloch sphere, and its localization
by Bloch spheres at successive spin-1 elements on the end of the chain. b Adiabatically decoupling the boundary spin from its
immediate neighbor while simultaneously turning on a local field, shown in red, realizes a single qubit operation, transferring
the encoded qubit to the slightly shorter chain while e�ecting a � rotation about the local field axis. The time-reversed
process works similarly, and combining � rotations around di�erent axes enables the execution of any single-qubit operation.
c Appropriate adiabatic coupling of boundary spins of neighboring chains (shown in green) and simultaneous decoupling from
their respective chains realizes a cphase gate followed by a joint � rotation about the x̂ axis (pointing out of the page). This
is your only reference to orientation in terms of the page, so I’m not sure how to read it. d Measurement and initialization
of the encoded qubit can be performed using a method developed by one of us in [8]. The coupling to the boundary spin
is adiabatically switched o� and subsequently a measurement made of the boundary spin in the basis |Sz = m⇥. The result
m = 1 (m = �1) corresponds to a projection of the qubit onto |0⇥ (|1⇥), while m = 0 corresponds to a ẑ-axis � rotation. The
rotation can be undone by recoupling the boundary spin as in a, and so the readout operation can be repeated until a nonzero
m outcome is obtained.

ing the two-body interaction of the cphase gate and a
handful of local field settings for single-qubit logic, along
with turning o� the coupling of boundary spins and their
neighbors. Critically, only two-body couplings are in-
volved, a feature absent in previous proposals of adiabatic
holonomically-controlled architectures [10, 11, 13, 14].
There, the necessity of more than 2-body interactions
is overcome with by the use of perturbation gadgets, but
the fact that ideal gate operation is only achieved in the
limit of zero perturbation implies very delicate control of
the energy scale would be required in practice.

Finally, initialization of a computation requires prepar-
ing the system in the ground state, which can be done
either by active cooling or by preparing a ground state at
some convenient point in the phase, e.g. the AKLT point,
and then altering the Hamiltonian to a more convenient
form, e.g. the spin-1 Heisenberg antiferromagnet.

The extra overhead relative to a simpler architecture
brings with it several advantages. As already mentioned,
the architecture is immune to noise and disorder which
respect the symmetry and do not take the system out
of the Haldane phase. This helps to avoid dephasing,
as the degeneracy of the encoded states is better main-
tained. The holonomic nature of the gates makes them
inherently resistent to timing errors and intensity fluc-
tuations. Additionally, logical gates are also resistent to
spurious fields generated during the dynamics and having
the symmetry appropriate to the gate being performed.

This is especially appealing because the logical gates can
be implemented by dynamically turning on and o� con-
trol fields having fixed orientation. Errors in the field
directions are then unknown quenched (systematic) er-
rors which can be made arbitrarily small by composite
pulse sequences [16].

Logical operations apart from initialization and read-
out maintain the degeneracy and gap of the energy spec-
trum, so we may hope that both leakage and logical er-
rors can be suppressed by operating the system at low
temperatures. A full thermal stability analysis is be-
yond the scope of this Letter, but a simple analysis pre-
sented in the Methods section shows that single-site noise
does not translate into logical error without an energy
penalty [17]. More specifically, rotations a⌅icting bulk
spins create superpositions between ground and excited
states, but do not a�ect the logical information. As such,
this noise may be dealt with by cooling the bulk spins.
Rotations of the boundary spin directly a�ect the en-
coded information, but larger rotations are suppressed
because they require more energy. If the encoded qubits
are then used in an active error-correction scheme, upon
digitization of errors small rotations become no error with
high probability, meaning the rate of errors decreases
with decreasing energy of the noise. This limited pro-
tection against single-site noise unfortunately does not
extend to two sites, a fact which is to be expected as the
gate operations themselves involve only two sites.

D2

3

We illustrate our proposal with an implementation
based on ultracold polar molecules trapped in optical lat-
tices. Spin-1 systems are formed from electronic ground
states of alkaline earth mono-halides dressed with excited
rotational states giving rise to a nonzero molecular dipole
moment [18]. Excited states of neighboring molecules are
dipole-dipole coupled, but due to hyperfine structure this
coupling is electron spin dependent, giving rise to binary
spin-1 interactions. By tuning the frequency, polariza-
tion and intensity of the dressing field one can induce a
particular spin interaction in the ground rotational hy-
perfine states and using multiple fields allows for more
complex interactions. Using this method one may engi-
neer a good approximation to the AKLT Hamiltonian, al-
beit with error terms creating not-insignificant coupling
between nearest neighbors, as well as next-nearest and
next-next-nearest. Fortunately these error terms still re-
spect the D2 symmetry and the extended symmetry of
the cphase gate, ensuring high gate fidelity.

By making use of strong few body interactions in the
encoding of each logical qubit (but not between logical
qubits), the symmetry protected holonomic mechanism
reduces memory error and logical gate error rates without
introducing new error channels outside the assumptions
of the standard fault tolerant threshold theorems [19].
This hardware assisted approach should make it easier to
reach the thresholds needed for fault tolerant quantum
computation.

I. METHODS

A. Architecture

We now discuss the architecture in more detail. Con-
sider a chain of n spin-1 particles terminated by a sin-
gle spin-1/2 particle, with spins each coupled to nearest
neighbors via the Heisenberg coupling with Hamiltonian

Hn = J
n�1⌃

j=1

�Sj · �Sj+1 + J �Sn ·�sn+1, (1)

for J > 0. This Hamiltonian, which is D2-invariant
and gapped, describes a Haldane phase that is distinct
from the trivial phase in that local perturbations that
respect the D2 symmetry cannot connect these phases
without closing the gap. For long, unterminated chains,
the ground state is nearly fourfold degenerate, with the
degeneracy being an exponentially-decreasing function of
the chain length. The four states correspond to two frac-
tionalized spin-1/2 degrees of freedom, one at each edge.
In order to model the state of one edge only, we have
terminated the other end of the chain with a fictitious
spin-1/2. This can be thought of as purifying the state
of the other edge with the termination spin to a sin-
gle entangled state. Though presented here as merely
a mathematical device, the extra spin-1/2 system could
be realized as part of the system. we should probably

say more here. one can show numerically that measuring
the termination spin in a terminated chain results in a
ground state of the unterminated chain.

The fractionalized edge degrees of freedom can be used
to encode qubits, with logical Pauli operators ⇥̄ bm = � bm

n
for the length-n chain defined as global � rotations
around the ⌥m axis:

� bm
n =

⇤ n⇧

j=1

ei�Scm
j

⌅
⌅ ⇥ bm (2)

As these operators are the generators of the SPTO sym-
metry, the qubit encoding is well-defined throughout the
phase.

The encoded qubit can be manipulated by adiabati-
cally weakening the boundary spin coupling and turning
on a local term, as in the Hamiltonian

Hn(t) = f(t)(S ẑ
1 )2 + g(t)�S1 · �S2 + Hn�1, (3)

with monotonic f, g obeying f(0)=g(T )=0 and
f(T )=g(0)=1. This squeezes the qubit into a slightly
shorter chain, as the boundary spin is now in a
product state with the rest. Note that Eq. 3 is
D2-invariant, so the degeneracy is again assured by
the symmetry of the Haldane phase. To determine
the e⇥ect of the single-qubit dynamics, we make use
of two conserved quantites: �bz

n and �bx
n. The for-

mer is clearly conserved; to see that the latter is,
too, note that [(Sz)2, ei�Sx

] = 0 and in particular,
ei�Sx |Sz=0⌥ = � |Sz=0⌥. Now imagine the qubit
starts in a +1 eigenstate of �bz

n, i.e. the state |⇤(0)⌥ =
|0̄⌥n ⇧

⇥⇥�bz
n=+1, Hn = 0

�
. After the adiabatic dynamics

it becomes |⇤(T )⌥ =
⇥⇥�bz

n=+1, (Sz
1 )2=0, Hn�1=0

�
.

But due to the product form of �bz
n, this is nothing

other than the state |Sz=0⌥ ⌅
⇥⇥�bz

n�1=+1, Hn�1=0
�
,

meaning |⇤(T )⌥ = |Sz=0⌥ ⌅ |0̄⌥n�1. By the same
argumentation, |1̄⌥n ⌃ |Sz=0⌥ ⌅ |1̄⌥n�1. Using the
other conserved quantity, we can consider the e⇥ect on a
qubit initialized in the +1 eigenstate of �bx

n, |+̄⌥n. Since
ei�Sx |Sz=0⌥ = � |Sz=0⌥, the eigenvalue of �bx

n�1 in the
final step must be �1, so |+̄⌥n ⌃ |Sz=0⌥ ⌅ |�̄⌥n�1.
Therefore, the e⇥ect of the dynamics is to perform a
� rotation of the qubit about the ⌥z axis. Since this
also works in reverse, we can perform any single qubit
operation by uncoupling and recoupling the boundary
spin. Aligning the local field to ⌥m during the forward
stage and to ⌥m⇥ during the reverse results in a qubit
rotation of 2 cos�1(⌥m · ⌥m⇥) around the axis ⌥m⇤ ⌥m⇥.

Two-qubit operations can be similarly realized, ap-
propriately coupling the ends of two neighboring chains
while decoupling them from their respective chains which
results in a cphase gate followed by a joint � rotation
about the ⌥x axis. The Hamiltonian for this process, HAB

consists of the time-independent part HA
n�1 + HB

n�1 and
a time-dependent part

HAB(t) = f(t)WAB + g(t)(�SA
1 · �SA

2 + �SB
1 · �SB

2 ), (4)
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tation [4, 5]. Accordingly, the methods of fault-tolerant
holonomic computation [27, 28] can be applied.

In our model, each qubit is encoded in an edge mode
associated with the (near-) degenerate ground state of a
spin-1 chain in the Haldane phase. The Haldane phase
of a spin-1 chain is a gapped phase possessing SPTO
that can be characterised (among several possible sym-
metries) by the symmetry D2 [16, 17, 25]. Canonical
points within this phase are the spin-1 Heisenberg anti-
ferromagnet, as well as the A⌅eck-Kennedy-Lieb-Tasaki
(AKLT) model [29].

As discussed in more detail in the following subsec-
tion, a universal set of quantum gates can be realized
using the two-body interaction of the cphase gate and a
handful of local field settings for single-qubit logic, along
with turning o� the coupling of boundary spins and their
neighbors. Critically, only two-body couplings are in-
volved, a feature absent in previous proposals of adiabatic
holonomically-controlled architectures [22, 23, 27, 28].
(In these prior proposals, the necessity of more than 2-
body interactions is overcome with by the use of pertur-
bation gadgets, but the fact that ideal gate operation is
only achieved in the limit of zero perturbation implies
very delicate control of the energy scale would be re-
quired in practice.) Finally, initialization and readout
can be performed by adapting the scheme of Ref. [10].

FIG. 2: Sketch of a holonomic path in parameter space
of the chain Hamiltonian Hn(t), traced out by time depen-
dent coupling between the boundary spin�1 and its neighbor,
which realizes a single qubit rotation. The axes parameterize

weights on the operators O
⌃S·⌃S = ↵S1 · ↵S2, Obr = (Sbr

1)
2 � 1

3

(where �r are unit vectors in R3) on Hn(t). The operators

{O⌃S·⌃S , O bm, O bm�
} constitute a trace orthogonal set and are

all D2-invariant. The path consists of three adiabatic steps
which each take a time Tj ⌅ 1/�. The qubit states are main-
tained in the ground state for paths that take place in the
positive octant of the parameter space. The holonomy is a
qubit rotation about the axis �m ⇤ �m⇥ by an angle equal to
twice angle formed by �m and �m⇥, or equivalently twice the
solid angle subtended by the path about the origin.

Relative to a ‘bare’ encoding of qubits in individual
spins, the extra overhead in our scheme brings with it
several advantages. Here we discuss these advantages
qualitatively; Section IC presents a more detailed treat-

ment. Some types of errors are avoided entirely, while
some others are suppressed. As already mentioned, the
encoding is immune to noise and disorder which respect
the symmetry and which do not destroy the SPTO of
the system; that is, the degeneracy of the ground space
is protected. This helps to avoid dephasing. The holo-
nomic nature of the gates makes them inherently resis-
tant to timing errors and intensity fluctuations. Addi-
tionally, logical gates are also resistant to spurious fields
generated during the dynamics but having the symmetry
appropriate to the gate being performed. This is espe-
cially appealing because the logical gates can be imple-
mented by dynamically turning on and o� control fields
having fixed orientation: Errors in the field directions are
then unknown quenched (systematic) errors which can be
made arbitrarily small by composite pulse sequences [30].
Apart from initialization and readout, the logical op-

erations maintain the degeneracy and gap of the energy
spectrum, so we may hope that both leakage and logical
errors can be suppressed by operating the system at low
temperatures. A full thermal stability analysis is beyond
the scope of this paper, but a simple analysis presented
in Sec. I C shows that single-site noise does not translate
into logical error without an energy penalty [31]. Indeed,
only single-site noise on the boundary a�ects the logi-
cal information, and as such, noise in the bulk can be
dealt with by cooling the chain. Rotations of the bulk
spin carry an energy cost increasing with the amount
of rotation; when using the encoded qubits in an active
error-correction scheme, these rotation errors are digi-
tized, and small rotations only lead to digitized error
with small probability. Thus, the error rate decreases
with decreasing energy of the noise. This limited pro-
tection against single-site noise unfortunately does not
extend to two sites, a fact which is to be expected as the
gate operations themselves involve only two sites.

0 T
0
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0.8

Energy Gap (units of J)

1-Qubit 2-Qubit

Time

FIG. 3: Energy gap to the first excited state during the dy-
namics of single and two-qubit operations. These results were
obtained by exact sparse-matrix methods for chains of length
ten for single qubit operation, and 5 and 6 for the two-qubit
operation.

Although the SPTO of our systems is not generically
robust to perturbations which do not have the D2 sym-
metry, numerical simulations on the Haldane phase have
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FIG. 1: Spin-chain qubit encoding and logical operations. a In the Haldane phase, ground states of spin-1 chains correspond
to edge-localized spin-1/2 degrees of freedom and are used as encoded qubits. Blue spheres represent the spin-1 objects, and
the yellow bands their coupling. The encoded qubit is represented as an arrow piercing the Bloch sphere, and its localization
by Bloch spheres at successive spin-1 elements on the end of the chain. b Adiabatically decoupling the boundary spin from its
immediate neighbor while simultaneously turning on a local field, shown in red, realizes a single qubit operation, transferring
the encoded qubit to the slightly shorter chain while e�ecting a � rotation about the local field axis. The time-reversed
process works similarly, and combining � rotations around di�erent axes enables the execution of any single-qubit operation.
c Appropriate adiabatic coupling of boundary spins of neighboring chains (shown in green) and simultaneous decoupling from
their respective chains realizes a cphase gate followed by a joint � rotation about the x̂ axis (pointing out of the page). This
is your only reference to orientation in terms of the page, so I’m not sure how to read it. d Measurement and initialization
of the encoded qubit can be performed using a method developed by one of us in [8]. The coupling to the boundary spin
is adiabatically switched o� and subsequently a measurement made of the boundary spin in the basis |Sz = m⇥. The result
m = 1 (m = �1) corresponds to a projection of the qubit onto |0⇥ (|1⇥), while m = 0 corresponds to a ẑ-axis � rotation. The
rotation can be undone by recoupling the boundary spin as in a, and so the readout operation can be repeated until a nonzero
m outcome is obtained.

ing the two-body interaction of the cphase gate and a
handful of local field settings for single-qubit logic, along
with turning o� the coupling of boundary spins and their
neighbors. Critically, only two-body couplings are in-
volved, a feature absent in previous proposals of adiabatic
holonomically-controlled architectures [10, 11, 13, 14].
There, the necessity of more than 2-body interactions
is overcome with by the use of perturbation gadgets, but
the fact that ideal gate operation is only achieved in the
limit of zero perturbation implies very delicate control of
the energy scale would be required in practice.

Finally, initialization of a computation requires prepar-
ing the system in the ground state, which can be done
either by active cooling or by preparing a ground state at
some convenient point in the phase, e.g. the AKLT point,
and then altering the Hamiltonian to a more convenient
form, e.g. the spin-1 Heisenberg antiferromagnet.

The extra overhead relative to a simpler architecture
brings with it several advantages. As already mentioned,
the architecture is immune to noise and disorder which
respect the symmetry and do not take the system out
of the Haldane phase. This helps to avoid dephasing,
as the degeneracy of the encoded states is better main-
tained. The holonomic nature of the gates makes them
inherently resistent to timing errors and intensity fluc-
tuations. Additionally, logical gates are also resistent to
spurious fields generated during the dynamics and having
the symmetry appropriate to the gate being performed.

This is especially appealing because the logical gates can
be implemented by dynamically turning on and o� con-
trol fields having fixed orientation. Errors in the field
directions are then unknown quenched (systematic) er-
rors which can be made arbitrarily small by composite
pulse sequences [16].

Logical operations apart from initialization and read-
out maintain the degeneracy and gap of the energy spec-
trum, so we may hope that both leakage and logical er-
rors can be suppressed by operating the system at low
temperatures. A full thermal stability analysis is be-
yond the scope of this Letter, but a simple analysis pre-
sented in the Methods section shows that single-site noise
does not translate into logical error without an energy
penalty [17]. More specifically, rotations a⌅icting bulk
spins create superpositions between ground and excited
states, but do not a�ect the logical information. As such,
this noise may be dealt with by cooling the bulk spins.
Rotations of the boundary spin directly a�ect the en-
coded information, but larger rotations are suppressed
because they require more energy. If the encoded qubits
are then used in an active error-correction scheme, upon
digitization of errors small rotations become no error with
high probability, meaning the rate of errors decreases
with decreasing energy of the noise. This limited pro-
tection against single-site noise unfortunately does not
extend to two sites, a fact which is to be expected as the
gate operations themselves involve only two sites.
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We illustrate our proposal with an implementation
based on ultracold polar molecules trapped in optical lat-
tices. Spin-1 systems are formed from electronic ground
states of alkaline earth mono-halides dressed with excited
rotational states giving rise to a nonzero molecular dipole
moment [18]. Excited states of neighboring molecules are
dipole-dipole coupled, but due to hyperfine structure this
coupling is electron spin dependent, giving rise to binary
spin-1 interactions. By tuning the frequency, polariza-
tion and intensity of the dressing field one can induce a
particular spin interaction in the ground rotational hy-
perfine states and using multiple fields allows for more
complex interactions. Using this method one may engi-
neer a good approximation to the AKLT Hamiltonian, al-
beit with error terms creating not-insignificant coupling
between nearest neighbors, as well as next-nearest and
next-next-nearest. Fortunately these error terms still re-
spect the D2 symmetry and the extended symmetry of
the cphase gate, ensuring high gate fidelity.

By making use of strong few body interactions in the
encoding of each logical qubit (but not between logical
qubits), the symmetry protected holonomic mechanism
reduces memory error and logical gate error rates without
introducing new error channels outside the assumptions
of the standard fault tolerant threshold theorems [19].
This hardware assisted approach should make it easier to
reach the thresholds needed for fault tolerant quantum
computation.

I. METHODS

A. Architecture

We now discuss the architecture in more detail. Con-
sider a chain of n spin-1 particles terminated by a sin-
gle spin-1/2 particle, with spins each coupled to nearest
neighbors via the Heisenberg coupling with Hamiltonian

Hn = J
n�1⌃

j=1

�Sj · �Sj+1 + J �Sn ·�sn+1, (1)

for J > 0. This Hamiltonian, which is D2-invariant
and gapped, describes a Haldane phase that is distinct
from the trivial phase in that local perturbations that
respect the D2 symmetry cannot connect these phases
without closing the gap. For long, unterminated chains,
the ground state is nearly fourfold degenerate, with the
degeneracy being an exponentially-decreasing function of
the chain length. The four states correspond to two frac-
tionalized spin-1/2 degrees of freedom, one at each edge.
In order to model the state of one edge only, we have
terminated the other end of the chain with a fictitious
spin-1/2. This can be thought of as purifying the state
of the other edge with the termination spin to a sin-
gle entangled state. Though presented here as merely
a mathematical device, the extra spin-1/2 system could
be realized as part of the system. we should probably

say more here. one can show numerically that measuring
the termination spin in a terminated chain results in a
ground state of the unterminated chain.

The fractionalized edge degrees of freedom can be used
to encode qubits, with logical Pauli operators ⇥̄ bm = � bm

n
for the length-n chain defined as global � rotations
around the ⌥m axis:

� bm
n =

⇤ n⇧

j=1

ei�Scm
j

⌅
⌅ ⇥ bm (2)

As these operators are the generators of the SPTO sym-
metry, the qubit encoding is well-defined throughout the
phase.

The encoded qubit can be manipulated by adiabati-
cally weakening the boundary spin coupling and turning
on a local term, as in the Hamiltonian

Hn(t) = f(t)(S ẑ
1 )2 + g(t)�S1 · �S2 + Hn�1, (3)

with monotonic f, g obeying f(0)=g(T )=0 and
f(T )=g(0)=1. This squeezes the qubit into a slightly
shorter chain, as the boundary spin is now in a
product state with the rest. Note that Eq. 3 is
D2-invariant, so the degeneracy is again assured by
the symmetry of the Haldane phase. To determine
the e⇥ect of the single-qubit dynamics, we make use
of two conserved quantites: �bz

n and �bx
n. The for-

mer is clearly conserved; to see that the latter is,
too, note that [(Sz)2, ei�Sx

] = 0 and in particular,
ei�Sx |Sz=0⌥ = � |Sz=0⌥. Now imagine the qubit
starts in a +1 eigenstate of �bz

n, i.e. the state |⇤(0)⌥ =
|0̄⌥n ⇧

⇥⇥�bz
n=+1, Hn = 0

�
. After the adiabatic dynamics

it becomes |⇤(T )⌥ =
⇥⇥�bz

n=+1, (Sz
1 )2=0, Hn�1=0

�
.

But due to the product form of �bz
n, this is nothing

other than the state |Sz=0⌥ ⌅
⇥⇥�bz

n�1=+1, Hn�1=0
�
,

meaning |⇤(T )⌥ = |Sz=0⌥ ⌅ |0̄⌥n�1. By the same
argumentation, |1̄⌥n ⌃ |Sz=0⌥ ⌅ |1̄⌥n�1. Using the
other conserved quantity, we can consider the e⇥ect on a
qubit initialized in the +1 eigenstate of �bx

n, |+̄⌥n. Since
ei�Sx |Sz=0⌥ = � |Sz=0⌥, the eigenvalue of �bx

n�1 in the
final step must be �1, so |+̄⌥n ⌃ |Sz=0⌥ ⌅ |�̄⌥n�1.
Therefore, the e⇥ect of the dynamics is to perform a
� rotation of the qubit about the ⌥z axis. Since this
also works in reverse, we can perform any single qubit
operation by uncoupling and recoupling the boundary
spin. Aligning the local field to ⌥m during the forward
stage and to ⌥m⇥ during the reverse results in a qubit
rotation of 2 cos�1(⌥m · ⌥m⇥) around the axis ⌥m⇤ ⌥m⇥.

Two-qubit operations can be similarly realized, ap-
propriately coupling the ends of two neighboring chains
while decoupling them from their respective chains which
results in a cphase gate followed by a joint � rotation
about the ⌥x axis. The Hamiltonian for this process, HAB

consists of the time-independent part HA
n�1 + HB

n�1 and
a time-dependent part

HAB(t) = f(t)WAB + g(t)(�SA
1 · �SA

2 + �SB
1 · �SB

2 ), (4)
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moment [18]. Excited states of neighboring molecules are
dipole-dipole coupled, but due to hyperfine structure this
coupling is electron spin dependent, giving rise to binary
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tion and intensity of the dressing field one can induce a
particular spin interaction in the ground rotational hy-
perfine states and using multiple fields allows for more
complex interactions. Using this method one may engi-
neer a good approximation to the AKLT Hamiltonian, al-
beit with error terms creating not-insignificant coupling
between nearest neighbors, as well as next-nearest and
next-next-nearest. Fortunately these error terms still re-
spect the D2 symmetry and the extended symmetry of
the cphase gate, ensuring high gate fidelity.

By making use of strong few body interactions in the
encoding of each logical qubit (but not between logical
qubits), the symmetry protected holonomic mechanism
reduces memory error and logical gate error rates without
introducing new error channels outside the assumptions
of the standard fault tolerant threshold theorems [19].
This hardware assisted approach should make it easier to
reach the thresholds needed for fault tolerant quantum
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A. Architecture

We now discuss the architecture in more detail. Con-
sider a chain of n spin-1 particles terminated by a sin-
gle spin-1/2 particle, with spins each coupled to nearest
neighbors via the Heisenberg coupling with Hamiltonian
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j=1

�Sj · �Sj+1 + J �Sn ·�sn+1, (1)

for J > 0. This Hamiltonian, which is D2-invariant
and gapped, describes a Haldane phase that is distinct
from the trivial phase in that local perturbations that
respect the D2 symmetry cannot connect these phases
without closing the gap. For long, unterminated chains,
the ground state is nearly fourfold degenerate, with the
degeneracy being an exponentially-decreasing function of
the chain length. The four states correspond to two frac-
tionalized spin-1/2 degrees of freedom, one at each edge.
In order to model the state of one edge only, we have
terminated the other end of the chain with a fictitious
spin-1/2. This can be thought of as purifying the state
of the other edge with the termination spin to a sin-
gle entangled state. Though presented here as merely
a mathematical device, the extra spin-1/2 system could
be realized as part of the system. we should probably

say more here. one can show numerically that measuring
the termination spin in a terminated chain results in a
ground state of the unterminated chain.

The fractionalized edge degrees of freedom can be used
to encode qubits, with logical Pauli operators ⇥̄ bm = � bm
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around the ⌥m axis:
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As these operators are the generators of the SPTO sym-
metry, the qubit encoding is well-defined throughout the
phase.

The encoded qubit can be manipulated by adiabati-
cally weakening the boundary spin coupling and turning
on a local term, as in the Hamiltonian

Hn(t) = f(t)(S ẑ
1 )2 + g(t)�S1 · �S2 + Hn�1, (3)

with monotonic f, g obeying f(0)=g(T )=0 and
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shorter chain, as the boundary spin is now in a
product state with the rest. Note that Eq. 3 is
D2-invariant, so the degeneracy is again assured by
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Therefore, the e⇥ect of the dynamics is to perform a
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rotation of 2 cos�1(⌥m · ⌥m⇥) around the axis ⌥m⇤ ⌥m⇥.
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about the ⌥x axis. The Hamiltonian for this process, HAB

consists of the time-independent part HA
n�1 + HB

n�1 and
a time-dependent part

HAB(t) = f(t)WAB + g(t)(�SA
1 · �SA

2 + �SB
1 · �SB

2 ), (4)

+HAB(t)
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where the interaction term is given by WAB = [(Sx̂
1 )2 �

(Sŷ
1 )2]A ⇤ [S ẑ

1 ]B + [S ẑ
1 ]A ⇤ [(Sx̂

1 )2 � (Sŷ
1 )2]B . Again the

argument is based on various conserved quantities arises
from symmetries of the interaction, which are shown in
Table I. The Haldane phase of two chains is not known to
be protected by these symmetries, but numerical calcu-
lation on chains of moderate length confirms that the de-
generacy is indeed maintained. This is implicitly shown
in Fig. 2, which also depicts the gap to the excited states.
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TABLE I: Symmetry operators of the interaction W AB of
Eq. 4, their eigenvalues in its groundstate, and the corre-
sponding conserved quantities for two chains under the associ-
ated dynamics. The latter fix the action on the encoded qubits
to be the cphase gate (followed by local rotations). The sym-

metry operators are all rotations, defined by Rbn = e�i⇡S

bn
and⇤

R bm = e�i

�
2 S

cm
, with bu = 1p

2
(bx+by) and bv = 1p

2
(bx�by). Since

the terms besides W AB in the Hamiltonian are rotationally-
invariant, applying these rotations to their entire respective
chains leads to the listed conserved quantities.

Group the set of conserved quantities according to the
eigenvalue of |⌃⌅ and start with the first two, correspond-
ing to �1. The joint eigenstates are product encoded
states, and it is immediately clear, using the same anal-
ysis as the single qubit case, that the action of the dy-
namics is given by an operator of the form

UAB =

⇤

⌥⌥⌥⇧

0 0 0 �

0 0 ⇥ 0
0 ⇤ 0 0
⌅ 0 0 0

⌅

���⌃
, (5)

where �,⇥, ⇤, ⌅ are complex numbers of unit magnitude.
Now we consider the second pair of conserved quantities
and determine that their joint eigenstates are the (unnor-
malized) states |01⌅± |10⌅ and |00⌅± i |11⌅. Working out
the action of UAB on these states and using the overall
+1 eigenvalue of |⌃⌅ fixes ⌅ = �� and ⇤ = ⇥. Finally, the
last conserved quantity has a nondegenerate spectrum,
and so does not require a partner to determine a basis
for the encoded states, which happens to be the canonical
Bell states. Again applying UAB and using the overall
eigenvalue �i of |⌃⌅ as before gives � = �⇥. Thus,

UAB =

⇤

⌥⌥⌥⇧

0 0 0 �1
0 0 1 0
0 1 0 0
1 0 0 0

⌅

���⌃
(6)

up to an irrelevant overall phase, which is nothing other
than (⌥̄x̂ ⇤ ⌥̄x̂)cphase.

The above analysis is carried out for terminated chains,
but the case of unterminated chains is substantially sim-
ilar, as the ground state energy splitting decreases ex-
ponentially with chain length and is already negligible
compared to the gap to the first excited state for chains
of length [number]. Additionally, the edge degrees of
freedom are also exponentially well-localized, suppress-
ing crosstalk between the two ends.
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FIG. 2: Energy gap to the first excited state during the dy-
namics of single and two-qubit operations. These results were
obtained by exact sparse-matrix methods for chains of length
ten for single qubit operation, and 5 and 6 for the two-qubit
operation.

B. Noise Analysis

To gain some insight into the e�ects of single-site noise
on the system, consider the valence-bond solid as a cari-
cature of the Haldane phase ground state (which is exact
at the AKLT point) [15]; a half-infinite chain has the
following form in the Schwinger representation [20]:
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�
�a†0 + ⇥b†0

⇥ 

j⇥1

�
a†jb

†
j+1 � b†ja

†
j+1

⇥
|vac⌅ , (7)

where a†j and b†j are harmonic oscillator creation oper-
ators for modes a and b at site j with the constraint
a†a + b†b = 2 for every j, while � and ⇥ are complex
coe⇤cients for basis states of the edge mode. Single spin
rotations mix the creation operators linearly, and in par-
ticular a ẑ-axis rotation by ⇧ maps a† to a†ei�/2 and b†

to b†e�i�/2. Letting C†
j,j+1 =

�
a†jb

†
j+1 � b†ja

†
j+1

⇥
, it is

easy to work out that a rotation Rj of site j produces
the transformation

RjC
†
j,j+1R

†
j =cos �

2C†
j,j+1�i sin �

2

�
a†jb

†
j+1+b†ja

†
j+1

⇥
. (8)

The second term produces an excited state from the vac-
uum, and thus rotation of a site in the bulk of the chain
leaves the encoded qubit una�ected while producing a lin-
ear superposition of ground and excited states. Note that
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and determine that their joint eigenstates are the (unnor-
malized) states |01⌅± |10⌅ and |00⌅± i |11⌅. Working out
the action of UAB on these states and using the overall
+1 eigenvalue of |⌃⌅ fixes ⌅ = �� and ⇤ = ⇥. Finally, the
last conserved quantity has a nondegenerate spectrum,
and so does not require a partner to determine a basis
for the encoded states, which happens to be the canonical
Bell states. Again applying UAB and using the overall
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up to an irrelevant overall phase, which is nothing other
than (⌥̄x̂ ⇤ ⌥̄x̂)cphase.

The above analysis is carried out for terminated chains,
but the case of unterminated chains is substantially sim-
ilar, as the ground state energy splitting decreases ex-
ponentially with chain length and is already negligible
compared to the gap to the first excited state for chains
of length [number]. Additionally, the edge degrees of
freedom are also exponentially well-localized, suppress-
ing crosstalk between the two ends.
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namics of single and two-qubit operations. These results were
obtained by exact sparse-matrix methods for chains of length
ten for single qubit operation, and 5 and 6 for the two-qubit
operation.
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cature of the Haldane phase ground state (which is exact
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following form in the Schwinger representation [20]:

|vbs⌅ =
�
�a†0 + ⇥b†0

⇥ 

j⇥1

�
a†jb

†
j+1 � b†ja

†
j+1

⇥
|vac⌅ , (7)

where a†j and b†j are harmonic oscillator creation oper-
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ilar, as the ground state energy splitting decreases ex-
ponentially with chain length and is already negligible
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of length [number]. Additionally, the edge degrees of
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To gain some insight into the e�ects of single-site noise
on the system, consider the valence-bond solid as a cari-
cature of the Haldane phase ground state (which is exact
at the AKLT point) [15]; a half-infinite chain has the
following form in the Schwinger representation [20]:
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ators for modes a and b at site j with the constraint
a†a + b†b = 2 for every j, while � and ⇥ are complex
coe⇤cients for basis states of the edge mode. Single spin
rotations mix the creation operators linearly, and in par-
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• Error budget for Symmetry Protected Topological Order

• Sketch of a fault tolerant architecture

- 3 x 3 Bacon Shor Code 
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where the interaction term is given by

WAB = [(Sbx
1 )

2�(Sby
1 )

2]A⇥[Sbz
1 ]

B+[Sbz
1 ]

A⇥[(Sbx
1 )

2�(Sby
1 )

2]B .
(6)

C. Noise Analysis and Error Correction

Because we encode one qubit into a many body chain
there are several possible locations for error that must
be accounted for. A complete summary of error mech-
anisms and the e�ect on encoded quantum information
is displayed in Table IC. The main e�ects are either to
produce an error on the encoded information directly or
to couple to states outside the qubit subspace which we
denote leakage error.

Error type E⇥ect

Memory

D2-invariant Logically protected

Bulk pL = 0, p⇥ ⌅
�

||h||
�

⇥2

Boundary pL ⌅ ||h||
�

Gate

D2-invariant Logically protected

Quenched Systematic pL ⌅ ||h||
�

Stochastic pL ⌅ ||h||
�

TABLE I: Error mechanisms and e⇥ects on encoded quantum
information. Here pL(⇥) are the logical(leakage) error proba-
bilities, h is the perturbation, either to the system Hamilto-
nian (Memory) or the gate Hamiltonian (Gate), and || · || is
the operator norm. The Haldane gap is � and we assume
the time to perform a gate is O(1/�). Relatively benign
are the systematic errors can be corrected using composite
pulse sequences of length k yielding an e⇥ective logical error
pL = O((||h||/�)k) [30], and leakage errors which are cor-
rectable by cooling. Other noise mechanisms yielding logical
errors must be handled using quantum error correction.

Note that bulk and boundary perturbations of the sys-
tem produce very di�erent behavior, due to the fact that
noise in the bulk produces local excitations, incapable of
immediately causing logical errors as they cannot distin-
guish the logical states. Provided bulk excitations are
cooled at a rate faster than the dispersion, they will not
propagate to the boundaries to cause logical errors. In
contrast, the boundary spin-1 particles are e�ectively free
spin-1/2 degrees of freedom susceptible to local energy
shifts which translate into logical errors, albeit with an
energy cost.

While the hardware protected quantum gates we have
described reduce error rates due to environmental noise
and control error, software based quantum error correc-
tion is needed to achieve fully fault tolerant quantum
computation. In some ways our gate mechanism con-
strains the type of architecture and choice of quantum

FIG. 4: A possible embedding of qubit chains in a 2D archi-
tecture for fault tolerant quantum computing. In this scenario
each short Haldane chain, consisting of 8 bulk spin�1 parti-
cles (big dots) and one boundary spin�1/2, (small dots) has
a degenerate ground subspace which defines a level 0 qubit.
The blue chains are data qubits and the red chains are an-
cilla qubits which provide room for fault tolerant swapping
between data qubits and for rounds of error diagnosis and cor-
rection. Entropy can be dumped into the environment by re-
setting the ancilla, either by measurement or cooling. Qubits
can be measured by adiabatically decoupling one boundary
spin, measuring that spin and if a result of Sz = ±1 is ob-
tained succeeding, otherwise recoupling the boundary spin to
the chain and trying again. The figure illustrates a level-1
logical qubit encoded in a 9 qubit Bacon-Shor quantum error
correction code. A transversal level-1 logical X gate is de-
picted on the left column with the green ovals representing a
gate acting on the boundary spins that have been adiabati-
cally dragged away from their Haldane chains. Two cphase
gates between level 0 data and ancilla qubits are also depicted.

error correction code (QECC). First, because we rely on
adiabatically turning interactions on and o�, our archi-
tecture is likely to allow only nearest neighbor interac-
tions between qubits. It may be possible that a nonlocal
coupling could be engineered using, for example, an op-
tical mode in a fibre [36]; however, such interactions are
typically weak and could prove di⌅cult to wire in a scal-
able system. Second, since our qubits are degenerate by
design, there is no bias towards any particular local Pauli
errors. This is unlike the situation with many physical
realisations of qubits which are non degenerate, such as
hyperfine split ground states of trapped ions or atoms,
superconducting phase qubits, etc, which are inherently
more resiliant against bit flip errors in the energy basis
versus phase errors. This being the case, it is reasonable
to chose quantum error correction codes, and a concate-
nation method which is unbiased toward X or Z error.
Some particular QECCs and architectures are well suited
to this very situation [1].
One suitable code is the Bacon-Shor 9 qubit QECC

embedded in a 2D spatial architecture. It was shown in
Ref. [37] that “padding” a 2D array with ancilla qubits

� gap

perturbationh
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Summary & Outlook

• We should take ``hidden order” and phase stability seriously as a resource 
for quantum computation

• Renormalization as a physical process 

- Works in 1D without knowing exact value of perturbation

- Works in 2D if you know the perturbation (e.g. by tomography on a coupled pair)

• Quantum gates in a1D symmetry protected topological phase 

- Easier to engineer than full topological order

• Is there a nice way to make ground code computing fault tolerant?

- Could just import standard concatenated codes but is there a better way?

• Quantum gates in 2D SPTO?

- Gapless edge modes better protected
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