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Quantum metrology of open
dynamical systems: Precision limits
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Parameter estimation in classical and quantum physics

Initial State == Dynamical Process w=p Final State =P  Measurement =i Estimator

g

1. Prepare probe in suitable initial state
2. Send probe through process to be investigated

3. Choose suitable measurement
4. Associate each experimental result with

estimation

Data analysis: Generate estimate X, =X (51 ,- --,§N)

— Merit quantifier

5X = \/< X (H-XP,

X=X

true

= X — Unbiased estimator

est




Crameér, Rao, and Fisher

H Cramer C.R. Rac; R.A. Fisher
Cramér-Rao bound for unbiased estimators:

(d [ p(&1Xx) ]
. @

Fisher

information

5X =1/ JVF(X,,), F(X)= jd&j p(E1X)

v — Number of repetitions of the experiment

p (c§ | X ) — probability density of getting an experimental result &

Fisher's theorem: Inequality can be saturated (i.e., it is possible to make
it an equality) when v — oo, by choosing an appropriate estimator Xet.



Quantum Fisher Information

p(élX)=Tr[f>(X)Eg}|

dX

F(X:{E,})= jda;p(ax)[d ln[p(‘f'x)]]z

|acE, =1

This corresponds to a given quantum measurement. Ultimate lower
bound for ((AX.)*): optimize over all quantum measurements

so that Quantum Fisher Information

5(X) = max {Eé}F(X;{Eg })

0X = \/<(AXeSt)2> > 1/\/V.7:Q (X)) Ultimate precision limit
Asymptotically attainable when v — oo (Braunstein and Caves 1994)

Bures' Fidelity: ®(p,,p,) (Tr\/ 0, p.p,” ) Related to

distance
e ] 1-(6X/2) 9?[/0 e ]+0[(5X)4_‘ between states!

= ®| p(X,




Quantum Fisher information for pure states

Initial state of the probe: |1(0)) )
Final X-dependent state: |¢(X)) = U(X)[y(0)), U(X) unitary operator.

Then (Helstrom 1976):

Fo(X) = 4(AM))o, ((AH)?)o = (1(0)] |

i, Proper framework to discuss
H(X) = idUd)((X) U(X) measurements of quantities like
elapsed time or harmonic oscillator phase

If U(X) = exp(i0X), Oindependent of X, then H = O

o0X > 1/2\/V<Aﬁ2>l — Should maximize the variance to
get better precision!




Example of parameter estimation:
Optical interferometry

e
~ = —
L

7 = a'a — Generator of phase displacements

= Fol(0) = 4({(An)?)owhere ((An)?), is the photon-number variance in
the upper arm.

Standard limit: coherent states | Fo(0) = 4((An)?)g = 4(h) = 50 >

2y/(n)

Increasing the precision: maximize variance with NOON states:

ly(N))=(IN,0)+|0,N)) /2 = |y (N.0))=(|N,0)+ " |0,N)) / V2
<(Afl)2>0 = sz = 660 2%

Precision is better, for the same amount of resources.



Parameter estimation with decoherence

|y > ><

Loss of a single photon transforms NOON state into a separable statel

N0+ |0, N) o B
W(N» _ \/§ ’ ‘N 170> ‘OvN 1>

No simple analytical expression for Fisher information!
For small N, more robust states can be numerically calculated

Experimental test with more robust states (for N=2):
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Experimental quantum-enhanced estimation
of a lossy phase shift

M. Kacprowicz', R. Demkowicz-Dobrzanski?*, W. Wasilewski?, K. Banaszek'? and |. A. Walmsley?



Parameter estimation in open systems:

Extended space approach

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics 7, 406 (2011);
Braz. J. Phys. 41, 229 (2011)

Given initial state and non-unitary evolution, define in S+E
|, (x))=U, () ly),10),  (Purification)
Then

0] Ej.” ®1

T = max F(l:?(.S) ®i)£maXE<S,E> F(l:?(.S’E))E

Physical meaning of this bound: information
obtained about parameter when S+E is monitored

Least upper bound: Minimization over all
unitary evolutions in S+E - difficult problem

Bound is attainable - there is always a en, monitoring ela
purifica’rion such that ﬁQ:% ormartion a ONIToring




Minimization procedure

week endi
PRL 109, 190404 (2012) PHYSICAL REVIEW LETTERS 9 NOVEMBER 2012

Quantum Metrological Limits via a Variational Approach

B.M. Escher,” L. Davidovich, N. Zagury, and R. L. de Matos Filho

Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21.941-972, Rio de Janeiro (RJ) Brazil
(Received 29 June 2012; published 9 November 2012)

There is always an unitary operator acting only on E
that connects two different purifications of Ps

Given | (I)S,E (x)) = ﬁS,E(x) | l//>S | O>E'

d|®gs p(T))
7
dx

then any other purification can be written as:

W () =u, (x) D (X))

A A1
Define hp(x) = zduE(x) up(x)

— Hg p(2)|®g 5(x)),

A

Then Cq = 4([H(x) — (H(2))a]*)a, H(z) = Hsp(x) —hp(z), and

Minimize now Cg over all Hermitian operators hg(x) that act on E



Quantum limits for lossy optical interferometry

e~/ N/
' 0

o

r

-

200 >

1+\/1+

I-n

n

/| N

N =1— no absorption

1N =0 — complete absorption

X

States with well-defined total photon number: | |¢g) =

N « /. = V60 >1/N —> Heisenberg limit

1-7n
n 1-1n
N>—"—=00>
1-n 2./VNN

For N sufficiently large, 1/v/N behavior is always reached!



Fo(N, 1)

How good is this bound?

0.95

Comparison between numerical

maximum value of 7, and upper
bound ¢ as a function of 7, for

N =10 (blue), N =20 (red), N = 30
(green), and N = 40 (black).



Phase diffusion in optical intferferometer

k endin
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Quantum Metrological Limits via a Variational Approach

B.M. Escher,” L. Davidovich, N. Zagury, and R.L. de Matos Filho

Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21.941-972, Rio de Janeiro (RJ) Brazil
(Received 29 June 2012; published 9 November 2012)

p=TL[aTalp, L[O]p=20p0" — OTOp — pOTO

= p(t) =D e p 1 (0)n)(ml|, B =Tt

m.n

Possible purification:
Dg 5(d)) = e sl 2RISR Y N 0g) = Cp = 4An?  Trivial

Choose: Up(p; \) = 19 B/ (20) = Cq = (1 — N)*4An* +1*/(267)

)\ — Variational parameter



Phase diffusion in optical intferferometer

(1,

oo >
Ppa \v\4An® \

/ Phase diffusion 30

Intrinsic quantum feature

Very close to numerical value obtained
by Genoni, Olivares, and Paris for
Gaussian state - PRL 106, 153603 (2011)

For Gaussian states:
An? <2N(N +1)
(N is the average photon number)

Then:

1
N(N + 1)

ngpt S Cé?nax _ 252 + :

Comparison with numerical results
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FIG. 1: Comparison between upper bound Cg;** and the max-
imum quantum Fisher information F5®* in [14] as a function
of the average number of photons N. The dots stand for
the values obtained in [14], while the full lines correspond to
Co™. The inset displays the two quantities up to N = 30,
which was the range considered in [14]. From top to bottom,
B2 =0;5x10"%5x10"";5 x 107",




QUANTUM SPEED LIMIT

THE UNCERTAINTY RELATION BETWEEN ENERGY
AND TIME IN NON-RELATIVISTIC QUANTUM MECHANICS

By L. MANDELSTAM * and Ig. TAMM

Lebedev Physical Institute, Academy of Sciences of the USSR

(Received February 22, 1945)

A uncertainty relation between energy and time
rigorously deduced from the principles of quantum mee

are discussed.

1. Along with the uncertainty relation
between coordinate ¢ and momentum p one
considers in quantum mechanics also the
uncertainty relation between energy and time.

The former relation in the form of the
inequality

Ag-Ap> %, (1)

having a simple physical meaning is
hanics. Some examples of itsapplication

An entirely different situation is met

with in the case of the relation

AH - AT ~h,

(2

where AH is the standard of energy, AT —

a certain time interval, and the si
that the left-hand side is at
order of the right-hand one.

~ denotes
east of the

lgor Tamm



Quantum speed limit for physical processes

Quantum speed limit for physical processes arXi1v:1209.0362

M. M. Taddei,* B. M. Escher, L. Davidovich, and R. L. de Matos Filho
Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21.941-972, Rio de Janeiro (RJ) Brazil

(to be published in PRL)

T —> Minimum time for attaining
fidelity ®,(0,7)between initial
A and final states

ures lengt Bures length of actual )
of geodesic path followed by state Attainable bound

Uhlman (1992) of the system

Special case: Unitary evolution, time-independent Hamiltonian,
orthogonal states Mandelstam-Tamm

5 [(0), (7)) = 0, Fo(t) = 4(AH)*) /1 =|rV/((AH)?) > h/4



http://xxx.lanl.gov/abs/1209.0362
http://xxx.lanl.gov/abs/1209.0362

Quantum speed limit for physical processes:
Purification procedure

Us,e(t): Evolution of the purified state corresponding o pg



Quantum speed limit for physical processes:
amplitude damping channel

Amplitude damping channel:
(»mE—wmmmh

0V = VP10V g + 1 — P(t)]0)1) &

Common example: P(t) = exp(—~t)
Unitary evolution corresponding to the map:

Us.p(t) = exp[—iO(t) (6.6 + 6_6\")
©(t) = arccos / P(t)
From this and D < / VCo(t)/4 dt = / (AR () /ht

ohe gets:

D < +/(6,6_) arccos|exp(—7t/2)]




Quantum speed limit for physical processes:
amplitude damping channel (2)

0)[0)r = 10)]0) &,

D[0)s = VPOL)[0)s + /1= P@)|0)[1)s  P(t) = exp(—1)

D < \/(646_) arccosexp(—vt/2)] = y7 > 2Insec(D/+\/(6,.6_))

Bound is saturated if (64.6_) =0 or 1

Interpretation:

If initial state is the excited state, then evolution is along a geodesic:

c=+1

1) (A = P)[1) (1] + [1 = P(2)]|0)(0]




Forced harmonic oscillator

o/ hw = %(152 LX)~ FC()X, Max [¢(t)] = 1

\_ J

i N X = (a+al)/Vv2

F = fy/h/(mw)?

Langevin equation for noisy evolution (interaction picture)

da/dt = iwFC(t)e™ /N2 —ya/2 + f-(t)

AN

(L) =0 (FHWOAE) =vnr+ )8 =) (F1(1) [, ({t) = ynrd(t —t')

a(t) :d(O)e_Vt/thiFD(t)/\/i +/tdt’f,y(t’)ev(t’—t)/2

0
t
D(t) — |D(t)|€i(bt — W/ dt/C(t/)eiwt/e—’Y(t—t’)/Q
0

Quantum limit for measurement of a weak classical force coupled to a noisy
quantum-mechanical oscillator

C. L. Latune, B. M. Escher, R. L. de Matos Filho, and L. Da,vidoviclﬂ
Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, Brazil

arXiv:1210.3316
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Forced harmonic oscillator (2)

t
a(t)=a(0)e " 2HiFD(t)/V2+ / dt' f,(t)e ' =1/2
0

t
D(t) = |D(t)|e"*t = w/ dt’((t/)eiw’f/e—v(t_t')/g
0

Quadrature X (¢;) = [aexp(—i¢y) + a' exp(i¢,)]/v2 does not depend on F

Force displaces state in phase space along generalized momentum
quadrature P(¢,) = [aexp(—i¢,) — a' exp(ig,)]/iv/2, orthogonal to X (¢;)

Note: For ((t) = coswt, then in the rotating-wave approximation ¢; = 0
Also:  ([AX(0)]%): = n([AX(0)]*)o + (2n7 + 1)(1 —n)/2
Special solution: Gaussian initial state, generalized momentum measurement

_ 1 (0(PlpP)\*  ID®) 4| D)2 ([AX (¢4)]%)
fP(F)_/dP<P\ﬁt!P>< OF )_<[AP<@>P>t n+2(2n7 + 1)(1 - n)([AX (¢0)]2)0

(minimum-uncertainty state)




Noisy forced oscillator: Purification procedure

. . (T = 0, RWA)
UmTary transformation on Oscillator = Field mode (S)
environment: does not change , ,
T =0 |the reduced description Environment = Another field mode (E)
g — 00 Purification!
ﬁal finite j

Calculate quantum Fisher
%’ information for SE, choose G to
i —FGn)/2 minimize it—. upper bound for
quantum Fisher information of S

—

p=FD(n)/2 F = fy/h/(mw)? \U/
D(n) = (w/7)(1 = v/n)

(A%°),
n+2(1—n)<A)A(2>

T — 0 %SE:[D(n):Iz
Qg — OO

0

VTay finite Coincides with result for

damped oscillator with
Minimum-uncertainty Gaussian state and | [incoming Gaussian state and

Imomentum measurement: best choicel | |momentum measurement!




Exact quantum limit

n=exp(—27t)| Fo = [D(n)]?

S 1/2

Depending on which term dominates,
one gets standard or Heisenberg limit

Thermal reservoir:

Minimization of
bound implies
maximization of
variance of
position: for fixed
average energy E,
squeezed statel!

- It does not pay to wait for a long
2(1=n) = 2(L =n)2nr + 1) | time..




Better strategy: Divide to conquer...

Force acts during a time t1ota]. Probe force during time T,
measure the probe system, reset this system and repeat
this procedure v times, with v = t4441 /7. Minimize
measurement uncertainty with respect to 7

ot~ [(AX)2)o(2nr + 1)/12]

Diffusive limit: v = 0, ny — oo, with ynp =D

[Maiwald, R. et al. Stylus ion trap for enhanced
access and sensing. Nature Phys. 5, 551-554 (2009)]

1 Correction to

4D<(AX)2>Ottot —> heuristic

calculation




Summary

*General framework for estimation of parameters in
noisy systems, based on expression of quantum
Fisher information for purified evolution (extended
space), and on "control” of environment, so as to
minimize the quantum Fisher information of S+E .

* Allows analytical calculation of very good bounds on
the limits of estimation.

*Bounds obtained for optical inferferometry, atomic
spectroscopy, minimum evolution time of open
systems, and force estimation.



