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The Kapitza pendulum




More wiggles



Optimal dynamics: a cartoon
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Optimal dynamics: a real (many-body) example
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Optimal control in superlattices
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Transport in dipole traps

’\../W © T. Porto, W. Phillips 2005

Realization of (not time-optimized) transport in an optical lattice

few ms transfer time
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Dipole traps - connection diagram
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Dipole traps - optimized pulses in detalil

Optimization algorithm introduces wiggles in pulse shapes
“Shaking” helps exciting-deexciting
Frequency higher than gate operation rate
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Classical control noise



What if there is no such timescale separation?

with R. Fazio, PRL ‘07
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Error with/without control

1/f noise

S(w) x A/w

Typical exp. values

A~1077°

Fault tolerance with
realistic noise?
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Why does it work” ...noise - frequency separation

Legendary Titanic band [edit)
From Wikipedia, the free encyclopedia

Some events during the Titanic disaster have had a
legendary impact. One of the most famous stories of the
Titanicis of the band. On 15 April, the Titanic's eight-member
band, led by Wallace Hartley, had assembled in the first class
lounge in an effort 10 keep passengers calm and upbeat.
Later they would move on 10 the forward half of the boat deck.
Band members had played during Sunday worship services
the previous morning, and the band continued playing music
even when it became apparent the ship was going 10 sink.




Quantum non-Markovian noise



Optimal dynamics: a simple open system

- } Control
Driven harmoni .
coupled toleBAeBIai!

Markovian bath J(w) = —Te

H=Hg+ Hp+ Hy with: Hg = Hy+ H¢



Open-system control results
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Cutting off wiggles



Scalable guantum computation via local control of
only two gubits
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D. Burgarth, K. Maruyama, M. Murphy, S. Montangero, T. Calarco, F. Nori, M. Plenio,
Phys. Rev. A 81, 040303 (2010)



Scaling of the operation time
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How many wiggles are needed”
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Wiggles as primitives



Chopped RAndom Basis (CRAB) algorithm

Initial guess: ¢y (t) o)A
Correction I/
: —

n

g(t) = arfu(t) fx(t)  “randomized” basis
=1 functions

Examples: fi(t) = sin(wgt), =%, Hi(x), ...

Trial pulse:  c(t) = co(t)g(t)

Optimize Nn=0O(10) parameters!



Direct search optimization

Co(1)

ﬁt

*No need of gradient (Nelder-Mead, simplex, etc.)
*No need of (semi-)analytical solutions

* Figures of merit: energy, fidelity, purity, entanglement.



Application: Mott-Superfluid transition
with cold atoms in optical lattices

Bose Hubbard H:Z[_J(b;bj+l_|_h,c,)_|-£2(j—E)2nj—|—g(n?—nj)]
model j . ?
Superfluid

J/U>> 0.1
J Hopping
U Onsite energy
() Trapping

J/U << 0.1

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch and |. Bloch, Nature 415, 39 (2002).



Optimal pulse
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Density of defects
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