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Quantum Physics & Biology 

•  Biology & Information processing 

 DNA, genetic code; protein synthesis;  

 Cell machinery & regulation; error correction; …  

 Brain, learning & behavior 

•  Does quantum coherence/entanglement play any role? 

 Photosynthesis; energy transfer efficiency in light harvesting  

 Magneto-reception; radical-pair mechanism; spin chemistry 

     Avian magnetic compass   

•  Can genuine Q-states (entanglement) be maintained at T = 300K & noise? 

 Non-equilibrium bio-molecular machine: „Entanglement generator“    

 Trivial versus non-trivial quantum effects  
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Plan of talk 

• General & introductory remarks 

– Quantum physics & computation 

– Quantum physics & biology 

• Artificial agents 

– Agents vs. computers 

– Quantum agents 

– Projective simulation for learning 

– Quantum projective simulation 

• Conclusion & Outlook 

– Creative machines 

• Open problems & connections to workshop theme 

 

 



Artificial agents 

*from: Russel & Norvig, Artificial Intelligence,  

           A modern approach, Prentice Hall, 2010. 

Agent program: 

- reflex-type agent 

-  model-based agent  

-  utility-based.. 

-  knowledge-based.. 

-  learning agent 

-  … 

-  open/closed loop 

Various applications: 

- traffic control 

- remote space 

- internet 

- robots, nanobots 

- models for biological agents 

- … 

Emphasis on “embodied aspects“ 
Embodied approaches in AI & robotics 

(Braitenberg, Brooks, Pfeiffer,…) 



•Which part should be quantum? 

Quantum agents 

  e.g. One-way quantum computer 

                 Raussendorf & HJB (2001)             
  Quantum error correction 

  Quantum-state preparation 

 …  

Future “lab robots“  

1)  Environment  = Quantum state 

     Actions          =  Measurements/unitaries  

                               on  

     Percepts        =  Measurement results 

Two examples: 





P.S.: Birds, Drosophila…? 

2)  Environment  = Classical 

     Program         = Quantum 

     Sensors &      = Quantum-classical  

     Actuators                interfaces 

Quantum-enhanced agents/robots 

Impact on behavior? (external view) 

ASIMO 



Problems: 

• No universal model! 

• What to put in the box? What to quantize?  

    -- Turing machine? 

    -- Neural network? 

    -- … ? 

•No well-established theory / integrated view of agents 

Quantum agents 

This talk: 

• Proposal of a learning-type agent based on “projective simulation“. 

• Exploit simulation -- as a fundamental physical concept -- in context of learning.     

• Our proposal provides a natural basis for quantization:  

                                                                       quantum projective simulation. 

! 

Self-simulating  

machine 



    Projective simulation for artificial agents 

Learning-type agent: 

Operation principle based on  

•  projective simulation (PS) 

•  episodic & compositional memory (ECM)  

HJB & Gemma De las Cuevas, Scientific Reports 2, 400 (2012)   

Memory 

PART 1:  

Classical 

formulation 

Julian Mautner, Adi Makmal, et al. preprint (2012) 



Episodic & compositional memory (ECM) 

Episodic memory:  

  Agent‘s past experience stored in form of episodes 

  Basic units:  Clips  ~ episodic fragments   

                                    ~ patches of “space-time“ memory 

 

 Call of memory = random walk through network of clips 

(short sequences of  

  percepts & actions) 

(agent “space“ = percept/actuator space)  



Projective simulation 

(1)   Perceptual input excites some initial (“percept“) clip.          [coupling in] 

(2)   This triggers a random walk through clip space.  

             corresponds to patchwork-like sequences of virtual experience (“simulation“)  

(3)   Action is induced by screening clips for specific features.   [coupling out] 

             presence of feature (detection above certain intensity level) triggers motor action.  

(4)   Rewarded action leads to  

(a) update of transition probabilites and  

(b) update of emotion tags associated to transitions 

                                               

Simplest version of scheme: 

 Classifier systems in genetic programming 

 Model-based (dyna) planning in reinforcement learning 

P.S.: Other concepts in AI 

that are (loosely) related  

to clips:  



Refinement of scheme 

Compositional memory:  

•  During the simulation, fictitious clips may be created that were never   

    actually perceived  before, e.g. by random variation or merging.  

•  Fictitious clips will thereby influence factual action of the agent! 

•  No complicated “computation“.  



Mathematical description 
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Clips:  

(clip length=1) 

Simplest case: 

 arXiv:1104.3787 

    Sci. Rep. 2, (2012) 



Illustration: Invasion game 
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Learning & forgetting 
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Simulation with reflection 
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Simulation with association 
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Simulation with composition (creative memory) 
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Different thresholds for clip composition 

Complex learning: Agent „discovers“, through simulation, 

new  (composite) motor actions that were previously inert. 

2D Invasion game  



Summary projective simulation 

  Simulation provides platform to replay and vary previous experience, 

     before concrete action is taken!  

 

  Random processes & rules of clip composition introduce room for variation around    

     established patterns of behavior:  

 

 It is the agent itself that creates options  by internal random processes that are properly 

utilized via simulation.   

 

 Literature:  

    Sci. Rep. 2, 400 (2012)  



Projective structure of agent‘s behavior 

Clip 5 

Through projective simulation, 

the agent is permanently 

“ahead of itself“ and acts 

under the influence of its own 

projections.    

Creative machines: 

    Sci. Rep. 2, 522 (2012)  



Quantum projective simulation 

s S

a A

classical percepts 

classical actions 

   Cc C c H

quantum memory (clip network) 

   Idea:  

   Agent can explore its episodic memory in superposition with a potentially  

   huge gain in efficiency.   Could  thus react  to a given situation much faster.      

Classical random walk  quantum walk 


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PART 2:  

Quantum 

formulation 



Quantum projective simulation 

percept 

| clip excitation > 

Quantum random  walk 

  < feature detection | 

action 

s 

a 



Modelling of the quantum walk  

• Hamiltonian representation (e.g. Hines & Stamp, 2006)  

• Clip themselves correspond to certain excitations of the quantum memory, described  

      by excitation 𝑐 † and de-excitation operators  𝑐  

     … describing coherent transitions between different clips 𝑐𝑗 and 𝑐𝑘 in the network, 
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Uni-directional „quantum jumps“ 

 allows for directed walks/projections  

     inside clip network 

• can be described by Lindblad-type terms 

• Dynamics described by Quantum Liouville equation  

     Note composite structure of clips, e.g. percept clip   𝑐 = 𝜇 1
† 𝑠1 ⊗𝜇 2

† 𝑠2 ⊗⋯⊗𝜇 𝑁
† 𝑠𝑁  

     where 𝜇 i
†
 denotes a memory operator that excites percept of category 𝑖 

     (like, for example, color or shape)  
quantum many-body interactions 



Quantum projective simulation 

Part of quantum projective simulation for learning agents  

  can be cast into a framework similar to  

Dissipation-driven quantum simulation of quantum many-body interactions!  

  Proof of principle demonstrations in optical lattices/ion traps conceivable.  

  

Observation: 

Verstraete, Wolf, Cirac, 2009 

Diehl, Zoller, et al. 2010 

see e.g. Bareiro et al. 2012 



Some open problems (quantum part)  
& connections to workshop 

• Proof of speed-up/gap for coherent learning in a specific task 
environment  
– „Deutsch –Jozsa algorithm“ for learning!? 

– Embedding of specific graph structures into clip network   

 

• Implementation in quantum-optical systems? 

 Ultracold atoms in optical lattices & ion-traps  

      (dissipative quantum simulation) as outlined 

 Optical feedback & control schemes? (talk by Hideo Mabuchi)       
 

• Formulation as quantum feedback networks? (talks by John Gough and 
Matt James)  

 

• Coherent versus measurement-based control ? (talk by Josh Combes) 
– this mainly concerns  the fomulation of the type-I agent: 

     Classical robot (with q-control peripherie) operting in a quantum lab 
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Miscellanous remarks 

 

• PS = Model for biological learning and behavior 
 Could be used to design behavior experiments : „Is there quantum 

inside?“ 

 How „free“ is an agent? 

 

• PS = Model for “self simulation“ 
– We are not talking about one system simulating another system, but 

about a system simulating itself (i.e. its own future) 
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