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Outline	


•  Overview of instantaneous feedback and adiaba-
tic elimination.  	


•  Instantaneous feedback and adiabatic elimina- 
tion as instances of Schur complementation. 	


•  Main results.	

•  Concluding remarks.	
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Dynamical quantum networks with 
Markovian components	


A B 

C 

A dynamical quantum network with open Markov quantum system nodes A, B, and 
C. Arrows indicate optical bosonic fields: incoming optical fields (pointing in) and 
outgoing optical  fields  (pointing out).  Equal  number  of  incoming and outgoing 
fields at each node.	
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Markovian components	


•  Each  isolated  node  assumed  to  be  an  open 
Markov  quantum system.	


•  Tracing out optical fields coupled to an isolated 
node, the density operator of the system evolves 
according  to  the  Markovian  quantum  master 
equation:	
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Finite time delays	


A B 

C 

There is a finite non-zero propagation delay for the 
optical field to travel from one node to another. Due 
to this delay the network itself is no longer Markov.	
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Instantaneous feedback (IF) limit	


A B 

C 

IF 

limit 

A B 

C 

AE-IF 

limit 

  A’ B’ 

C’ 

IF-AE 

limit 

Instantaneous feedback 

limit of interconnecting 

optical fields 

Adiabatic elimination of 

fast dynamics at the 

network level 

Adiabatic elimination of 

fast dynamics at the 

individual node level 

Instantaneous feedback 

limit of interconnecting 

optical fields 

Original quantum network 

Original quantum network 

Non-Markov quantum network	
 Single node Markov	


•  Is essentially a model reduction operation from a non-
Markov network model to a (more tractable) Markov 
model.	
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Adiabatic elimination (AE)	


•  Often  systems  have  dynamics  on  two  well-
separated time scales: slow and fast dynamics. 	


•  In the limit of infinite separation of time scales, 
fast dynamics are removed retaining only the slow 
à known in physics as adiabatic elimination.	


•  [Bouten,  van  Handel  and  Silberfarb,  J.  Func. 
Analysis, 254, 2008] gives a rigorous treatment of 
adiabatic  elimination  of  open  Markov  quantum 
systems in a quite general setting.	
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Adiabatic elimination (AE)	


•  Adiabatic elimination has proven to be extremely 
useful:	

– Model reduction by reducing the system Hilbert space 

to the smaller Hilbert space of the slow dynamics.	

– Approximate  engineering  of  “exotic”  types  of  two or 

more body couplings, e.g., 	

•  Field-quadrature measurements (Wiseman and Milburn). 	

•  Continuous parity measurement operators (Kerckhoff, Bouten, 

Silberfarb and Mabuchi).	

•  Arbitrary  linear  couplings  between  oscillator  modes  and 

traveling optical fields (Nurdin, James and Doherty). 	
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Unification	


•  Can  these  two  seemingly  distinct  model 
reduction  operations  on  a  quantum  feedback 
network be unified?	


9	




Previous work	


•  It has been shown that they can be unified for a 
special  class  of  quantum  feedback  networks 
with  fast  oscillators  [Gough,  Nurdin  & 
Wildfeuer, J. Math. Phys. 51(12), 2010].	


•  Also,  under some conditions,  for  this  special 
class the two operations can be commuted.	


•  This talk: extension of these results to a much 
more  general  class  of  quantum  feedback 
networks with Markovian components.	
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Motivation: Complex coherent-
feedback networks	
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•  Coherent three qubit bit-flip QEC network [Kerckhoff 

et al, PRL 105, 040502, 2010]. 	




Motivation: Complex coherent-
feedback networks	
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Figure 1. a) Schematic of nanophotonic network capable of implementing the 9
qubit Bacon-Shor QEC code. CW coherent field inputs that probe the “Z” and “X”
syndromes of the memory qubits, Qi,j , enter from the middle of the bottom and
left-hand side, in blue and green, respectively. After traversing the memory qubits,
the phases of these fields represent measurements of the four syndrome generators.
Through interference with four more cw “local oscillator” laser inputs on beamsplitters
and interaction with four “relay controller” qubits, Ri, these phases effectively control
the relays’ internal states. The relay internal states then direct four “feedback”
cw inputs towards the memory qubits. When two red (orange) feedback beams
simultaneously illuminate a memory qubit, coherent Pauli-X (-Z) rotations occur
until a “no-error” syndrome state is recovered, at which point the corrective feedback
dynamics automatically shut off. b) & c) Example memory and relay cQED input-
output, internal level structure, and coupled atomic transition schematics, adapted
from [3].

and device-waveguide couplings are constant in time, the network is stationary. Much

like an electronic operational amplifier with a feedback impedance network, together

the cQED memory and controllers represent an integrated, self-stabilizing system that
simply requires DC “power” to function.

As in [3], the memory storage qubits are physically realized by multi-level “atoms”

with two ground states that represent the spin-up and -down states of an ideal qubit.

When an excited state couples to only one ground state (in some basis) via an electric

dipole transition that is degenerate with and strongly coupled to a mode of a single-

sided optical resonator, then, in appropriate limits, an on-resonance cw laser beam may
scatter off the resonator without dissipation or perturbing the qubit state, but will

acquire a π phase shift upon reflection if the atom is in its coupled ground state, or

	


	

•  Coherent  nine  qubit  Bacon-Shor  QEC  network   

[Kerckhoff et al, NJP 13, 055022, 2010]. 	




QSDEs for open Markov quantum 
systems	


A	


Open Markov quantum system + optical fields = closed system  	

The joint system + fields evolve according a unitary propagator U(t) (U(t)*U(t) = 
U(t)U(t)* = I) that solves a (right) quantum stochastic differential equation (Hudson 
and Parthasarathy, Gardiner and Collett):	
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Three parameters N, K, L. K+K* = -LL*, N is unitary, and M = -NL* 	
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The Itō generator matrix	


•  Assume  elements  of  K,  L,  M,  N   and  their 
adjoints have a common invariant domain D. 	


•  QSDE coefficients  can be  assembled into  an 
Itō generator matrix G, defined as	
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dU(t) =U(t) tr((N − I)T dΛ(t)) + LdA(t) + dA(t)*M + Kdt( )
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The Schur complement	


•  The Schur complement M/A of a block matrix	


	
(possibly  linear  operator  entries  having  a 
common invariant domain) with A invertible is	
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M /A = D−CA−1B
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Instantaneous feedback connection	


	
•  Partition the fields into internal (i) and external 
(e) fields.  Internal fields will be interconnected 
with one another.	


•  Suppose that L,  M  and N  have been indexed 
according to the partitioning as	
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Instantaneous feedback as Schur 
complementation	


	

•  Partition  the  Itō  generator  matrix  of  the  pre-interconnected 

network as:	


•  Interconnecting  internal  fields  and  taking  instantaneous 
feedback limit  along these  fields,  the  network  Itō  generator 
matrix  becomes  [Gough and  James,  Commun.  Math.  Phys., 
287, 2009]:	
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Instantaneous feedback as Schur 
complementation	


	
•  G/(Nii - I) is again an Itō generator matrix. 	

•  Thus F is a structure preserving transformation 

of  Itō  generator  matrices  to  Itō  generator 
matrices: G à G/(Nii – I). 	
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Pre-adiabatic elimination	


€ 

dU
(k )
(t) =U (k )

(t) tr((N
(k )
− I)

T
dΛ(t)) + L(k )dA(t) + dA(t)*M (k ) + K (k )

dt( )

	


•  Slow subspace is                      and                . 	

•  Let Ps  denote the projection onto the slow subspace and Pf 

onto the fast.         	


hs = ker(Y ) hf = h�s€ 

Y +Y * = −FF *

A + A* = −(FG* +GF *)
B + B* = −GG*

NN* = N*N = I

€ 

N (k ) = N
L(k ) = kF +G
M (k ) = −NL(k )*

K (k ) = k 2Y + kA + B
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Pre-adiabatic elimination	


•  Assumption  1:  The  following  structural  assumptions  hold 
(here Xab = PaXPb, a, b = s, f)	

•  D is invariant under Ps. 
•        	


	

•  Yff is invertible on PfD.	


•  Condition 2: 	
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Adiabatic elimination as Schur 
complement	


•  Introduce the extended Itō generator matrix GE:	


•  Also, introduce the adiabatic elimination operator A 
 

 
•  Under  Assumption  1  and  Condition  2,  AG(k)  is  again  an  Itō 

generator  matrix.   In  this  case  A  is  also  a  structure  preserving 
transformation (of Itō generator matrices to Itō generator matrices). 	
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Adiabatic elimination as Schur 
complement	


•  Let	

	

	

	
then	


AG(k ) = Ĝ = K̂ L̂
M̂ N̂ − I

"

#
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 ,

K̂ = Bss − AsfYff
−1Afs

L̂ =Gss − AsfYff
−1Ffs

M̂ = Nsb(−Gsb
* +

b=s,f
∑ Ffb

*Yff
−1Afs )

N̂ = Nss + GscFfc
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Adiabatic elimination as Schur 
complement	


•  From	

	

	

	
define the corresponding QSDE	


•  Condition 3: For any n   dimensional complex vectors α 
and β, PsD is a core for the operator	
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L(αβ ) =α* ˆ N β +α* ˆ M + ˆ L β + ˆ K −
α

2
+ β
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d ˆ U (t) = ˆ U (t) tr(( ˆ N − I)T dΛ(t)) + ˆ L dA(t) + dA(t)* ˆ M + ˆ K dt( )

23	




Adiabatic elimination as Schur 
complementation	


Theorem 1 [Bouten, van Handel & Silberfarb] Suppose that Assumption 1
holds, and Conditions 2 and 3 are satisfied. If the QSDE for U (k)(t) has a
unique solution that extends to a contraction co-cycle on h ⇥ F for all k > 0,
and the QSDE for Û(t) has a unique solution that extends to a unitary co-cycle
on hs ⇥ F, then

lim
k⇤⌅

sup
0⇥t⇥T

⌃U (k)(t)��� Û(t)��⌃ = 0, ⇧� ⌅ hs ⇥ F,

for each fixed T ⇤ 0.
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Adiabatic elimination followed by 
instantaneous feedback	


•  Partition GE according to input and external components	


GE =

�

⇧⇧⇤

B Asf Gi Ge

Af Yff Ffi Ffe

�NiG� �NiF �
f Nii � I Nie

�NeG� �NeF �
f Nei Nee � I

⇥

⌃⌃⌅ ,

Lemma 1 If Assumption 1 and Condition 2 are satisfied, and Nii+NiF ⇥
f Y �1

ff Ffi�
I is invertible, then

Ps

�
(GE/Yff)/(Nii + NiF

⇥
f Y �1

ff Ffi � I)
⇥
Ps = FAG(k),

where Ffi = PfFi.
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Instantaneous feedback followed by 
adiabatic elimination	


Lemma 2 Suppose that Assumption 1 is satisfied, Nii� I is invertible, ker(Y +
Fi(Nii � I)�1Fi) = hs, and there exists an operator Ŷ � such that Ŷ �, Ŷ �⇥

have D as a common invariant domain and Ŷ Ŷ � = Ŷ �Ŷ = Pf, where Ŷ =
Y + Fi(Nii � I)�1Fi. Then

AFG(k) = Ps((GE/(Nii � I))/(Yff + Ffi(Nii � I)�1NiF
⇥
f ))Ps |hs

.
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Successive Schur complementation 
rule  	
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M
B∪C ,B∪C

123518-15 Adiabatic elimination and instantaneous feedback J. Math. Phys. 51, 123518 (2010)

because of the assumption ker A ⊆ ker C we have C A− A = C and C(A− A − 1) = 0; and

(M M−M)22 = D − (D − C A− B) − (D − C A− B)X−(D − C A− B)

= D − X + X X− X

= D,

since X = M/A = D − C A− B and X X− X = X . Collecting these results we have that M M−M =
M , as required. !

Now, as a corollary to Lemma 8 we obtain the generalized Banachiewicz formula:

M−
B,A = M−

A,B + M−
A,B MA,B ′(M/MA,B)−MA′,B M−

A,B,

M−
B,A′ = −M−

A,B MA,B ′(M/MA,B)−,

M−
B ′,A = −(M/MA,B)−MA′,B M−

A,B,

M−
B ′,A′ = (M/MA,B)−.

We now wish to establish the property of commutativity of successive Schur complementation
as this shall be the main technical result required in this paper.

Lemma 9 (Successive complementation rule): Suppose that A, B, C is a partition of the index set
I (that is, A, B, C are disjoint nonempty subsets whose union is J) then, whenever the generalized
Schur complements are well-defined, we have the rule

M/MB∪C,B∪C = (M/MC,C )/(M/MC,C )B,B

= (M/MB,B)/((M/MB,B))C,C . (26)

For the case of matrices over a field where the inverses exist, the first equality in (26) is an
instance of the Crabtree–Haynsworth quotient formula6. The extension of the quotient formula
to generalized inverses for matrices over a field was given by Carson et al.10 under some rank
conditions, see Theorem 4.8 in the review by Ouellete6. However, since here we are dealing with
matrices with Hilbert space operator entries rather than just matrices over a field, we need to extend
this result accordingly. To this end, below we independently prove a generalization of the algebraic
content of the theorem to matrices with Hilbert space operator entries, modulo the conditions for
these Schur complements to be well-defined which we defer to Lemma 17 in the Appendix.

Proof: Assume that the conditions of Lemma 17 are in place. Let us first compute
(M/MC,C )/(M/MC,C )B,B :

M/MC,C =




MA,A MA,B MA,C

MB,A MB,B MB,C

MC,A MC,B MC,C



 /MC,C

=
[

MA,A MA,B

MB,A MB,B

]

−
[

MA,C

MB,C

]

(MC,C )− [MC,A MC,B]

=
[
ML ,R − ML ,C (MC,C )−MC,R

]
R,L∈{A,B}

so a second Schur complementation leads to

(M/MC,C )/(M/MC,C )B,B = MA,A − MA,C (MC,C )−MC,A

−(MA,B − MA,C (MC,C )−MC,B)!(MB,A − MB,C (MC,C )−MC,A),

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Commutativity of adiabatic elimination 
and instantaneous feedback	


Theorem 2 Suppose that the conditions of Lemmata 1 and 2 are satisfied.
Then

AFG(k) = FAG(k).

Furthermore, if in addition

1. Condition 3 (the core condition) is satisfied.

2. FG(k) corresponds to a QSDE that has a unique solution that extends to
a contraction co-cycle on h� F,

3. The coe�cients of FAG(k) satisfy Condition 3 (in lieu of K̂, L̂, M̂ , N̂)
and the associated QSDE has a unique solution that extends to a unitary
co-cycle on hs � F,

then the instantaneous feedback and adiabatic elimination operations can be
commuted. That is, applying adiabatic elimination followed by instantaneous
feedback or, conversely, applying instantaneous feedback followed by adiabatic
elimination yields the same QSDE and this QSDE has a unique solution that
extends to a unitary co-cycle on hs � F.
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Concluding remarks	


	
•  Adiabatic elimination and instantaneous feedback can 
be  viewed  as  transformations  of  Ito  generator 
matrices to themselves.	


•  Both operations can be unified as Schur complements 
(w.r.t. to different sub-blocks) of a common matrix of 
operators: the extended Ito generator matrix GE. 	


•  Under  certain  conditions,  adiabatic  elimination  and 
instantaneous  feedback  can  be  interchanged/
commuted to yield a unique reduced QSDE model. 	
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Thank you for listening!	
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A final detail … (1)	


	
•  Generally,  before  instantaneous  feedback  on  a 
quantum  network,  there  is  a  collection  of  C 
independent  and  unconnected  open  quantum 
system components (but possibly initialized in an 
entangled state) with Ito generator matrices Gj

(k), 
depending on the same scaling parameter k. 	


•  If each component can be adiabatically elimina-
ted and has AGj

(k) after elimination,  is simultane-
ous adiabatic elimination of the collection = the 
collection  of  adiabatically  eliminated  compo-
nents? 	
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A final detail … (2)	


	
•  The problem is that the kernel of the sum Y1 + 
Y2 + … + YC may not coincide with the tensor 
product of the kernel spaces of each of the Yj, 
but can be larger than the latter.	


•  This  can  also  be  treated,  necessary  and 
sufficient  as  well  simpler  sufficient  only 
conditions can be written to guarantee that the 
two kernels do coincide.  	
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