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Quantum Technology: The 2nd Quantum Revolution∗

Organizing and controlling the components of complex systems
governed by the laws of quantum physics.

New principles:

uncertainty principle

superposition of states

tunneling

entanglement

decoherence

∗ J.P. Dowling and G.J. Milburn, Phil Trans Roy. Soc. London (2003)

Kavli Institute for Theoretical Physics, Santa Barbara, 2013 John Gough Quantum Structures, Information and Control, AberystwythCOHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS



Why networks?

Figure : single transistor Figure : integrated network
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Networks and Control

NETWORKS AND FEEDBACK CONTROL

Types of closed loop control:

Coherent feedback control

Measurement-based feedback control

The distinction is fundamental in quantum control!
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Coherent Feedback

Figure : system and controller
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Measurement Based Feedback

Figure : System controlled by measurement
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Control through Interconnection!
Denmark’s great conribution to technology ...

Figure : Lego!!!!!

Kavli Institute for Theoretical Physics, Santa Barbara, 2013 John Gough Quantum Structures, Information and Control, AberystwythCOHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS



Control through Interconnection!
Denmark’s great conribution to technology ...

Figure : Lego!!!!!

Kavli Institute for Theoretical Physics, Santa Barbara, 2013 John Gough Quantum Structures, Information and Control, AberystwythCOHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS



Connections through direct coupling

Given an system with Hamiltonian HS on Hilbert space hS , couple
the system directly to a second system (the governor) with Hilbert
space hG .

System  Governor   

The total evolution on hS ⊗ hG is of the form

H = HS ⊗ 1G + 1S ⊗ HG + V .

Design problems of this type first promoted by Seth Lloyd.
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Connections mediated by quantum fields

We consider formal “white noise” processes

[b (t) , b† (s)] = δ (t − s)

with

B (t) =

∫ t

0
b (s) ds, B† (t) =

∫ t

0
b† (s) ds.

It is possible to build a non-commutative version of the Itō calculus
(Hudson-Parthasarathy) on the Fock space over L2[0,∞) with
respect to differentials dB (t) and dB† (t), and we have

dB (t) dB† (t) = dt.
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A unitary system + noise dynamics:

dU =
{

L⊗ dB† − L† ⊗ dB − iH ⊗ dt
}
◦ U

Weyl-Stratonovich form,

≡
{

L⊗ dB† − L† ⊗ dB −
(

1

2
L†L + iH

)
⊗ dt

}
U

Wick-Itō form.

Mathematically, the Itō version is well-defined and one has

X ◦ dY = XdY +
1

2
dXdY . Itō differentials are future pointing:

dX (t) := X (t + dt)− X (t).

Kavli Institute for Theoretical Physics, Santa Barbara, 2013 John Gough Quantum Structures, Information and Control, AberystwythCOHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS



The flow of system observables jt (X ) = U† (t) [X ⊗ 1] U (t):

djt (X ) = jt (LX ) dt + jt([X , L])dB† + jt(
[
L†,X

]
)dB,

where the (Gorini-Kossakowski-Sudarshan-Lindblad) generator is

LX =
1

2
[L†,X ]L +

1

2
L† [X , L]− i [X ,H] .

Taking averages in the vacuum state:

d

dt
〈jt(X )〉 = 〈jt(LX )〉,

as the forward pointing differentials average to zero.
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For example, we may have an optical cavity with coupling

L =
√
γa.

Figure : Absorption of field quanta Figure : emission of field quanta
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It is possible to introduce a scattering process

Λ (t) =

∫ t

0
b† (s) b (s) ds

and we have the quantum Itō table

× dΛ dB†

dB dB dt
dΛ dΛ dB†

We have the quantum Itō product rule

d(XY ) = X ◦ dY + (dX ) ◦ Y = X dY + dX Y + dX dY .

All done in 1984 by Hudson and Parthasarathy!
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The general unitary is
(

E †αβ = Eβα

)
dU = −i

{
E11 ⊗ dΛ + E10 ⊗ dB† + E01 ⊗ dB + E00 ⊗ dt

}
◦ U

with formal Hamiltonian

Υ(t) = E11 ⊗ b†(t)b(t) + E10 ⊗ b†(t) + E01 ⊗ b(t) + E00 ⊗ 1.
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The Itō form is

dU =

{
(S − I )⊗ dΛ + L⊗ dB† − L†S ⊗ dB − (

1

2
L†L + iH)⊗ dt

}
U

where

S =
1− i

2E11

1 + i
2E11

(unitary!), L = i
1

1 + i
2E11

E10,

H = E00 +
1

2
E01Im{ 1

1 + i
2E11

}E10 (self-adjoint!).
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Quantum Feedback Networks

We represent a system (S , L,H) as a single component with input
and output field:

System Hamiltonian H.

Coupling operator L between the system and the field.

Scattering operator S , unitary.
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The Markov Property: the past is statistically independent of the
future given the present.

We note that the Fock space F for the Bose field decomposes for
each times s < t as

F = F≤s ⊗ F[s,t] ⊗ F≥t ,

where F[s,t] is the Fock space for the degrees of freedom of the
field passing through the system from time s to time t.

Figure : Gardiner’s input formalism Figure : (S,L,H)
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Quantum Itō Evolution

Closed evolution (Schrödinger equation) dUt = −iHUtdt.

Itō QSDE

Unitary adapted quantum stochastic evolution

dUt = (S − I )UtdΛ (t) + LUtdB (t)†

−L†SUtdB (t)− (
1

2
L†L + iH)Utdt.

Heisenberg equations jt(X ) = U†t (X ⊗ 1)Ut

djt(X ) = jt(S†XS − X )dΛ (t)

+jt(S†[X , L])dB (t)† + jt([L†,X ]S)dB (t) + jt(LX )dt.

Output fields Bout (t) = U†t (1⊗ B (t))Ut

dBout (t) = jt(S)dB (t) + jt(L)dt.
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Multiple inputs/outputs

We may also represent the multi-channel case

B =

 B1
...

Bn

 , S =

 S11 · · · S1n
...

. . .
...

Sn1 · · · Snn

 , L =

 L1
...

Ln
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Beamsplitters

These are a special case where L = 0 amd H = 0.[
Bout
1

Bout
2

]
=

[
S11 S12

S21 S22

] [
B1

B2

]
.
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Figure : classical feedback diagram
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Cascades: Systems in Series

We generalize the notion of cascade introduced by H.J. Carmichael†.

dB
(2)
out = S2dB

(2)
in + L2dt

= S2(S1dB
(1)
in + L1dt) + L2dt

= S2S1B
(1)
in + (S2L1 + L2)dt

† H.J. Carmichael, Phys. Rev. Lett., 70(15):2273 2276, 1993.
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The Series Product∗

The cascaded system in the instantaneous feedforward limit is
equivalent to the single component

(S2, L2,H2) C (S1, L1,H1) =(
S2S1, L2 + S2L1,H1 + H2 + Im

{
L†
2S2L1

})
.

∗ J. G., M.R. James, The Series Product and Its Application to Quantum
Feedforward and Feedback Networks IEEE Transactions on Automatic
Control, 2009.
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Modeling double-pass atom-field coupling

Figure : Production of Squeezed Light

J. F. Sherson and K. Moelmer, Phys. Rev. Lett. 97, 143602 (2006).

Gopal Sarma, Andrew Silberfarb, and Hideo Mabuchi Phys. Rev. A 78,

025801 (2008)
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Bilinear Control Hamiltonian∗

Based on H. M. Wiseman and G. J.
Milburn. All-optical versus
electro-optical quantum-limited
feedback.
Phys. Rev. A, 49(5):41104125, 1994.

(I , u (t) , 0) C (−I , 0, 0) C (I , L, 0) C (−I , 0, 0) C

(I ,−u (t) , 0) C (I , L, 0) = (I , 0,H (t))

where

H (t) = Im{L†u(t)} =
1

2i
L†u (t)− 1

2i
Lu (t)∗ .

∗ J. G., Construction of bilinear control Hamiltonians using the series
product and quantum feedback Phys. Rev. A 78, 052311 (2008)
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Direct Measurement Feedback

1st pass - (I , L,H0)

2nd pass - corresponding to

U(t + dt, t) = exp{−iFdJ (t)}.

Homodyne detection, Jt = B (t) + B (t)†, (dJ)2 = dt, 2nd pass
is (I ,−iF , 0)

closed loop (I ,−iF , 0) C (I , L,H0) =

(
I , L− iF ,H0 +

1

2

(
FL + L†F

))
;

Photon counting, Jt = Λt , (dJ)2 = dJ, 2nd pass is
(S = e−iF , 0, 0)

closed loop (S , 0, 0) C (I , L,H0) = (S , SL,H0) .
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Components in-loop

Model considered by M. Yanagisawa utilizing a beamsplitter

Feedback loops introduce topologically nontrivial paths!
Which way did the signal go?
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Example

beamsplitter S =

[
S11 S12

S21 S22

]
,

and in-loop component (S0, L0, 0):

dB2 = S0dBout
2 + L0dt = S0(S21dB1 + S22dB2) + L0dt

⇒ dBout
1 = S11dB1 + S12dB2 ≡ Ŝ0dB1 + L̂0dt

where

Ŝ0 = S11 + S12(I − S0S22)−1S0S21, L̂0 = S12(I − S22)−1S0L0.

Equivalent component (Ŝ0, L̂0, Ĥ0):
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General Networks

More generally how do we build arbitrary networks from multiple
components.

How do we obtain the limit of instantaneous feedback/forward,
i.e., eliminate the internal connections?
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Open loop system in parallel

Concatenation

�n
j=1 (Sj , Lj ,Hj) =


 S1 0 0

0
. . . 0

0 0 Sn

 ,
 L1

...
Ln

 ,H1 + · · ·+ Hn

 .
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Feedback Reduction Formula:

Edge elimination∗

The reduced model obtained by eliminating the edge (r0, s0) is

Sred
sr = Ssr + Ssr0 (1− Ss0r0)−1 Ss0r ,

Lred
s = Ls + Ssr0 (1− Ss0r0)−1 Ls0 ,

Hred = H +
∑

inputs s

ImL†sSsr0 (1− Ss0r0)−1 Ls0 .

∗ J. G., M.R. James, Quantum Feedback Networks: Hamiltonian

Formulation Commun. Math. Phys., 1109-1132, Volume 287, Number 3

/ May, 2009.
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Properties of the Feedback Reduction Formula

Mathematically a Schur complement of the matrix of
coefficient operators

G =

[
−1

2L∗L− iH −L∗S
L S − I

]
.

Equivalently formulated as a fractional linear transformation.

Independent of the order of edge-elimination.

Commutes with adiabatic elimination of fast degrees of
freedom of components (see talk by Hendra Nurdin).
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The contruction of system with controller forming a coherent
feedback system mediated by Bose fields is now routine.

X  

external  external  

internal
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In-loop degenerate parametric amplifier

HDPA = iε
4

(
a†2 − a2

)
, L =

√
κa.

Beamsplitter with matrix

T =

[
α

√
1− α2

√
1− α2 −α

]
.

In-loop renormalized coupling strength

κ (α) =
1− α
1 + α

κ.

Squeezing parameter rDPA (α) = ln
κ (α) + ε

κ (α)− ε
.

J.G, S. Wildfeuer Enhancement of Field Squeezing Using Coherent
Feedback, Phys. Rev. A 80, 042107 (2009)

S. Iida, M. Yukawa, H. Yonezawa, N. Yamamoto, and A. Furusawa,

Experimental demonstration of coherent feedback control on optical field

squeezing, IEEE TAC 2011
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Design of quantum memories

Figure : Schematic diagram of a coherent-feedback

J. Kerckhoff, H.I. Nurdin, D. Pavlichin, H. Mabuchi Designing Quantum
Memories with Embedded Control: Photonic Circuits for Autonomous
Quantum Error Correction, PRL 105, 040502 (2010)
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