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the big picture I

Giulia Gualdi Renormalization approach to open quantum system dynamics

In a realistic set up a quantum system can never be fully isolated from its
surrounding environment ⇒ it is an open quantum system

⇒decoherence must be accounted for any time one aims at a realistic
understanding or manipulation of a quantum system

(e.g. quantum optimal control QOC, implementation of quantum
technologies)

⇒it is fundamental to have a reliable way of simulating open system
dynamics starting from a microscopical picture

”traditional” approach to open system dynamics:

retain minimal info about the environment E and formulate an equation in
terms of a superoperator acting on ρS(t) = TrEρ(t)

⇒ simulate the open system dynamics via a Master Equation
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the big picture II

Giulia Gualdi Renormalization approach to open quantum system dynamics

Main limits of the ”traditional” approach:

in general applicable only under Markovian or close-to-Markovian
noise approximation (perturbative approach)
⇒ weak S-E coupling, drastic assumptions on the bath (in general as soon as it

has non-trivial structure fail to be fulfilled)

⇒what to do with a spin bath? (in general no straightforward characterization via
a spectral density, no clear a priori characterization of Markovian/non-Markovian,
no analytical correlation functions, strong S-E coupling)

not a controllable approximation

Why do we care about non-Markovian dynamics?

interesting non-Markovian quantum systems (e.g. strong SE
interaction and/or spin bath)
solid-state devices for quantum computation and information (G. De Lange et al., Science 330,

60 (2010); H. Bluhm et al., Nature Phys. 7, 109 (2010),...), light-harvesting complexes (J. Prior, A. W. Chin, S.

F. Huelga, M. B. Plenio, PRL 105, 050404 (2010); F. Caruso, S. Huelga, M. Plenio PRL 105, 190501 (2010); M. Sarovar, A.

Ishizaki, G. R. Fleming, K. B. Whaley, Nature Phys. 6, 462 (2010),...), etc...

controllability is expected to be better for non-Markovian systems due
to information backflow
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observations and conjectures

Giulia Gualdi Renormalization approach to open quantum system dynamics

Observation:

in very different contexts numerical simulations of non-Markovian
dynamics based on truncating the number of environmental modes often
show that a comparatively small number of modes is sufficient to reach
converged results
(R.Baer, R. Kosloff JCP 106 8862 (1997); C.P.Koch,T.Klüner,H.J.Freund, R.Kosloff PRL 90 117601 (2003); H.J. Hogben, P.Hore, I.Kuprov,
JCP 132 174101 (2010), K.H.Hughes, C.D. Christ, I.Burghardt, JCP 131 024109 (2009),.... )

Conjecture:

it takes time to establish correlations between system and environment

⇒ the system interacts progressively with the environment

⇒ it is a quite general feature of quantum dynamics.

In this talk:

prove the conjecture

identify the necessary ingredients for an accurate and efficient simulation of
open quantum systems

General philosophy: system-bath unitary dynamics + renormalization
group VS system non-unitary dynamics + a priori assumptions on the bath
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Outline

Giulia Gualdi Renormalization approach to open quantum system dynamics

discrete environments/local interactions ⇒ quasi-locality of
quantum dynamics

continuous environments/non-local interactions ⇒ quasi-finite
resolution of quantum dynamics

correspondence between discrete and continuous environments

⇒ time-induced renormalization of system-environment
interaction
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Quasi-Locality of quantum
dynamics

Giulia Gualdi Renormalization approach to open quantum system dynamics



discrete environments: microscopic model

Giulia Gualdi Renormalization approach to open quantum system dynamics

system-bath Hamiltonian

Ĥ = ĤS +

N int
S∑

i=1

N int
B∑

j=1

Φ̂SB
ij +

NB∑
i≤j=1

Φ̂B
ij

with Φ̂ij =
∑dim(B(Hi ))−1
µ=0

∑dim(B(Hj ))−1

ν=0 Jµνij Ôµi Ô
ν
j and N int

S ≤ NS ;N int
B ≤ NB →∞.

Our goal is to truncate the sums over the environmental DOF in a
well-defined manner

⇒ we need to quantify the influence of the DOF upon each other

⇒ we need to introduce a metric.
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Hamiltonian-graph correspondence

Giulia Gualdi Renormalization approach to open quantum system dynamics

Hilbert space: Htot ⇐⇒ graph

G (N,E )

{
N = {nodes : NS + NB}
E = {edges : Jµνij 6= 0 for anyµ, ν}

Adjacency matrix: A with Aij =

{
1 if Jµνij 6= 0 for anyµ, ν

0 if Jµνij = 0

Example: physical lattice = one dimensional chain

1 2 3 4 5 6 · · ·

H =
∑

i JÔi Ôi+1

1 2 3 4 5 6 · · ·J J J J J J

H =
∑

i (J1Ôi Ôi+1 + J2Ôi Ôi+2)

1

2

3

4

5

6

· · ·

· · ·
J1

J2
J1

J1 J1
J1 J1

J2 J2 J2

J2 J2
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1

2

3

4

5

6

· · ·

· · ·
J1

J2
J1

J1 J1
J1 J1

J2 J2 J2

J2 J2



Hamiltonian-graph correspondence

Giulia Gualdi Renormalization approach to open quantum system dynamics

Hilbert space: Htot ⇐⇒ graph

G (N,E )

{
N = {nodes : NS + NB}
E = {edges : Jµνij 6= 0 for anyµ, ν}

Adjacency matrix: A with Aij =

{
1 if Jµνij 6= 0 for anyµ, ν

0 if Jµνij = 0

Example: physical lattice = one dimensional chain

1 2 3 4 5 6 · · ·

H =
∑
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1 2 3 4 5 6 · · ·J J J J J J

H =
∑
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Giulia Gualdi Renormalization approach to open quantum system dynamics

weight matrix on G: Jij = (
∑
µν [Jµνij ]2)1/2 with i , j = 1, · · · ,NS + NB

(remove indices of internal degrees of freedom)

walk of length n on G:

all walks of length n on G:
1

2J12 J23

3
1

2J12 J24

J13

J34

3

4J23

πn(i , j) = [i = i0, i1, · · · , in = j ]

weight:
∏n

k=0 Jik ,ik+1

Πn(i , j) =
∑
πn(i , j)

weight: w(Πn(i , j)) = [Jn]ij

metric d on G: shortest path between two nodes

d(i, j) := min{n ∈ N0 : [An]i,j 6= 0}

⇒ reorder bath DOF according to their distance from the system S

Ĥ =
∞∑
d=0

(
ĥd + ĥd,d+1

)
(ĥ0 = ĤS , ĥ01 = ĤSB),

ĥd interactions within same layer, ĥd,d+1 between two successive layers
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system dynamics

Giulia Gualdi Renormalization approach to open quantum system dynamics

Generic system operator ÂS evolves as

ÂS(t) = e i ĤtÂSe
−i Ĥt = ÂS +

∞∑
d=1

(−it)d

d!
Ĉd

with Ĉd = [Ĥ, Ĉd−1] and Ĉ0 = ÂS .

Ĉd has non-vanishing commutators only with terms in Ĥ up to ĥd,d+1

⇒ at nth perturbative order

Ĉn = [Ĥ, Ĉn−1] ≡ [Ĥn, Ĉn−1] with Ĥn =
n−1∑
d=0

(
ĥd + ĥd,d+1

)
the truncation of the full generator Ĥ to the first n layers of the graph.

truncation of Ĥ ≡ truncation of perturbative expansion

DOF at distance n from S contribute only from the nth perturbative order
⇒ system dynamics appreciably affected only when corresponding
perturbative term is non-negligible.
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ÂS(t) = e i ĤtÂSe
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∞∑
d=1

(−it)d

d!
Ĉd
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n−1∑
d=0

(
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to be more quantitative:Lieb-Robinson bound Comm. Math. Phys.28,251 (1972)

Giulia Gualdi Renormalization approach to open quantum system dynamics

Error made by replacing Ĥ by the truncated generator = remainder of the
series ∥∥∥ÂS(t)− Ân

S(t)
∥∥∥ ≤ ∥∥∥ÂS

∥∥∥ ∞∑
d=n+1

(2tO)d

d!

∑
i,j∈Id

[Jd ]ij

where O = max(i,j)∈N;µ,ν

∥∥∥Ôµi Ôνj ∥∥∥ and Id = {i ∈ N : d(s, i) ≤ d} the set of DOF at

distance at most d from S.

if each DOF interacts with a finite number of other DOF (local finiteness)
⇒∑

i,j∈Id [Jd ]ij ≤ (c̄2‖J‖)d (c̄ = maximum vertex degree of G)⇒ the sum can
be bounded

⇒ Lieb-Robinson bound∥∥∥ÂS(t)− Ân
S(t)

∥∥∥ ≤ ∥∥∥ÂS

∥∥∥ e−(n−vt) (1)

with v = 2Oc̄2‖J‖e

Bath DOF outside of the effective light cone give only an
exponentially vanishing contribution to ÂS(t). The full bath is
needed only in the limit of infinite time.
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Quasi-finite resolution of
quantum dynamics

Giulia Gualdi Renormalization approach to open quantum system dynamics



continuous environments:microscopic model

1
besides for normal modes (Prior, Chin, Huelga,Plenio PRL 105, 050404 (2010))

Giulia Gualdi Renormalization approach to open quantum system dynamics

Hamiltonian of a central system interacting with a continuous
environment

Ĥ = ĤS + Ô I
S

∫ xmax

0

J(x)
(
ĉx + ĉ†x

)
dx

+2

∫ xmax

0

∫ xmax

x

K (|x − x ′|)
[
cxc
†
x′ + c†x cx′

+c†x ĉxc
†
x′ ĉx′

]
dx dx ′ +

∫ xmax

0

g(x)ĉx ĉ
†
x dx ,

x = relevant bath variable, xmax <∞ finite cut-off, and Ô I
S = generic system operator,

‖c‖ = maxx∈[0,xmax ] ‖ĉx‖ <∞

problem: S interacts with all bath DOF which all may interact among
themselves (non-local interactions) ⇒ graph with all nodes at distance 1
from S ⇒ in general no LR bound 1

general applicable bound for continuous environments using the idea of the
’surrogate Hamiltonian’ (Baer, Kosloff, JCP 106,8862 (1997))
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the surrogate generator

Giulia Gualdi Renormalization approach to open quantum system dynamics

Sequence of n sampling points: {xi}n−1
i=0 , in [0, xmax ], with xi < xi+1

⇒ partition Pn = {δxi} with δxi = xi+1 − xi , |Pn| = maxi<n(δxi )

⇒ sequence of partitions {Pn} with |Pn+1| < |Pn|
⇒ sequence of Hamiltonians {ĤPn} with

ĤPn = ĤS + Ô I
S

n−1∑
i=0

J̃i (ĉi + ĉ†i ) +

2
n−1∑
i<j=0

K̃ij

[
ĉ†i ĉj + ĉ†j ĉi + ĉ†i ĉi ĉ

†
j ĉj
]

+
n−1∑
i=0

g̃i ĉ
†
i ĉi ,

ĉi = ĉxi , J̃i = J(xi )δxi , K̃ij = K (|xi − xj |)δxiδxj , and g̃i = g(xi )δxi rescaled
couplings at the n sampling points

truncation + rescaling ⇒ ĤPn = Riemann sums built on Pn approximating
Ĥ ⇒ limn→∞ ĤPn = Ĥ
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†
j ĉj
]

+
n−1∑
i=0

g̃i ĉ
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i ĉi ,
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†
j ĉj
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ĤPn = ĤS + Ô I
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ĉi = ĉxi , J̃i = J(xi )δxi , K̃ij = K (|xi − xj |)δxiδxj , and g̃i = g(xi )δxi rescaled
couplings at the n sampling points
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2
n−1∑
i<j=0

K̃ij

[
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Ĥ ⇒ limn→∞ ĤPn = Ĥ



the surrogate generator

Giulia Gualdi Renormalization approach to open quantum system dynamics

Sequence of n sampling points: {xi}n−1
i=0 , in [0, xmax ], with xi < xi+1

⇒ partition Pn = {δxi} with δxi = xi+1 − xi , |Pn| = maxi<n(δxi )

⇒ sequence of partitions {Pn} with |Pn+1| < |Pn|
⇒ sequence of Hamiltonians {ĤPn} with
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2
n−1∑
i<j=0

K̃ij

[
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finite-resolution of quantum dynamics
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error made by time evolving ÂS using ĤPn instead of Ĥ

R(Pn) = ‖ÂS(t)− Â
HPn

S (t)‖ ≤ R1(Pn) + R2(Pn)

R1(Pn) = error made in assuming Ĥ and ĤPn to commute

⇒ at finite t vanishes for n→∞ due to the convergence of Riemann

sums as t2
∥∥∥[Ĥ, ĤPn ]

∥∥∥
R2(Pn) = distance between ÂS and its evolution under Ĥ − ĤPn .

quasi-finite resolution of quantum dynamics∥∥∥ÂS(t)− Â
HPn

S (t)
∥∥∥ ≤ R1(Pn) +

∥∥∥ÂS

∥∥∥(e2‖Ĥ−ĤPn‖t − 1
)
,

for t <∞ the system cannot resolve the full continuum of environmental
modes

⇒ within arbitrary accuracy a surrogate description can be used and
infinitely close bath modes can be dropped.
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∥∥∥
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HPn

S (t)‖ ≤ R1(Pn) + R2(Pn)

R1(Pn) = error made in assuming Ĥ and ĤPn to commute
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few observations

upper bounds to the error made by replacing the full generator, Ĥ,
by an effective one, Ĥn or ĤPn

The bounds are general i.e. very conservative:

In some specific cases, tighter model-dependent bounds can be derived

(Burrell,Osborne PRL 99, 167201 (2007)) and for certain classes of initial states, the scaling with

time can be dramatically reduced (Hastings PRB 77, 144302 (2008); Eisert, Cramer,Plenio RMP 82 (2010))

Extension of the bounds to k-linear interactions straightforward

extension to unbounded operators, only for certain classes of
operators (Cramer, Serafini, Eisert in ”Quantum information and many body quantum systems”, pp 55-72 (2008);

Nachtergaele et al, Rev. Math.Phys. 22, 207 (2010))
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Correspondence between

discrete and continuous

environments
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discrete bath

infinite layers ⇒ truncation

continuous bath

single layer ⇒ truncation + rescaling

system-bath coupling = weight JSB of the paths needed by the
system to explore all of the environment.

continuous environments: JSB =
∫ xmax

0
J(x)dx → finite because the

support of the integral is finite

discrete environments: JSB =
∑∞

n=0

∑
j :d(s,j)=n[Jn]sj → local

finiteness ⇒ JSB can be made finite by rescaling the coupling matrix
i.e. by penalizing longer paths

(the dynamics in Hilbert space remains unaffected since any rescaling of the

coupling matrix is cancelled out by a corresponding rescaling of time)

local finiteness ⇔ finite cut-off

infinitely long paths ⇔ infinitely close modes
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time naturally induces a dynamical renormalization over the
system-bath interaction

⇒ the bounds provide a recursive update rule for the effective generators

S

t1, Ĥ1

t2, Ĥ2

t3, Ĥ3

· · ·· · ·
∞, Ĥ

1

ĥ1
ĥ12

ĥ2

ĥ23

ĥd,d+1

ĥ3

Jsj

Jij

Jij

Jij Jij

Jij

23

4

5

6

9

8

10

7

11

12

13

14

15

16

17

18

· · ·· · ·

· · ·· · ·

· · ·· · ·

· · ·· · ·

· · ·· · ·

· · ·· · ·

· · ·· · ·
discrete environment:

bound + accuracy = number of
bath modes as function of time
n = n(t)

running coupling =

J̃ (n(t)) =
∑n(t)

d=0

∑
j :d(s,j)=d

[
J̃d
]
sj

(effective system-bath coupling)

renormalization flow =

limt→∞ J̃ (n(t)) = J̃SB

x

0

xmax

S

t1, Ĥ(P1) t2, Ĥ(P2) t3, Ĥ(P3) ∞, Ĥ

xi

continuous environment:

bound + accuracy = number of
bath modes/partition mesh as
function of time |Pn| = |Pn(t)|

running coupling =

J (Pn(t)) =
∑

i∈Pn(t)
J(xi )δxi

(effective system-bath coupling =
Riemann sums)

renormalization flow =

limt→∞ J (Pn(t)) = JSB
(convergence of Riemann sums)
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ĥ1
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t2, Ĥ2
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ĥ2
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computational cost & co.
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from infinite to finite Hilbert space:

⇒ Suzuki-Trotter

⇒ efficient simulation on quantum computer (polynomial in t and
number of effective DOF)

classical computer:

still in principle exponential resources in number of effective DOF
(state needs to be stored)

⇒ in general need further controlled restrictions of the size of the
effective Hilbert (e.g. t-DMRG, restriction of excitation
subspaces,etc)

controllable approx ⇒ exponential scaling (in # of effective DOF)

uncontrollable approx ⇒ constant scaling (no bath DOF)
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time-induced dynamical renormalization of S-E interaction

⇒ the reduced dynamics of an arbitrary open quantum system can be
obtained reliably and accurately, employing a finite-dimensional
effective Hamiltonian

The required renormalizability condition, locality of the interactions
for discrete environments and finite support of the interactions for
continuous environments, is generally fulfilled

(quasi-locality + quasi-finite resolution) of quantum dynamics

= worst case computational cost of truncation-based algorithms for
non-Markovian dynamics +a priori certification of accuracy vs
computational complexity.

(many-body remark) a generalized notion of approximate locality
holds also for non-local interactions:

renormalizability seems a more general concept than locality

question: general strategies to prolong convergence times?

( e.g. more general effective Hilbert space truncation schemes, characterization of the
portion of Hilbert space explored by the open system dynamics, embedding in a
secondary Markovian bath, etc...)

what I did not talk about (but I’d be happy to discuss):

efficient characterization of quasi-unitary quantum operations

QOC functionals for open system dynamics

quantum process tomography/quantum device characterization
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