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Robust Control Design

For quantum information systems, a robust optimization problem

that we often want to solve can be expressed as

max min JF[6, 4]
6 6

subjectto 6 € © and 0 € A

F10,6] = |Tr(U[6, 5]VT")|, quantum gate fidelity

U\0, 5] : actual unitary operation; V' : target unitary operation
0 : uncertain and stochastic parameters; A : corresponding set

6 : control and design parameters; © : corresponding set

Caveat emptor: This is often not a convex optimization problem!



Robust Control Design

* Robust control and optimization of uncertain systems are
essential in science and engineering.

* QIP requires an unprecedented degree of control!

- Active area of research
- Many control protocols involve some form of numerical optimization

- High-fidelity results are possible, e.g., 1 — F & [1()_67 10_4],
which is “1” for most engineering problems, but not QIP!



Sequential Convex Programming

Initialize
Initialize control: # € © C R"Y; Sample uncertainties: §; € A;
Set trust region: © C RN

Repeat
1. Calculate fidelities, gradients, and Hessians with respect to 6.

Fl0,8;], VoFl0,d;], ViF[0,d;]
2. Solve convex optimization for 6 using linearized fidelity:
max min F[0,6;] + (VoF[0,8]) 0 — 6TV2F[0,6:]6/2

0 i
subjectto 0 +6 € © and ||6]|c < ©
3. Update i
IF min F (0 + 6,9;) > min F(0,6;)

THEN 6« 6+ 6 and increase trust region ©
ELSE decrease trust region ©

Until Convergence criteria satisfied



Sequential Convex Programming

* Incorporates convex constraints exactly, e.g.,

magnitude: Omin < 0(t) < Omax, 0t T
fluence: fOT 0%(t)dt < «

T oco)lde < 6

slew rate: %&t)|§% 0<t<T

* Incorporates uncertainties and stochasticity by sampling,
e.g.,
- An uncertain coefficient w: § = [wy, wa, -]

- Astochastic process (): §(t) = [w1(t), wa(t), - .]T

T



Control Field, C(t)

Control Field, C(t)

Robust Quantum Gates
H(t) = wy0, + C(t)w.0, — U(t) = —iH(t)U(t)

10% drift

1% control amplitude
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V&YV of Controlled QI Systems

» Characterization: Determining dynamics, qualities,

properties, etc. of devices, models, etc.
* Fault detection, isolation, and recovery (e.g., QEC)
 Model calibration versus prediction
 Verification: "Did you build it correctly?”
 Validation: "Did you build the correct thing?”

o State/process determination versus validation



State and Process Tomography

* Quantum state tomography
- Onequbit: p=(Z+7-07)/2
- Bloch sphere measurements: (o) = Tr(po;) = r;

* Quantum process tomography: identify the process via
state tomography:

in d*
{'Oj }jzl

CPTP map

Perform state tomography

Out E AkpmAT on each output state:

d?-1 measurements!

|. Chuang & M. Nielsen, JMO, 44 (1997)



State to Process Tomography

1.Perform tomography on states {pJ“t} -
2.Expand output density matrices:

out ZA pm‘A]L Zxa ()'OHOL7 3 —ZTjkO'k

k

3.Expand basis operators
Tap ol = Z Sk Ok
4.Combine expressions 2 and 3

p;t = erkgk:>:>:onB€;‘XkBO—k — R=X=z
k ko,




State Tomography Estimators

p=(T+7-3)/2 — p= (z+§-X) /d
Multiqubit state
» Least-squares approach: O(d?)

mm E — Tr(O ] . where M : measurements

subjectto Tr(p) =1 and p >0

» Compressed-sensing approach: O(R,dlog(d))

min Tr(p), where p = p/Tr(p)
D

subjectto min » [m; — Tr(0;p)]* <e and >0
P .

P. Gross et al., PRL, 105 (2010)



Limitations of Tomography

» Scaling of measurements required is exponential
iIn the number of qubits:

d? = 4™ (QST); d* — d? = 16™a — 4™ (QPT)

* Conventional state and process tomography
assumes high-fidelity measurements and

preparations.

* Most technologies (except optics) do not have a
full reference frame (e.g., independent calibrated
X, Y, Z axes on the Bloch sphere). There may only
be 1 preparation and 1 measurement operation.



QPT via Parameter Estimation

* Nonlinear mapping of Hamiltonian to process
matrix in general, so certain conditions must be
satisfied:

- Use some knowledge of the underlying dynamics
(Hamiltonian form: couplings, commutativity, etc.).

- Sparsity: Number of Hamiltonian parameters may be
much smaller than the elements of the process matrix.

M. Branderhorst et al., NJP, 11 (2009) A. Shabani et al., PRA, 84 (2011)

* Optimal Hamiltonian identification: Combining
optimal control data and efficient data inversion

J. Geremia & H. Rabitz, PRL, 89 (2002) J. Geremia & H. Rabitz, PRA, 70 (2004)



Randomized Benchmarking

“Twirling’, i.e.. / UA (UTpU) U'dU, transforms A uniquely to
U(d)

a depolarizing channel A4 with the same average fidelity as A:
Aa(p) =pp+ (1 —p)L/d,

where F (A,7) = F (Aq,Z) = p+ (1 —p)/d,

2

and ./T" 51, 52 {Tr\/\/ 51 52 \/

Objective: Estimate p while addressing the limitations of QPT.




Randomized Benchmarking

c

| g

viaa 2desion, 1 >~ C;A (CloC ) €] = /U AUl U
j=1

However, |C| grows exponentially with the number of qubits!

Protocol
1. For m < M, generate K,, random Clifford gate sequences:

1 ™m
Skm(p) = — 3" CiA (CloCy) €]
j=1
2. Measure the “survival probability” (sequence fidelity):

Fim = Tr [EySem(p)], where Ey, = p = |¢) (1] ideally

3. Calculate average sequence fidelity £,

4. Repeat for different values of m and fit results to fidelity model
E. Magesan et al., PRA, 85 (2012)



V&YV of Controlled QI Systems

* Improved tomography via machine learning

 What are the tools for QMU, UQ, and V&YV of
quantum systems?

* Development of methods for efficient simulation of
gquantum systems, e.g., surrogates

 \What are the roles of device and model/software
V&YV for controlled QI systems?

 \What are the relevant validation metrics?

 \What is the role of Hamiltonian estimation?
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