(Sub)femtosecond control of electron dynamics in atoms, molecules and nanostructures

Matthias Kling

Attosecond Imaging Group, http://www.attosecondimaging.com

J.R. Macdonald Laboratory, Kansas-State University, USA Max-Planck Institute of Quantum Optics, Germany <u>Postdocs:</u> Sergey Zherebtsov Irina Znakovskaya

Visiting Scientist: Ali Alnaser

Researchers

PhD students: Benjamin Förg Harald Fuest Matthias Kübel Hui Li Lauryna Lötscher*

Yubaraj Malakar* Jeff Powell* Frederik Süßmann Aram Vajdi* Undergraduates:

Josh Hargis* Thomas Pischke Adam Ramm Philipp Rupp Johannes Schötz Johannes Stierle Adam Summers*

*co-advised

Former coworkers: Kelsie Betsch, Boris Bergues, Oliver Herrwerth, Sarah Stebbings, Thorsten Uphues, Zhenhua Wang*, Adrian Wirth*

JRML, Kansas State University

I. Ben-Itzhak, B. Esry, L. Cocke, V. Kumarappan, C.D. Lin, A. Rudenko, C. Trallero, U. Thumm

LMU/MPQ Munich

A. Apolonskiy, P. Hommelhoff, U. Kleineberg, F. Krausz, R. de Vivie-Riedle

MPI-K Heidelberg T. Pfeifer, R. Moshammer, J. Ullrich (now PTB)

> MBI Berlin M.J.J. Vrakking

FSU Jena

G.G. Paulus

Georgia State University

M.I. Stockman

FSU Berlin

C. Graf, J. Plenge, E. Rühl

Rostock University

T. Fennel, K.-H. Meiwes-Broer

and others ...

Courtesy: F. Krausz

intensity, frequency, polarization, pulse duration

Can the **electric field waveform** act as photonic reagent to control electronic motion?

Courtesy Philipp von den Hoff

Spatial asymmetry in HD⁺ (and H₂⁺) dissociation – controlled via CEP

CEP-controlled dissociation of HD⁺

V. Roudnev et al., PRL 93 (2004) 163601

Few-cycle laser pulses

CEP/π

Hydrogen dissociation – emission of D⁺

RMI

=> Direction of D⁺ emission is controlled by light-waveform

QM simulation of D_2^+ numerically solving the Schrödinger equation

$$i\frac{\partial\Psi(\vec{r},R;t)}{\partial t} = H\Psi(\vec{r},R;t)$$

 $\Psi(\vec{r}, R; t) \approx |g\rangle \psi_g(R; t) + |u\rangle \psi_u(R; t)$ with the electronic states $|g\rangle$ (1s σ_q) and $|u\rangle$ (2p σ_u), nuclear wave packets $\psi_{g/u}(R; t)$

Change electronic basis to one with localization left / right

Kling et al., Science 312 (2006) 246.

Hydrogen dissociation – Mechanistic picture

- 1 Ionization of D_2
- 2 Recollisional excitation
- 3 Preparation of **coherent superposition** $(1s\sigma_{g}^{+}, 2p\sigma_{u}^{+})$

Why are few-cycle pulses essential for (clear) observation of the phase dependence? Contributions from consecutive half-cycles with opposite sign (in laser-matter interaction)

Exponential decay with pulse duration predicted by general theory:

V. Roudnev and B.D. Esry, *PRL* 99 (2007) 220406

Deuterium dissociation at 2.1 µm: D⁺ ion emission asymmetry

www.attoworld.de

I. Znakovskaya et al., PRL 108 (2012) 063002

Recollisional excitation (RCE) channel

Bond softening (BS) channel

Wavelength dependence asymmetric dissociation (BS channel)

Light waveform driven molecular dynamics

Can we extend this idea to more complex systems?

I. Znakovskaya et al., PRL 103, 053002 (2009)

- orientation-dependent ionization selection [1]
- imaging of multiple (!) molecular orbitals from which ionization took place (here HOMO + HOMO-1) [2]
- strongly coupled electron-nuclear dynamics [3]

Unraveling such effects in the NBO dynamics of complex molecules is challenging !

[1] I. Znakovskaya et al., PCCP 13, 8653 (2011); [2] P. von den Hoff et al., APB 98, 659 (2010); [3] I. Znakovskaya et al., PRL 108, 063002 (2012)

Controlling correlated electron motion: non-sequential double ionization (NSDI)

Two-electron momentum distributions from coincidence measurements

Th. Weber et al., Nature 405, 658 (2000)

Ar²⁺ above the knee

electron momenta

www.attoworld.de

=> NSDI is a good candidate to study the dynamics of correlated electrons

electron momenta

Short pulses and CEP-control:

Multiple recollisions (for long pulses) complicate the dynamics !!!
→ Short CEP-controlled pulses can confine NSDI to a single recollision event !

Energy and momentum sharing of the two electrons? Time delay between the recollision and subsequent ionization?

Plenty of theory work: e.g. A. Staudte et al., Phys. Rev. Lett. 99, 263002 (2007)

CEP-tagged coincidence experiments on correlated electron emission

Johnson et al., PRA 83, 013412 (2011); Rathje et al., JPB 45, 074003 (2012)

 \Rightarrow For each laser shot we record: ϕ and p_1, p_2 and p_i along the laser polarization direction.

B. Bergues et al., Nature Commun. 3, 813 (2012)

p₂ (a.u.)

-1

Target gas: Argon

Pulse duration: ~4 fs

Wavelength: 750 nm

Peak intensity: ~3 x 10¹⁴ W/cm²

Acquisition time: ~30 hours # of recorded Ar²⁺ ions: ~50 000

CEP integrated correlation spectrum

ww.attoworld.de

B. Bergues et al., Nature Commun. 3, 813 (2012)

CEP with maximum asymmetry in the left right Ar²⁺ ions yield

- The second electron carries high momentum, while the first electron stays close to zero
- The highest ionization probability of the second electron is reached (210 +/- 40) attoseconds before the field maximum

The calculation predicts 230 as

www.attoworld.de

B. Bergues et al., Nature Commun. 3, 813 (2012)

CEP with zero asymmetry in the left right Ar²⁺ ions yield

- If the CEP is shifted by 90°, **2 consecutive recollision** events contribute
- Both recollision events can be **distinguished** in the experiment

Controlling collective electron motion in nanostructures

Controlling electron acceleration in nanolocalized near-fields

dielectric enhancement

local trapping fields

S. Zherebtsov et al., Nature Physics 7, 656 (2011); S. Zherebtsov et al., New J. Phys., NJP 14, 075010 (2012)

Disentangle few from many-collision dynamics

2

>5 collisions

0

-2

S. Zherebtsov et al., NJP 14, 075010 (2012)

Analysis of data containing "thermal" contributions

CEP-dependence allows to obtain insight into few-cycle dynamics

Electron yield oscillates with CEP

Determine *amplitude* and *phase offset* of oscillation

 $Y(p_x, p_y) = Y_0(p_x, p_y) \times \cos(\omega t + \Delta \varphi)$

Conclusions $Light-waveform \ control \ of \ electron \ dynamics$ $CEP = 0.00 \ \pi$

Examples for the control of strong-field processes with the CEP:

- Correlated electron emission from atoms (NSDI)
- Strongly coupled electron-nuclear dynamics (beyond BO) in molecules
- Electron emission, rescattering and acceleration in nanostructures

Outlook:

- Control with arbitrary shaped waveforms, see e.g.

Wirth et al., Science **334**, 195 (2011)

- Optimal Control (using feedback for optimization)

Laboratory for Attosecond Physics (LAP) J.R. Macdonald Laboratory (JRML)

Thank you for your attention!

Deutsche Forschungsgemeinschaft

Kansas EPSCoR

