CONTROLLING QUANTUM PHYSICS

in Superconducting Circuits

Göran Johansson Chalmers University of Technology

KITP workshop on Control of Complex Quantum Systems 10th of January 2013

Photon Routing, Anti-bunching and Parity Measurement

An LC-oscillator in the microwave regime

 $f=5 \text{ GHz} -> hf / k_{B} = 240 \text{ mK}$ Low temperatures needed!

- A QM harmonic oscillator:
- Quantized Amplitudes
- Zero point motion

An LC-oscillator in the microwave regime

Low temperatures – also with microwave equipment installed

Resistance / dissipation gives level broadening -> Minimize dissipation!

A QM harmonic oscillator:

- Quantized Amplitudes
- Zero point motion

An LC-oscillator in the microwave regime

Low temperatures – also with microwave equipment installed

Resistance / dissipation gives level broadening -> Minimize dissipation!

Nonlinearity needed for quantum effects in average quantities.

- A QM harmonic oscillator:
- Quantized Amplitudes
- Zero point motion

THE JOSEPHSON JUNCTION

ELECTRICAL CIRCUITS -> CLASSICAL MECHANICS

Simplest circuit: A current biased Josephson junction

$$I_b = I_0 \sin\left(2\pi \frac{\Phi(t)}{\Phi_0}\right) + C_J \ddot{\Phi}(t)$$

Kirchoff's rules <->

Dynamics of a fictitious phase particle with coordinate φ and mass C_J moving in a "tilted washboard" potential

ELECTRICAL CIRCUITS -> CLASSICAL MECHANICS

Simplest circuit: A current biased Josephson junction

$$C_J \ddot{\Phi} = I_b - I_0 \sin\left(2\pi \frac{\Phi(t)}{\Phi_0}\right)$$

Kirchoff's rules <->

Dynamics of a fictitious phase particle with coordinate φ and mass C_J moving in a "tilted washboard" potential

CLASSICAL MECHANICS -> QUANTUM MECHANICS

Eqs of motion -> Lagrangian -> Hamiltonian

Kinetic energy Potential energy

 $U(\Phi) = -I\Phi + E_J \left[\cos \left(2\pi \frac{\Phi}{\Phi_0} \right) - 1 \right]$

Lagrangian

Canonical momentum

Hamiltonian
$$H = \frac{\partial L}{\partial \dot{\Phi}} \dot{\Phi} - L = \frac{p^2}{2C_J} + U(\Phi)$$

Canonical quantization

$$[\Phi, p] = i\hbar$$

 $K(\Phi) = \frac{1}{2}C_J\dot{\Phi}^2$

L = K - U

 $p = \frac{\partial L}{\partial \dot{\Phi}}$

Quantum Network Analysis: Yurke and Denker PRA 1984 Devoret, Les Houches 1997

Classical -> Quantum

$$E_J = \frac{\Phi_0}{2\pi} I_0$$

The quantum description *is relevant*. MQT experiment: Devoret, Martinis, Clarke, PRL (1985)

First superconducting qubit 1998 by Nakamura et al at NEC. Today multi-qubit algorithms in Santa Barbara, Yale, Zürich, Saclay, Also artificial atoms and circuit QED.

ARTIFICIAL ATOMS -QUANTUM BITS

- Quantized electrical circuit
- Harmonic oscillator is not a qubit
- Nonlinearity makes the circuit anharmonic and addressable
- Small JJ is a good nonlinear inductor

ARTIFICIAL ATOMS -QUANTUM BITS

- Quantized electrical circuit
- Harmonic oscillator is not a qubit
- Nonlinearity makes the circuit anharmonic and addressable
- Small JJ is a good nonlinear inductor

ARTIFICIAL ATOMS -QUANTUM BITS

- Quantized electrical circuit
- Harmonic oscillator is not a qubit
- Nonlinearity makes the circuit anharmonic and addressable
- Small JJ is a good nonlinear inductor

MICROWAVE QUANTUM OPTICS

Strong Scattering from an Artificial Atom

SINGLE-ATOM SCATTERING

- What is the maximum reflection of a single photon from a single atom in 1D?

SINGLE-ATOM SCATTERING

- What is the maximum reflection of a single photon from a single atom in 1D?

- First guess: 50% due to spontaneous emission in random direction

SINGLE-ATOM SCATTERING

- What is the maximum reflection of a single photon from a single atom in 1D?
 - First guess: 50% due to spontaneous emission in random direction
 - Fully coherent: 100% due to destructive interference in forward direction

ATOM/DIPOLE IN OPEN SPACE

G. Wrigge et al. *Nature Phys.* **4**, 60 (2008). <12% extinction M. Tey et al. *Nature Phys.* **4** 924 (2008).

Io-Chun Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, P. Delsing, *Phys. Rev. Lett.* **107**, 073601 (2011).

SECOND ORDER COHERENCE

PHOTON STATISTICS FROM SECOND ORDER CORRELATION FUNCTION

ESONN 2010 lecture

OBSERVATION OF ANTIBUNCHING

- (~ 2 TB of data, processed at ~30 MB/s for 17 hours)
- n > 1 states "filtered out"

Io-Chun Hoi, Tauno Palomaki, Göran Johansson, Joel Lindkvist, Per Delsing, C. M. Wilson, PRL (2012)

SUPERBUNCHING (>2) IN TRANSMISSION

SUPERBUNCHING (>2) IN TRANSMISSION

TWO-TONE EXPERIMENT DRIVING $|1\rangle \rightarrow |2\rangle$

Autler-Townes splitting

spectively

Operation time down to ~ 10 ns

Operation time down to ~ 10 ns

MULTIPLE OUTPUT SINGLE-PHOTON ROUTER

Io-Chun Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, P. Delsing, *Phys. Rev. Lett.* **107**, 073601 (2011).

SINGLE PHOTON ROUTER AND SECOND ORDER COHERENCE

Io-Chun Hoi

Tauno Palomaki, Chris Wilson now NIST, Boulder

Per Delsing

Two longer papers submitted to NJP: arXiv:1210.4303, arXiv:1210.2264

(Router)

Borja Peropadre, CSIC, Madrid

(Coherence)

Joel Lindkvist

SINGLE ATOM CROSS-KERR EFFECT

11 degrees phase shift when both control and probe fields are at single photon levels.

Compare: Venkataraman *et al.* Nature Photonics (2012) 0.017 degrees using hollow core optical fibre filled with rubidium atoms

Io-Chun Hoi, C. M. Wilson, G. Johansson, T. Palomaki, T. M. Stace, B. Fan, P. Delsing, *arXiv*:1207.1203

SINGLE ATOM CROSS-KERR EFFECT

Unfortunately NOT suitable for detecting single microwave photons. Even if you use many transmons.

Bixuan Fan, Anton F. Kockum, Joshua Combes, Göran Johansson, Io-chun Hoi, Christopher Wilson, Per Delsing, G. J. Milburn, Thomas M. Stace, arXiv:1210.0991 accepted for publication in PRL.

QUANTUM-STATE FILTER $|\Phi_{in}\rangle = a_0 |0\rangle + a_1 |1\rangle + a_2 |2\rangle + \dots$

$$|\Phi_R\rangle = r_0 |0\rangle + r_1 |1\rangle \qquad |\Phi_T\rangle = t_0 |0\rangle + t_2 |2\rangle + t_3 |3\rangle \dots$$

- Atom preferably reflects 1-photon state
- Input coherent state converted to nonclassical state
- Possibly a versatile single photon source

Chang *et al.*, Nature Physics (2007) H. Zheng *et al*, Physical Review A (2010)

SCATTERING CONCLUSIONS

Observed 99.6% extinction of forward scattering

* Verified switching on 10 ns timescale

Observed antibunching (limited by detection)

Observed Giant Cross-Kerr effect

* No-Go for single photon detection by cross-Kerr

FEEDBACK-ASSISTED PARITY MEASUREMENT IN CIRCUIT QED

Lars Tornberg, Göran Johansson, PRA (2010) Anton Frisk Kockum, Lars Tornberg, Göran Johansson, PRA (2012)

PARITY MEASUREMENT IN CIRCUIT QED

Coherent probe on resonator with qubits

Dispersive regime: qubit state shifts resonator frequency

Phase shift of the probe

$$H_{\text{eff}} = \left[\Delta_r + \chi \left(\sigma_z^{(1)} - \sigma_z^{(2)}\right)\right] a^{\dagger}a + \left(a\epsilon_m^* + a^{\dagger}\epsilon_m\right)$$

CAVITY AMPLITUDE

HOMODYNE DETECTION

STRONG MEASUREMENT

Strong homodyne measurement project on Quadrature

$$|ge\rangle|\alpha_{ge}\rangle + |eg\rangle|\alpha_{eg}\rangle \Rightarrow e^{i\phi(x)}|ge\rangle + e^{-i\phi(x)}|eg\rangle$$

"A symmetry analyzer for non-destructive Bell state detection using EIT", S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, Phys. Rev. A **71**, 060302(R) (2005).

STRONG MEASUREMENT

Strong homodyne measurement project on Quadrature

$$|ge\rangle|\alpha_{ge}\rangle + |eg\rangle|\alpha_{eg}\rangle \Rightarrow e^{i\phi(x)}|ge\rangle + e^{-i\phi(x)}|eg\rangle$$

"A symmetry analyzer for non-destructive Bell state detection using EIT", S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, Phys. Rev. A **71**, 060302(R) (2005).

The stochastic phase $\phi(x)$

is given by the measurement result.

CONTINUOUS MEASUREMENT

We model continuous measurement with a stochastic master equation

$$d\rho_c = \mathcal{L}_{\text{tot}}\rho_c \, dt + \sqrt{\kappa\eta} \mathcal{M}[ae^{-\phi}]\rho_c dW(t)$$

Solution: The initial state always works!

$$\frac{|ge\rangle + |eg\rangle}{\sqrt{2}}$$

(Can be shown analytically.)

CONTINUOUS MEASUREMENT

We model continuous measurement with a stochastic master equation

$$d\rho_c = \mathcal{L}_{\text{tot}}\rho_c \, dt + \sqrt{\kappa\eta} \mathcal{M}[ae^{-\phi}]\rho_c dW(t)$$

The stochastic phase can be determined from stateestimation, i.e. knowing the initial state and determine dW(t) from the measurement record. But the initial state is unknown???

Solution: The initial state always works!

$$\frac{|ge
angle + |eg
angle}{\sqrt{2}}$$

(Can be shown analytically.)

PERFECT MEASURMENT -> NO DEPHASING

• Extracting information about the phase kicks

• All photons must be let out from the resonator

- The measurement-induced dephasing can be completely undone
- Not completely unrealistic experimentally

THE FIRST REPORT ON EXPERIMENTAL OBSERVATION OF THE DYNAMICAL CASIMIR EFFECT

C.M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J.R. Johansson, T. Duty, F. Nori & P. Delsing, Nature **479**, 376-379 (2011)

SUMMARY

• Superconducting circuits is a playground for quantum physics.

• Artificial atoms in 1D transmission line

• Anti-bunching, photon-routing, cross-Kerr, (no) photon detection

• Feedback-assisted parity measurement in circuit QED

SUMMARY

• Superconducting circuits is a playground for quantum physics.

• Artificial atoms in 1D transmission line

• Anti-bunching, photon-routing, cross-Kerr, (no) photon detection

• Feedback-assisted parity measurement in circuit QED

Thank you for your attention!