CCQS, KITP, UCSB, March 18th, 2013

http://arxiv.org/abs/1301.3235

Verification and Validation of Controlled Quantum Information Systems

Matthew Grace, Robert Kosut, and Constantin Brif Sandia National Laboratories & SC Solutions, Inc.

SC SOLUTIONS

Robust Control Design

For quantum information systems, a *robust optimization problem* that we often want to solve can be expressed as

$$\max_{\theta} \min_{\delta} \mathcal{F}[\theta, \delta]$$

subject to $\theta \in \Theta$ and $\delta \in \Delta$

 $\mathcal{F}[heta,\delta] = |\mathrm{Tr}(U[heta,\delta]V^\dagger)|, \,\,$ quantum gate fidelity

 $U[heta,\delta]$: actual unitary operation; V: target unitary operation

 δ : uncertain and stochastic parameters; Δ : corresponding set

 θ : control and design parameters; Θ : corresponding set

Caveat emptor: This is often not a convex optimization problem!

Robust Control Design

- Robust control and optimization of uncertain systems are essential in science and engineering.
- QIP requires an unprecedented degree of control!
 - Active area of research
 - Many control protocols involve some form of numerical optimization
 - High-fidelity results are possible, e.g., $1 \mathcal{F} \in [10^{-6}, 10^{-4}]$, which is "1" for most engineering problems, but not QIP!

Sequential Convex Programming

Initialize

Initialize control: $\theta \in \Theta \subseteq \mathbf{R}^N$; Sample uncertainties: $\delta_i \in \Delta$;

Set trust region: $\tilde{\Theta} \subseteq \mathbf{R}^N$

Repeat

1. Calculate fidelities, gradients, and Hessians with respect to θ :

$$\mathcal{F}[\theta, \delta_i], \quad \nabla_{\theta} \mathcal{F}[\theta, \delta_i], \quad \nabla_{\theta}^2 \mathcal{F}[\theta, \delta_i]$$

2. Solve convex optimization for $\tilde{\theta}$ using linearized fidelity:

$$\max_{\tilde{\theta}} \ \min_{\delta_i} \ \mathcal{F}[\theta, \delta_i] \ + \ (\nabla_{\theta} \mathcal{F}[\theta, \delta_i])^{\mathrm{T}} \, \tilde{\theta} \ - \ \tilde{\theta}^{\mathrm{T}} \nabla_{\theta}^2 \mathcal{F}[\theta, \delta_i] \tilde{\theta}/2$$
 subject to $\theta + \tilde{\theta} \in \Theta$ and $\|\tilde{\theta}\|_{\infty} \leq \tilde{\Theta}$

3. Update

IF
$$\min_{i} \mathcal{F}(\theta + \tilde{\theta}, \delta_{i}) > \min_{i} \mathcal{F}(\theta, \delta_{i})$$

THEN $\theta \leftarrow \theta + \tilde{\theta}$ and increase trust region $\tilde{\Theta}$

ELSE decrease trust region Θ

Until Convergence criteria satisfied

Sequential Convex Programming

Incorporates convex constraints exactly, e.g.,

magnitude:
$$\theta_{\min} \leq \theta(t) \leq \theta_{\max}, \quad 0 \leq t \leq T$$
 fluence: $\int_0^T \theta^2(t) dt \leq \alpha$ area: $\int_0^T |\theta(t)| dt \leq \beta$ slew rate: $\left|\frac{d\theta(t)}{dt}\right| \leq \gamma, \quad 0 \leq t \leq T$

- Incorporates uncertainties and stochasticity by sampling, e.g.,
 - An uncertain coefficient ω : $\delta = [\omega_1, \ \omega_2, \cdots]^{\mathrm{T}}$
 - A stochastic process Ω : $\delta(t) = [\omega_1(t), \ \omega_2(t), \cdots]^{\mathrm{T}}$

Robust Quantum Gates

$$H(t) = \underbrace{\omega_x \sigma_x}_{10\%} + C(t) \underbrace{\omega_z \sigma_z}_{10\%} \longrightarrow \underbrace{\dot{U}(t)}_{10\%} = -\mathrm{i}H(t)U(t)$$

V&V of Controlled QI Systems

- Characterization: Determining dynamics, qualities, properties, etc. of devices, models, etc.
- Fault detection, isolation, and recovery (e.g., QEC)
- Model calibration versus prediction
- Verification: "Did you build it correctly?"
- Validation: "Did you build the correct thing?"
- State/process determination versus validation

State and Process Tomography

Quantum state tomography

- One qubit:
$$ho = \left(\mathcal{I} + \vec{r} \cdot \vec{\sigma}\right)/2$$

- Bloch sphere measurements: $\langle \sigma_i \rangle = \text{Tr}(\rho \sigma_i) = r_i$
- Quantum process tomography: identify the process via state tomography:

$$\left\{\rho_j^{\mathrm{in}}\right\}_{j=1}^{d^2} \longrightarrow$$

 $\left\{ \rho_{j}^{\mathrm{in}} \right\}_{j=1}^{d^{2}} \longrightarrow \begin{array}{c} \text{Quantum-mechanical dynamical "black box"} \end{array}$

CPTP map

$$\rho_j^{\text{out}} = \sum_k A_k \rho_j^{\text{in}} A_k^{\dagger}$$

Perform state tomography on each output state: d²-1 measurements!

State to Process Tomography

- 1. Perform tomography on states $\left\{\rho_{j}^{\mathrm{out}}\right\}_{j=1}^{d^{2}}$
- 2. Expand output density matrices:

$$\rho_j^{\text{out}} = \sum_k A_k \rho_j^{\text{in}} A_k^{\dagger} = \sum_{\alpha,\beta} \chi_{\alpha\beta} \sigma_{\alpha} \rho_j^{\text{in}} \sigma_{\beta}^{\dagger} = \sum_k r_{jk} \sigma_k$$

3. Expand basis operators

$$\sigma_{\alpha}\rho_{j}^{\mathrm{in}}\sigma_{\beta}^{\dagger} = \sum_{k} \xi_{jk}^{\alpha\beta}\sigma_{k}$$

4. Combine expressions 2 and 3

$$\rho_{j}^{\text{out}} = \sum_{k} r_{jk} \sigma_{k} = \sum_{k} \sum_{\alpha,\beta} \chi_{\alpha\beta} \xi_{jk}^{\alpha\beta} \sigma_{k} \implies R = X\Xi$$

State Tomography Estimators

$$\rho = \left(\mathcal{I} + \vec{r} \cdot \vec{\sigma}\right)/2 \quad \longrightarrow \quad \rho = \left(\mathcal{I} + \vec{s} \cdot \vec{\lambda}\right)/d$$
 Multiqubit state

• Least-squares approach: $\mathcal{O}(d^2)$

$$\min_{
ho} \sum_{j} \left[m_j - ext{Tr}(\mathcal{O}_j
ho)
ight]^2$$
 , where $ec{M}$: measurements

subject to
$$Tr(\rho) = 1$$
 and $\rho \ge 0$

• Compressed-sensing approach: $\mathcal{O}(R_{\rho}d\log(d))$

$$\min_{\tilde{\rho}} \operatorname{Tr}(\tilde{\rho})$$
, where $\rho = \tilde{\rho}/\operatorname{Tr}(\tilde{\rho})$

subject to
$$\min_{\tilde{\rho}} \sum_{j} \left[m_j - \mathrm{Tr}(\mathcal{O}_j \tilde{\rho}) \right]^2 \leq \varepsilon$$
 and $\tilde{\rho} \geq 0$

Limitations of Tomography

 Scaling of measurements required is exponential in the number of qubits:

$$d^2 \Rightarrow 4^{n_{\rm q}} \text{ (QST)}; d^4 - d^2 \Rightarrow 16^{n_{\rm q}} - 4^{n_{\rm q}} \text{ (QPT)}$$

- Conventional state and process tomography assumes high-fidelity measurements and preparations.
- Most technologies (except optics) do not have a full reference frame (e.g., independent calibrated X, Y, Z axes on the Bloch sphere). There may only be 1 preparation and 1 measurement operation.

QPT via Parameter Estimation

- Nonlinear mapping of Hamiltonian to process matrix in general, so certain conditions must be satisfied:
 - Use some knowledge of the underlying dynamics (Hamiltonian form: couplings, commutativity, etc.).
 - Sparsity: Number of Hamiltonian parameters may be much smaller than the elements of the process matrix.
 - M. Branderhorst et al., NJP, **11** (2009) A. Shabani et al., PRA, **84** (2011)
- Optimal Hamiltonian identification: Combining optimal control data and efficient data inversion
 - J. Geremia & H. Rabitz, PRL, **89** (2002) J. Geremia & H. Rabitz, PRA, **70** (2004)

Randomized Benchmarking

"Twirling", i.e., $\int_{U(d)}\!\!\!U \Lambda \left(U^\dagger \rho U\right) U^\dagger dU$, transforms Λ uniquely to

a depolarizing channel Λ_d with the same average fidelity as Λ :

$$\Lambda_{\rm d}(\rho) = p\rho + (1-p)\mathcal{I}/d,$$

where
$$\bar{\mathcal{F}}\left(\Lambda,\mathcal{I}\right)=\bar{\mathcal{F}}\left(\Lambda_{\mathrm{d}},\mathcal{I}\right)=p+(1-p)/d$$
,

and
$$\mathcal{F}_{
ho}\left[\mathcal{E}_{1},\mathcal{E}_{2}
ight]=\left[\mathrm{Tr}\sqrt{\sqrt{\mathcal{E}_{1}(
ho)}\mathcal{E}_{2}(
ho)\sqrt{\mathcal{E}_{1}(
ho)}}
ight]^{2}$$
.

Objective: Estimate p while addressing the limitations of QPT.

Randomized Benchmarking

However, |C| grows exponentially with the number of qubits!

Protocol

1. For $m \leq M$, generate K_m random Clifford gate sequences:

$$S_{km}(\rho) = \frac{1}{m} \sum_{j=1}^{m} C_j \Lambda \left(C_j^{\dagger} \rho C_j \right) C_j^{\dagger}$$

2. Measure the "survival probability" (sequence fidelity):

$$F_{km} = \text{Tr}\left[E_{\psi}S_{km}(\rho)\right], \text{ where } E_{\psi} = \rho = |\psi\rangle\langle\psi| \text{ ideally}$$

- 3. Calculate average sequence fidelity F_m
- 4. Repeat for different values of m and fit results to fidelity model

E. Magesan et al., PRA, **85** (2012)

V&V of Controlled QI Systems

- Improved tomography via machine learning
- What are the tools for QMU, UQ, and V&V of quantum systems?
- Development of methods for efficient simulation of quantum systems, e.g., surrogates
- What are the roles of device and model/software V&V for controlled QI systems?
- What are the relevant validation metrics?
- What is the role of Hamiltonian estimation?