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* All models of quantum computing must fight decoherence

* But nature does allow for some stable phases of strongly correlated matter

- e.g.Mott insulators, Haldane gapped phases, superconducting phases
* Can we use such phases for quantum memories/gates!?

* Not obvious:
- Nature abhors a degeneracy that would protect qg. info

- Is dynamical processing antithetical to equilibrium phases!?

* One option Topological Order

- Very difficult to engineer
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Images:
A. Miyake, Ann. Phys. 326, 1656 (2011)

E. Edwards: http://www.newswise.com/articles /searching-for-spin-liquids
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Outline

* Ground code measurement based computing

- |D Haldane phase

- Quantum computational renormalization

- 2D AKLT phase

* Symmetry Protected Topological Order

- Holonomic computing in the Haldane Phase

* Summary

GKB, A. Miyake, PRL 101, 010502 (2008)

S.D. Bartlett, GKB, A. Miyake, and J. Renes,
PRL 105, 110502 (2010)
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J. Phys. 14, 013023 (2012)
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1108.4741
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Ground code computing

e A start: ID AKLT Hamiltonian™ 1. Affleck, T. Kennedy,
E.H. Lieb, H. Tasaki, CMP
115, 477 (1988)

O0—O0—0—0—0—0—0—0—0—0—0—=0

- gapped in thermodynamic limit

- frustration free: global ground state is also locally a ground state

e Ground state is a valence bond solid

CLLLTY CLLLTY LYY CLLLTY LLLYY CLLLTY LLLTY LLLYY
oY 8 2% 3 oY 8 oY 8 oY 8 o 3 oY 8 o4 N
v AJ > v v v AJ > v v
* * * * * *
anm T LA R LR amm anm LR R anm LR

Singlet Projector onto symmetric
i subspace (S=1)

- Degeneracy:
- Open boundaries (4 fold=2 qubit edge modes)
- Closed or infinite (| fold)
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Singlet Projector onto symmetric
i subspace (S=1)

* Representation of ground state as a matrix product state (MPS)
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Protocol

* Add boundary spin-1/2 particles (Not actually needed)

—0—0—0 00000000 0

H = J[NEIPJZJJH +P3,/12+Pz?z,/13+1] P%-fz = 3(16+s;-Sy)
j= S
- Ground state is unique
* Qubit initialization
- Turn off boundary term s - §1 and measure right spin-1/2
- For outcome S} = —% initialize logical O
05 = > layaz) - fan) AN an] AN ay 1] - AV ] 0 41)

{O‘j }6{17273}
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spins: N+1 N --- 4 3 2 1 0

logical time evolution

wires:

A ~ v v}

B H & o
dynamical
coupling

c b

ground state

* Single qubit rotations
- For RZ(0) = |0F)(0%| +¢®|15)(1X| measure in basis {7 (0))} = {3((1£e ) [1;) + (1Fe)2))),13/)}
- For (+) outcome performs X RZ (f), for (-) outcome X ZR? (0)

- Otherwise no rotation with Z byproduct. If this happens (prob=1/3) try again

* Two qubit CPHASE

' R . int __ z z z z
- Dynamical gate exp(i H'™7/x) with H" = XI5, = D54, = 1| ® |55, = 1)(5k,

= 1l + measure
- If outcome I14,15;); [14,28;), 124;18;) or 124,28;) then performs CPHASE

- Otherwise fail with Pauli byproduct. If this happens (prob=5/9) try again

* Readout by measuring left spin-1/2 particles
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* Experimental realization in entangled photonic networks

Optical one-way quantum computing with a simulated valence-bond solid
Rainer Kaltenbaek, Jonathan Lavoie, Bei Zeng, Stephen D. Bartlett, Kevin J. Resch
Nature Physics (17 October 2010)
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Quantum computational renormalization in
the Haldane phase

* AKLT Hamiltonian is one point in a family of SO(3) symmetric spin-| chains
H(B)=J> [S;-Sjt1—B(S;-Sj1)°]
j

‘—Jﬂ

+7t/4

AKLT
Ferromag.

Nematic? O=—m1/4

* The entire Haldane phase is gapped and has exponentially decaying correlation
functions. But only at AKLT does the ground state have the simple MPS
description we need for measurement based computing.

* Can we use other ground states in the Haldane phase?
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 Haldane phase H(8)=J) [S;-Sj41 —B(S;-S;j+1)°] J>0 -1<p<l
j
* Note: the SWAP operator between two spin-| particles
Sjj+1:=8;-8Sj41+(S;-8;j41)* —1

- Perturbations away from AKLT point H (3 = —1/3)are perturbations by SWAP, so the ground
states are roughly coherent superpositions (up to kth order) of SWAP on spins separated by k.

* Buffering protocol

- Measure spins flanking target spin in basis commuting with target rotation

- o o o o o o o o 0——@ No buffering
——0 00 0 0——?—@—# L=3 buffering

A o o g L =9 buffering=concatenated
_____________________ L=3 buffering
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e Results on N=12 Haldane chain

. (a) Buffered 7/2 Rotgjs_i_g;}_f_i_(}elity ‘ ——1 || Fidelity: Overlap of target
I~ L ---3 qubit state with obtained
099l £ N T 9 | measured state
0.98 RN - ~
0.97 B -
d | | | | |
= . . , | | 5
10 |(b) Buffering Pro{)ablhty__(fff}?}ﬁl.‘f.?..t..fz..A.K.L.I ................... 5 AKLT probability=3""
D . for L buffering
1 g —— == -
0.1 N
0.01 k s » » \ \ -
-1 -2/3 AKLT 0 1/3 2/3 1

* Buffering is insensitive to short range variations near AKLT point and keeps the
long range degrees of freedom characterized by the Haldane phase

Tuesday, 12 February 13



* Consider L=3 buffering as an RG flow
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e Buffered rotation measurements act as the desired measurements on the
renormalized spin via postselection

* RG map
- Block spins into L=3 blocks, project on =1 subspace of 3 spin-Is, trace over irrep label

- Yields new spin-Is and a chain 1/3 the length

Radial length of Bloch vector is
weight of |=1 subspace on g.s.

/

v A

= B=—1 Vertical height is buffering success
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2D AKLT state

* Spin-3/2 on honeycomb lattice

H = Zpy?ik
(7,k)

’1\ ,..-—1-..\ /'l"'\
0% o & - 5
/\'_\—;/‘f._\-}/t_,
\ | \ |
N /J’ \‘_l//
N AN
B[] Avlew]low) T Arlow] low) /\_/*\N—
TszT kel \':‘ / v. ! \ “}/
/ \.f/ \1,’ \1/

- Exponentially decaying correlation functions

- Ground state has tensor network description I

G)= ) tr

Oék;,Oék/

boundary condition

A[3/2) = [1)u] 11,
AJ[_l/Q: - % (L1008 + [1)u[00i (L + 0)ul1)i(Lr) A—‘—[m] the same but with all bits flipped
172 = o (11041000 + 10)4 1)1 (0] + [1)4]0):(0],)
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MBQC in 2D AKLT state

* Recently 2 groups showed how to use a 2D AKLT state for measurement based

computing
- T.-C. Wei, |. Affleck, R. Raussendorf,
PRL 106, 070501 (2011)
S S
¢ G—J 'f + 'f A. Miyake, Ann. Phys. 326, 1656 (2011) (also fig. source)
u A e A S Spins reduced to qubits by filtering POVM
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Deformations of 2D AKLT Hamiltonian

* A one parameter family of Hamiltonians which are frustration free

e Homogeneous and Isotropic: All summands h;j are the same for all nearest neighbor
pairs.

e Parity invariant: [h;x, SWAP(j, k)] = 0.
o U(1) symmetry: [h;y, e T50] = 0.

® 7y symmetry: hj invariant under spin flip: 57 + SF — —S5% — S7.

* Changes tensor network for ground state

A[3/2] = [1)u|1)i(1],

Al1/2] = (|1>u|1>l<0|r + D ul0)i (1 4 [0)w[1)1(1]) 1
— ) S

Al-1/2] = <|1>u|o>l<0|r 1001100 + [1)u]0% (0
A[=3/2] = [07,4]0}1(0],.

* Two phases™

- a® < 6.52 Disordered phase
*H. Niggemann, A. Klimper, J. Zittartz, Z.

_ CL2 > 652 Neel Ol"del‘ed Phys. B 104, 103 (1997).
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Strategy for MBQC in disordered phase

* Filtering to project spins onto qubit subspaces

- At AKLT point (@ = V3)
{anFyaFZ} by, = g(’g ‘—I_ 2M><_2MD

- At other points in the phase need to balance weights of tensors toward AKLT state

Fila) = \/ s (1 ) P@FD(

D(a) = diag(\/g/a, 1,1,/3/a) in the S, basis

4 a2
F,(a) = 4] = D(a)F..D(a
) =13\ 1T5a JP@ED@ Fo(@){Fu(a) + Fy(a)iF, + Fu(a) Fa(a) = I
2
a — 1
F.(a) = a\/( : )D(a)FZD(a) .
0 JIz]l_\rg-:: o lal > 3§z lal >> 872
7N NS Nl N,
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~ _/ AN SN / o : o
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* Converting filter outcomes to a graph state

®

Domains of same
outcome map to
one spin

Delete edges
modulo 2

* A good graph will have no percolating clusters and many percolating
superclusters
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 Statistical model

- Probability of obtaining filter outcome set o with deformation a is

2 N (o)
L fam—1 oIV (0)|—~|E(o)]
zZ\ 2

p(o) =

|E(0)| is the number of inter-cluster bonds

|V (0)| is the number of clusters for a given outcome

N, (o) is the total number of Z filter outcomes

- Equivalent to FKSWV classical statistical mechanics model (3 state Potts + Random cluster)

—B V o —I—E o —|—B o
E(O‘) term iS the POttS Hamiltonian

V(o) is a non-local cluster counting term

BN, (0) is an external field B =log, (a®* —1)—1
B =log, 2
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Numerical Results

Reduction at AKLT point (20x20 spin lattice)

3

3

Universal resource for MBQC
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Reduction on 20x20 spin lattice

a’ = 6.96

a’ = 5.70

a’ =1

Not universal

Universal

Universal
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* Probability of spanning cluster as function of deformation a

09
0.8
Universal
0.7
0.6
i} Monte-carlo
€ 05l . samplings
R Not universal
0.4r
0.3r
0.2+ 20x20
—O— 40x40
—<— 60x60
01 | A ’f _e_ 80X80
v —<45— 100x100
5 mmmmmm AKLT-Neel
O</ | | | I I

6.6 6.7 6.8 6.9

- Logarithmic sized clusters inside disordered (universal) phase
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Symmetry Protected Topological Order

e Quantum Order
- Gapless: Critical systems
- e.g.: gs of transverse Ising model or Heisenberg model at criticality
- Gapped
- Short range entangled: Locally unitarily connected to product states
- e.g.: cluster states, ferromagnetic gs

- Long range entangled
- Topological ordered (2D,3D...): No local order parameter
- e.g.quantum Hall states, p+ip superconductors, string-net models
- Symmetry Protected Topological Order (1D,2D,3D,...): gs degeneracy protected by a symmetry

- e.g.topological insulators, Haldane phase

* For up to date classifications follow Xiao-Gang VWen on cond-mat
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Holonomic QC in Haldane chains
* Spin chain qubit

- Spin-1 chain with boundary spin-1/2: degenerate logical qubit in ground states
n—1
Hy,=JY S;-Sjs1+JS, 3,
Q jz::l J J+1 +1

- Hamiltonian has D9 symmetry (7 rotations about any orthogonal axis triad)

Enm = (® "”Sm) Qo™
j=1
* Single qubit rotations
Hn(O — n(Tl -+ T2 + Tg)

600)0
g D O i

) B
D T A 2 H.(T1 +15)
Q@90 o) A

) /\2
- Apply (ST)Qduring adiabatic drag out then dragreverse process with (51)

- Geometric gate: R _ ~,(2cos (1 - m'))

me
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* Two qubit CPHASE gate

* Energy gap

0.8

0.4

H  +HE +HA5(1)

HAB(t) = f()WAP + g(t)(S7* - S5t + SP - SP)

= === 1-Qubit == 2-Qubit
0 Time T
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Sketch of a fault tolerant architecture

Error budget for Symmetry Protected Topological Order

Error type Effect
Ds-invariant Logically protected
Memory Bulk pr =0, pg ~ (%)2
Boundary pr ~ %
Ds-invariant Logically protected
Gate Quenched Systematic pr ~ %
Stochastic prL ~ %

@

3 x 3 Bacon Shor Code

c 0000000 --©
c00000O0OGO
cOOCOOOOO®--O
c90000OGOGOGOLOO®
X A N N N N N N J SN
X X X X X N N N J
c0000O0OGOLOOOO
X A X N N N N N N i

c0o00O0OO®--©
co0Reeee8eoe0 °

A gap

h, perturbation

cOORLLLee, .
cOCOOOOOO®

c 0O 00C0O0OOGOGLOGLOOOGO

cOOGOOOOGOOOTCO®
cOOCOOOOEO®-- ¢
cOOCOOOOO® - ©
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Summary & Outlook

* We should take ""hidden order” and phase stability seriously as a resource
for quantum computation

* Renormalization as a physical process
- Works in | D without knowing exact value of perturbation

- Works in 2D if you know the perturbation (e.g. by tomography on a coupled pair)

* Quantum gates in al D symmetry protected topological phase

- Easier to engineer than full topological order

* |s there a nice way to make ground code computing fault tolerant?

- Could just import standard concatenated codes but is there a better way?

* Quantum gates in 2D SPTO?

- Gapless edge modes better protected
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