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Quantum Technology: The 2nd Quantum Revolution*
Organizing and controlling the components of complex systems
governed by the laws of quantum physics.

New principles:
@ uncertainty principle
@ superposition of states
@ tunneling
@ entanglement

@ decoherence

* J.P. Dowling and G.J. Milburn, Phil Trans Roy. Soc. London (2003)
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Why networks?

Figure : single transistor Figure : integrated network
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Networks and Control

NETWORKS AND FEEDBACK CONTROL

Types of closed loop control:

@ Coherent feedback control

@ Measurement-based feedback control

The distinction is fundamental in quantum control!
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Coherent Feedback

controller

Figure : system and controller
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Measurement Based Feedback

observer
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Figure : System controlled by measurement
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Control through Interconnection!
Denmark’s great conribution to technology ...
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Control through Interconnection!
Denmark’s great conribution to technology ...
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Connections through direct coupling

Given an system with Hamiltonian Hs on Hilbert space hg, couple
the system directly to a second system (the governor) with Hilbert

space hg.

The total evolution on hs ® h¢ is of the form

H:H5®1G+15®HG—|-\/.
Design problems of this type first promoted by Seth Lloyd.
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Connections mediated by quantum fields

We consider formal “white noise” processes

[b(t), b (s)] =6 (t—s)
with

B(t):/O b(s) ds, BT(t):/O b’ (s) ds.

It is possible to build a non-commutative version of the It calculus
(Hudson-Parthasarathy) on the Fock space over L2[0, c0) with
respect to differentials dB (t) and dBT (t), and we have

dB (t) dB' (t) = dt.
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A unitary system + noise dynamics:

dUu = {L®dBT—LT®dB—iH®dt}oU

Weyl-Stratonovich form,

1
{L@dB’f —l'®dB— <2LTL+ iH) ®dt} U
Wick-I1to form.

Mathematically, the Itd version is well-defined and one has

1
XodY = XdY + EdXdY. Ito differentials are future pointing:
dX(t) :== X(t + dt) — X(t).
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The flow of system observables j; (X) = U (t) [X ® 1] U (t):
djs (X) = ji (£X) dt + je([X, L)dBT + ([ LT, X ])dB,
where the (Gorini-Kossakowski-Sudarshan-Lindblad) generator is
Loy 1y .
LX = E[L XL+ §L [X, L] —i[X,H].
Taking averages in the vacuum state:

d . .
L)) = Ge(£X)),

as the forward pointing differentials average to zero.
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For example, we may have an optical cavity with coupling

L=./va.

<4000

—_— P, N \ ——
Field quantum: photon
Field quantum: photon
System: Cavity System: Cavity
Figure : Absorption of field quanta Figure : emission of field quanta
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It is possible to introduce a scattering process

A(ﬂ::jﬁ b (s)b(s)ds

and we have the quantum Ito table

x | d\ dBT
dB | dB dt
dA\ | dA  dBT

We have the quantum Ito product rule
d(XY)=XodY + (dX)oY =XdY +dX Y +dXdY.

All done in 1984 by Hudson and Parthasarathy!
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The general unitary is (Elﬁ = Eﬁa>

dU = —i{E11®d/\+E10®dBT+E01®dB+Eoo®dt}o U
with formal Hamiltonian

T(t) = E11 @ b'(t)b(t) + E1o ® b'(t) + Eo1 ® b(t) + Ego ® 1.
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The 1to form is
1
dU:{6—U®WH¢®dH—L@®dB—%ULHm®d%U

where

1-LIE 1
S b (unitary!), L = i——— Ey,
14 éEll 1+ éEll

1 1
H = E00+§E01|m{17}E10 (self—adjoint!).

+ LEn
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Quantum Feedback Networks

We represent a system (S, L, H) as a single component with input
and output field:

System

e System Hamiltonian H.

output input

F 3

o Coupling operator L between the system and the field.

o Scattering operator S, unitary.
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The Markov Property: the past is statistically independent of the
future given the present.

We note that the Fock space § for the Bose field decomposes for
each times s < t as

§ = <s @ s, 1] ® §>t

where §[s 4 is the Fock space for the degrees of freedom of the
field passing through the system from time s to time t.

System

L At out output
: = in -
! x

Figure : Gardiner's input formalism Figure : (S,L,H)

input
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Quantum [to Evolution

Closed evolution (Schrodinger equation) dUy = —iHU,dt.

Unitary adapted quantum stochastic evolution

dUp = (5 —NUAN(t)+ LUdB (1)}
—LTSUdB (t) — (%LTL + iH) Uy dt.

Heisenberg equations j:(X) = Ul (X ® 1)U,

dje(X) = jt(STXS_X)dA(t)
+j:(STX, L])dB ()T + i ([LT, X1S)dB (t) + j:(£LX)dt.

Output fields Bo (t) = Ul(1 ® B (t))U;

dBout (t) = j2(S)dB (t) + je(L)dt.
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Multiple inputs/outputs

We may also represent the multi-channel case

B S11 - Sin Ly
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Beamsplitters

These are a special case where L =0 amd H = 0.

ESNERlH
B9 S21 Sz B |

Bo:t
B 1 Bu:t Bnrt B 1
—_— —_— Bu:t B s
B,
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A\

© cannot happen in the quantum setting!!!

must use unitary junctions (e.g., beamsplitters)

Figure : classical feedback diagram
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Cascades: Systems in Series

We generalize the notion of cascade introduced by H.J. Carmichael.

System 2 System 1

—

dB(2)

out

= $dB® + Lydt
= 5(5dBY + Lydt) + Lodt
SleBi(I}) + (52L1 + Lg)dt

1 H.J. Carmichael, Phys. Rev. Lett., 70(15):2273 2276, 1993.
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The Series Product*

The cascaded system in the instantaneous feedforward limit is
equivalent to the single component

(527 L2a H2) < (517 Lla Hl) -
(S50 Lo+ Sola, Hy + Hy +Im {L1S514 ).

.

x J. G., M.R. James, The Series Product and Its Application to Quantum
Feedforward and Feedback Networks |EEE Transactions on Automatic
Control, 2009.

Kavli Institute for Theoretical Physics, Santa Barbara, 2013 Joo COHERENT CONTROL VIA QUANTUM FEEDBACK NET!



Modeling double-pass atom-field coupling
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Figure : Production of Squeezed Light

J. F. Sherson and K. Moelmer, Phys. Rev. Lett. 97, 143602 (2006).
Gopal Sarma, Andrew Silberfarb, and Hideo Mabuchi Phys. Rev. A 78,
025801 (2008)
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Bilinear Control Hamiltonian*

Based on H. M. Wiseman and G. J.

System -u(): Milburn. All-optical versus
H electro-optical quantum-limited
feedback.
7 Phys. Rev. A, 49(5):41104125, 1994.
7
A
L)

(l,u(t),0)<(-1,0,0) < (/,L,0)<(—/,0,0) <
(I,—u(t),0) < (I1,L,0)=(1,0,H (1))
where

H(t) = Im{LTu(t)} = %LTu(t) - %Lu(t)*.

x J. G., Construction of bilinear control Hamiltonians using the series
product and quantum feedback Phys. Rev. A 78, 052311 (2008)
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Direct Measurement Feedback

@ 1st pass - (/, L, Hp)

:-_.__-—‘J @ 2nd pass - corresponding to
)(t)

Detector U(t + dt, t) = exp{—iFdJ (t)}.

Homodyne detection, J; = B (t) 4+ B(t)', (dJ)? = dt, 2nd pass
is (1, —iF,0)

1
closed loop (/,—iF,0) < (I, L, Hp) = </7L_ iF, Ho + 5 (FL—i— LTF)> :

Photon counting, J; = A;, (dJ)? = dJ, 2nd pass is
(S=e"F0,0)

closed loop (S5,0,0) < (/, L, Ho) = (S, SL, Hp) .
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Components in-loop

Model considered by M. Yanagisawa utilizing a beamsplitter

Feedback loops introduce topologically nontrivial paths!
Which way did the signal go?
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Example ' T E?m out
By
, S11 Si2 ] / —>
beamsplitter S = ,
P [ S1 S B,
and in-loop component (S, Lo, 0): ]
Z

dB, = Songut + Lodt = 50(5210'31 + 522d32) + Lodt
= dB{™ = S11dB1 + S12dBy = SodB1 + Lodt

where

So =511+ S12(/ — 50522) 150501, Lo = S12(! — Sa2) " SoLo.

Equivalent component (5, Lo, Fp): B, —>—-—> B}
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General Networks

More generally how do we build arbitrary networks from multiple

components.
—

How do we obtain the limit of instantaneous feedback/forward,
i.e., eliminate the internal connections?
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Open loop system in parallel

Concatenation
S5 0 0 L1
_;'1:1(5]7[-1'7HJ'): 0o . 0 ) yHi +---+ H,
0o 0 S, L,
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Feedback Reduction Formula:

Edge

¥ 3
Q

Edge elimination*

The reduced model obtained by eliminating the edge (ro, so) is

S;id - Ssr + Ssro (1 - SSoro)il SSora

L?d = LS+_Sﬂb(1_'S%m)71L%7
He = H+ ) ImLiSe, (1 - Sen) ' Ls.
inputs s

x J. G., M.R. James, Quantum Feedback Networks: Hamiltonian

Formulation Commun. Math. Phys., 1109-1132, Volume 287, Number 3
/ May, 20009.
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Properties of the Feedback Reduction Formula

@ Mathematically a Schur complement of the matrix of
coefficient operators

—fL—iH —L*S

G= L S—1 |-

Equivalently formulated as a fractional linear transformation.
@ Independent of the order of edge-elimination.

o Commutes with adiabatic elimination of fast degrees of
freedom of components (see talk by Hendra Nurdin).

Kavli Institute for Theoretical Physics, Santa Barbara, 2013 Joo COHERENT CONTROL VIA QUANTUM FEEDBACK NET!



The contruction of system with controller forming a coherent
feedback system mediated by Bose fields is now routine.

external external
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In-loop degenerate parametric amplifier

HDP/—\ = % (aT2 — 32), L= \/Ea.
Beamsplitter with matrix

In-loop renormalized coupling strength

1—«
k(o) = T o™
Squeezing parameter rppa (o) = In M.
k(o) —e¢

J.G, S. Wildfeuer Enhancement of Field Squeezing Using Coherent
Feedback, Phys. Rev. A 80, 042107 (2009)

S. lida, M. Yukawa, H. Yonezawa, N. Yamamoto, and A. Furusawa,

Experimental demonstration of coherent feedback control on optical field
squeezing, IEEE TAC 2011
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Design of quantum memories

T O—( @) //
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Figure : Schematic diagram of a coherent-feedback

J. Kerckhoff, H.I. Nurdin, D. Pavlichin, H. Mabuchi Designing Quantum
Memories with Embedded Control: Photonic Circuits for Autonomous
Quantum Error Correction, PRL 105, 040502 (2010)
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