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Quantum Computer:  Dream or Nightmare?



Quantum Computer:  Analog or Digital?



“A quantum computer is obviously just a souped-up analog 
computer: continuous voltages, continuous amplitudes, what’s 
the difference?” 

“A quantum computer with 400 qubits would have ~2400 
classical bits, so it would violate a cosmological entropy bound” 

“My classical cellular automaton model can explain everything 
about quantum mechanics! 
(How to account for, e.g., Schor’s algorithm for factoring prime numbers is a detail 
left for specialists)” 

“Who cares if my theory requires Nature to solve the Traveling 
Salesman Problem in an instant?  Nature solves hard problems 
all the time—like the Schrödinger equation!” 

But then I meet distinguished physicists 
who say things like: 
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Analog Computers and Complexity
•  An ideal analog computer can solve  NP-complete problems 
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We ask if analog computers can solve NP-complete problems efficiently. Regarding this as unlikely, we formulate a
strong version of Church’s Thesis: that any analog computer can be simulated efficiently (in polynomial time) by a digi-
tal computer. From this assumption and the assumption that P ≠ NP we can draw conclusions about the operation of
physical devices used for computation.
An NP-complete problem, 3-SAT, is reduced to the problem of checking whether a feasible point is a local optimum

of an optimization problem. A mechanical device is proposed for the solution of this problem. It encodes variables as
shaft angles and uses gears and smooth cams. If we grant Strong Church’s Thesis, that
P ≠ NP, and a certain ‘‘Downhill Principle’’ governing the physical behavior of the machine, we conclude that it cannot
operate successfully while using only polynomial resources.
We next prove Strong Church’s Thesis for a class of analog computers described by well-behaved ordinary differen-

tial equations, which we can take as representing part of classical mechanics.
We conclude with a comment on the recently discovered connection between spin glasses and combinatorial optimi-

zation.

1. Introduction

Analog devices have been used, over the years, to solve a variety of problems. Perhaps most widely
known is the Differential Analyzer [4,26], which has been used to solve differential equations. To
mention some other examples, in [25] an electronic analog computer is proposed to implement the
gradient projection method for linear programming. In [18] the problem of finding a minimum-length
interconnection network between given points in the plane is solved with movable and fixed pegs
interconnected by strings; a locally optimal solution is obtained by pulling the strings. Another
method is proposed there for this problem, based on the fact that soap films form minimal-tension sur-
faces. Many other examples can be found in books such as [14] and [16], including electrical and
mechanical machines for solving simultaneous linear equations and differential equations.
Given the large body of work on the complexity of Turing-machine computation, and the recent

interest in the physical foundations of computation, it seems natural to study the complexity of analog
computation. This paper pursues the following line of reasoning: it is generally regarded as likely that
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We would argue that ‘‘proportional to’’ be replaced by ‘‘bounded by a polynomial function of,’’ in the
spirit of modern computational complexity theory.
A class of mechanical devices is proposed in Section 5. Machines in this class can be used to find

local optima for mathematical programming problems. We formalize the physical operation of these
machines by a certain ‘‘Downhill Principle.’’ Basically, it states that if, in our class of mechanical
devices, there are feasible ‘‘downhill’’ directions, the state vector describing the physical system
moves in such a direction. We also discuss measuring the resources required by these machines.
In Section 6 we reduce 3-SAT (the problem of whether a Boolean expression in

3-conjunctive normal form has a satisfying truth assignment), to the problem of checking whether a
given feasible point is a local optimum of a certain mathematical programming problem. This shows
that merely checking for local optimality is NP-hard.
In Section 7 a mechanical device in the class mentioned above is proposed for the solution of 3-

SAT. Naturally, the efficient operation of this machine is highly suspect. Be careful to notice that the
operation of any machine in practice is a physics question, not a question susceptible of ultimate
mathematical demonstration. Our analysis must necessarily be based on an idealized mathematical
model for the machine. However, we can take the likelihood of
P ≠ NP, plus the likelihood of Strong Church’s Thesis, as evidence that in fact such a machine cannot
operate with polynomially bounded resources, whatever the particular laws of physics happen to be.
The paradigm that emerges from this line of reasoning is then the following:

If a strongly NP-complete problem can be solved by an analog computer, and if P ≠ NP, and if
Strong Church’s Thesis is true, then the analog computer cannot operate successfully with polyno-
mial resources.

We will then prove a restricted form of Strong Church’s Thesis, for analog computers governed by
well-behaved differential equations. This suggests that any interesting analog computer should rely on
some strongly nonlinear behavior, perhaps arising from quantum-mechanical mechanisms; however,
the problem of establishing Strong Church’s Thesis (or even the Weak Thesis) in the case of
quantum-mechanical or probabilistic laws is an open problem.

2. Some Terminology

We know what a digital computer is; Turing has laid out a model for what a well-defined digital
computation must be: it uses a finite set of symbols (without loss of generality {0,1}) to store informa-
tion, it can be in only one of a finite set of states, and it operates by a finite set of rules for moving
from state to state. Its memory tape is not bounded in length a priori, but only a finite amount of tape
can be used for any one computation. What is fundamental about the idea of a Turing Machine and
digital computation in general, is that there is a perfect correspondence between the mathematical
model and what happens in a reasonable working machine. Being definitely in one of two states is
easily arranged in practice, and the operation of real digital computers can be (and usually is) made
very reliable.
In order to discuss the application of the Turing machine model to solving computational problems,

we need some additional terminology. A problem instance is a finite string of bits, of length L ,
together with an interpretation of the bit string that specifies the encoding of a particular computa-
tional problem. The integer L is termed the size of the input. It is with respect to L that the
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x 2 cannot increase any more, but if the force applied to the z shaft is large enough to overcome the
resistance of the x 1 shaft, x 1 will start increasing. Since w = x 1 + x 2 ≤ 1, x 2 will decrease until it
reaches the stop at position x 2 = 0. This way, the path p 1 shown in Fig. 6 will be followed.

In general, a path like p will be followed; p has the property that it is directed towards increasing
values of z. The actual path p will be determined by the machine’s preferred direction in the state
space at each state. This is determined by the relative friction coefficients inside the machine. We
ensure that the directions towards increasing values of z are achieved by forcing z forward, with a
force greater than the total frictional resistance.
The above can obviously be extended to the general instance of linear programming:

min z =
j= 1
Σ
n
c j x j

j= 1
Σ
n
a ij x j ≤ b i , i = 1, 2, . . . , m

xj ≥ 0, j = 1, 2, . . . , n.

(Without loss of generality we can assume that c j , a ij , and b i are integers.)
The summation of more than two variables can be done using a tree of differentials. For example

y = x 1 + x 2 + x 3 + x 4 can be enforced as implied by y = [(x 1 + x 2 ) + (x 3 + x 4 )]; that is, y will
be the output of a differential whose two inputs are the outputs of two differentials with inputs x 1, x 2
and x 3, x 4, respectively.
The problem of exponentially large numbers appears quite vividly here. For example, the

coefficients a ij and c j will determine the ratios of the gear couplings; we do not want them to be
exponentially large. Also, even if the coefficients are small, a variable (encoded by an angle) may
become exponentially large; this is obviously an undesirable situation. In order to get efficient solu-
tions, we must restrict the inputs of the machine to instances where these phenomena do not occur.

3-SAT Solver



Analog Computers and Complexity

• The real-word analog computers vs. the ideal model

•  Physical quantities in the ideal equations have infinite precision  
infinite resources.

•  Any finite imperfection in initializing, control, signal/noise can lead to 
uncontrollable errors.

•  Shannon developed digital encoding to make information ROBUST to 
physical imperfections.



Quantum Computing Is Not Analog 

The Fault-Tolerance 
Theorem  

Absurd precision in 
amplitudes is not 

necessary for 
scalable quantum 

computing 

is a linear equation, governing 
quantities (amplitudes) that are 

not directly observable 
ψ

ψ
H

dt
d
i =

This fact has many profound implications, such as… 

BQP 

EXP 

P#P 
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Quantum Computer:  Analog or Digital?

Wave-particle duality Analog-digital duality

0 a

p0 = 0 ρa 0

p1 = 1 ρa 1

ψ = cx x
x=0

2n −1

∑

Can digitize  (and efficiently approximate) a class of 
continuous unitary transformations into a fault-
tolerant finite set of universal gates  



Goal of a Quantum Simulator:  Special purpose 
“quantum computer”: Explore Quantum Complexity

•  Emergent properties of many-body quantum sytems

Quantum Magnetism High Tc Superconductivity

Complex molecular structure



Feynman: Quantum Simulation (Emulation)

•  R. P. Feynman, “Simulating Physics with Computers”, Int. J. Theor. Phys. 467 
(1982).

Emulate Nature’s many-body quantum mechanics with 
engineered many-body systems governed by the same 
quantum mechanical laws.



Simulation vs. Model Solver

H = Jijci
†cj

lattice
∑ + Uci

†cj
†cicj

neighbors
∑ Fermi-Hubbard 

Model

High Tc Cuprate

Solver by
EmulationModel

Simulation by
Emulation



The Common Lore of Quantum Simulators

REALLY??



Robustness to Errors

• Quantum emulator is analog.

•  Imperfect lattice, finite temperature, measurement 
signal-to-noise.

Fundamental Question


How robust is the analog quantum emulator for 
information we seek to extract, and is the robust 
information simulatable (poly efficiently) on a 
classical digital computer?





Robustness of information: What do we 
measure?

•  Typical quantum algorithm (e.g. Shor):  Measure Px in computation basis to 
due answer. Requires robustness of 2n probabilities.

•  Typical quantum simulation: Measure local correlation function to determine 
the order parameter, e.g., quantum magnetism:

C = σ z
iσ z

j

neighbors
∑

Px = x Ψ 2

Question
When is C not efficiently calculable on a classical 
computer, and when it is not, how sensitive is it to 
errors in the quantum many-body state?



Efficient representations of many-body states
•  Matrix-product states:  Choose the basis according entanglement.

•   
Question

Does nature make use of exponential (in number of particles) 
amounts of entanglement especially at finite temperature and 
with finite imperfection? 



states, ŝz
i and ŝz

j , and by their mutual participation in each motional
mode m. The coupling coefficient is given by29

Ji,j~
F2

0 N
2BM

XN

m~1

bi,mbj,m

m2
R{v2

m
ð2Þ

These pairwise interaction coefficients can be calculated explicitly by use
of the ion motional modes. We find that the range of interaction can be
modified by detuning away from the COM mode as shown in Fig. 2b. In
the limit mR 2 v1? 2p3 500 kHz, all modes participate equally in the
interaction and Ji,j!d{3

i,j , as discussed in ref. 28. At intermediate detun-
ing, we find a power-law scaling of the interaction range, Ji,j!d{a

i,j ,
where a can be tuned within the range 0 # a # 3. That is, by adjusting
the single experimental parameter, mR, we can mimic a continuum of
physical couplings including important special cases: infinite range
(a 5 0); monopole–monopole, or Coulomb-like (a 5 1); monopole–
dipole (a 5 2); and dipole–dipole (a 5 3). The choice of a 5 0 results
in the ‘̂J2

z interaction’, which gives rise to spin squeezing and is used in
quantum logic gates27 (Supplementary Information). In addition, tuning
mR also gives access to both antiferromagnetic (mR . v1) and ferromag-
netic (v2= mR , v1) couplings10,13.

Experimentally, we demonstrate a tunable-range Ising interaction
by observing a global spin precession under the application of ĤI
(Fig. 3). We compare experimental data with the mean-field prediction
that the influence of ĤI on spin j can be modelled as a magnetic field
!Bj~(2=N)

PN
i,i=j Ji,jhŝz

i i in the z direction due to the remaining N 2 1
spins (Supplementary Information; angle brackets denote expectation
value). For a general qubit superposition state, !Bj gives rise to spin
precession about z in excess of that expected to result from simple
Larmor precession (Fig. 3b). The experiment sequence shown in
Fig. 3a measures this excess precession, averaged over all spins in the
crystal. At the outset, each spin is prepared in state j"æ and then rotated
about the x axis by angle h1. The interaction ĤI is applied during the
arms of a spin echo, each of duration tarm; precession proportional to
Æŝz

i æ coherently adds throughout the interaction duration, 2tarm. The
final p/2-pulse maps precession out of the initial plane (y–z) into
excursions along z (above or below the equatorial plane of the Bloch
sphere) that are resolved by projective spin measurement along z.

We detect global, state-dependent fluorescence (j"æ, bright; j#æ,
dark) as a function of h1 using a photomultiplier tube. This measure-
ment permits a systematic study of the mean-field-induced spin pre-
cession averaged over all particles

1
N

XN

j

!Bj~2
1

N2

XN

j

XN

i,i=j

Ji,j

 !
cos (h1):2!J cos (h1)

The probability of detecting state j"æ at the end of the sequence is

P(j:i)~ 1
2

(1zexp({C?2tarm) sin (h1) sin (2!J cos (h1)?2tarm)) ð3Þ

and a single-parameter fit to experimental data yields !J . Decoherence
due to spontaneous emission is accounted for by C and is determined
by independent measurement of the ODF laser beam intensities, IR
(C / IR; see Supplementary Information).

In Fig. 3c, d, we show representative measurements of excess pre-
cession due to ĤI for different values of spin coupling strength (deter-
mined by Ji,j!I2

R) and interaction duration (2tarm). The excess spin
precession varies periodically with h1 (with period p) and greater inter-
action strengths result in more precession, manifested in our experi-
ment as a larger amplitude modulation of P(j"æ). Our data agree with
equation (3) and allow direct extraction of !J for given experimental
conditions. In Fig. 3e, we plot !J , normalized by I2

R (IR is independently
measured), as a function of the detuning mR 2 v1 (N 5 206 6 10 ions).
Using no free parameters, we find excellent agreement with the value of
!J obtained by averaging over all Ji,j, where the Ji,j were calculated by
including couplings to all N transverse modes (equation (2)).

The mean-field interpretation of our benchmarking measurement
applies only for weak spin–spin correlations. Therefore, in the bench-
marking regime we apply a weak interaction (!J?2tarm=

ffiffiffiffi
N
p

=4; see
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Figure 3 | Benchmarking the 2D Ising interaction. a, Spin-precession
benchmarking sequence for ĤI. The spins are prepared at the outset in |"æ
(a ferromagnetic state). The spin–spin interaction, ĤI, is present when the ODF
laser beams are on. We choose mR 2 v1 5 n ? 2p/tarm so that for small detunings
from the COM mode (v1), the spins are decoupled from the motion by the end of
each periodtarm. b, Evolution of a single spin before the application of the spin echo
p-pulse. c, d, Plots showing spin precession proportional to hŝzi due to ĤI as a
function of initial ‘tipping angle’ h1. The error bars are statistical (s.d., 200
measurements). The plots show typical experimental data (black) and, in c, single-
parameter fits to equation (3). For an antiferromagnetic (AFM) coupling,
tarm 5 250ms, mR 2 v1 5 2p3 4.0 kHz and IR 5 1.4 W cm22, we obtain
!J=I2

R 5 2p3 25 Hz W22 cm4 (yellow fit). Longer drive periods and higher laser
intensity, IR, yield a larger precession. For tarm 5 350ms, mR 2 v1 5 2p3 2.9 kHz
and IR 5 1.9 W cm22, we obtain!J=I2

R 5 2p3 55 Hz W22 cm4 (red fit). The data in
this plot is typical of the experiments conducted for benchmarking. For a much
stronger interaction (d), equation (3) cannot be used to obtain!J because the mean-
field assumption is no longer valid (Supplementary Information). Also, here we
used a small negative detuning (v2=mR , v1), which gives a long-range
ferromagnetic (FM) interaction. For these experiments, we set
vr 5 2p3 45.6 kHz. e, Benchmarking results for an ion crystal with N 5 206 6 10
ions. Each point is generated by measuring!J as in c) and measuring the laser beam
intensity, IR, at the ions. The error bars are dominated by uncertainty in IR

(Supplementary Information). The solid line (red) is the prediction of mean-field
theory that accounts for couplings to all N transverse modes; there are no free
parameters. The line’s breadth reflects experimental uncertainty in the angle
hR 5 4.8 6 0.25u. The mean-field prediction for the average value of the power-law
exponent, a, is drawn in green (right axis, linear scale).
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the coupling is antiferromagnetic and for Ji,j , 0 the coupling is
ferromagnetic.

We implement ĤI using a spatially uniform, spin-dependent ODF
generated by a pair of off-resonance laser beams with difference fre-
quency mR (Fig. 1 and Supplementary Information). The ODF couples
each ion’s spin to one or more of the N transverse (along z) motional
modes of the Coulomb crystal by forcing coherent displacements of
the ions that in turn modify the ions’ Coulomb potential energy
through the interaction

ĤODF~{
XN

i

Fz(t)ẑiŝ
z
i

Here Fz(t) 5 F0cos(mRt) is the ODF; ẑi~
PN

m~1 bi,m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=2Mvm

p

(âme{ivmtzâ{meivmt) is the axial position operator for ion i; bi,m are
elements of the N transverse phonon eigenfunctions, bm, at frequencies

vm, normalized as
PN

m~1 bi,mj j2~
PN

i~1 bi,mj j2~1 (refs 28, 29); M is
the ion mass; and B is Planck’s constant divided by 2p. The modes
include the centre-of-mass (COM) mode (v1) as well as an array of
modes of higher spatial frequencies that may be derived from atomistic
calculations (Fig. 2a) and confirmed by experimental measurement30.

For small, coherent displacements, where residual spin–motion
entanglement can be neglected29 (Methods), ĤODF is equivalent to
ĤI in equation (1): spins i and j are coupled in proportion to their spin
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x

Zr B0

ZR

–V0
TR

ZR + PR

Figure 1 | The Penning trap confines hundreds of spin-1/2 qubits on a 2D
triangular lattice. Each qubit is the valence-electron spin of a 9Be1 ion. Bottom:
a Penning trap confines ions using a combination of static electric and magnetic
fields. The trap parameters are configured such that laser-cooled ions form a
triangular 2D crystal. A general spin–spin interaction, ĤI, is generated by a spin-
dependent excitation of the transverse (along z) motional modes of the ion
crystal. This coupling is implemented using an optical dipole force (ODF)
produced by a pair of off-resonance laser beams (left side) with angular
separation hR and difference frequency mR. Microwaves at 124 GHz permit
global spin rotations ĤB. Top: a representative top-view resonance fluorescence
image showing the centre region of an ion crystal captured in the ions’ rest frame;
in the laboratory frame, the ions rotate at vr 5 2p3 43.8 kHz (ref. 26).
Fluorescence is an indication of the qubit spin state ( |"æ, bright; |#æ, dark); here,
the ions are in the state |"æ. The lattice constant is d0 < 20mm.
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Figure 2 | Spin–spin interactions are mediated by the ion crystal’s
transverse motional degrees of freedom. a, For a 2D crystal with N 5 217 ions
and vr 5 2p3 45.6 kHz, we calculate the eigenfunctions, bm, and
eigenfrequencies, vm, for the N transverse motional modes (Supplementary
Information). Plotted here are vm and bm for the 14 highest-frequency modes.
Relative mode amplitude is indicated by colour. The COM motion is the highest in
frequency (v1 < 2p3 795 kHz); b1 has no spatial variation. The lowest-frequency
mode is v217 < 2p3 200 kHz; b217 has spatial variation at the lattice-spacing
length scale, d0 < 20mm. b, Using equation (2), we calculate Ji,j explicitly for
N 5 217 spins and plot it as a function of spin–spin separation, di,j. For
mR 2 v1 , 2p3 1 kHz, ĤODF principally excites COM motion in which all ions
equally participate: the spin–spin interaction is spatially uniform. As the detuning
is increased, modes of higher spatial frequency participate in the interaction and Ji,j

develops a finite interaction length. We find the scaling of Ji,j with di,j follows the
power law Ji,j / d{a

i,j . For mR 2 v1? 2p3 500 kHz, all transverse modes
participate and the spin–spin coupling power-law exponent, a, approaches 3. The
solid lines are power-law fits to the theory points. For comparison with other
experiments, the nearest-neighbour coupling (d0 5 20mm) is marked by the
dashed line. c–e, The power-law nature of Ji,j is qualitatively illustrated for N 5 19
(for larger N, diagrams of similar size are illegible). Spins (nodes) are joined by lines
coloured in proportion to their coupling strength for various values of a. f, For
context, the graph for a 1D nearest-neighbour Ising interaction, a well-known
model in quantum field theory, is plotted.
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Engineered two-dimensional Ising interactions in a
trapped-ionquantumsimulatorwithhundredsofspins
Joseph W. Britton1, Brian C. Sawyer1, Adam C. Keith2,3, C.-C. Joseph Wang2, James K. Freericks2, Hermann Uys4,
Michael J. Biercuk5 & John J. Bollinger1

The presence of long-range quantum spin correlations underlies a
variety of physical phenomena in condensed-matter systems,
potentially including high-temperature superconductivity1,2.
However, many properties of exotic, strongly correlated spin
systems, such as spin liquids, have proved difficult to study, in part
because calculations involving N-body entanglement become
intractable for as few as N < 30 particles3. Feynman predicted that
a quantum simulator—a special-purpose ‘analogue’ processor
built using quantum bits (qubits)—would be inherently suited to
solving such problems4,5. In the context of quantum magnetism, a
number of experiments have demonstrated the feasibility of this
approach6–14, but simulations allowing controlled, tunable inter-
actions between spins localized on two- or three-dimensional
lattices of more than a few tens of qubits have yet to be demon-
strated, in part because of the technical challenge of realizing
large-scale qubit arrays. Here we demonstrate a variable-range
Ising-type spin–spin interaction, Ji,j, on a naturally occurring,
two-dimensional triangular crystal lattice of hundreds of spin-half
particles (beryllium ions stored in a Penning trap). This is a com-
putationally relevant scale more than an order of magnitude larger
than previous experiments. We show that a spin-dependent optical
dipole force can produce an antiferromagnetic interaction
J i,j!d{a

i,j , where 0 # a # 3 and di,j is the distance between spin
pairs. These power laws correspond physically to infinite-range
(a 5 0), Coulomb–like (a 5 1), monopole–dipole (a 5 2) and
dipole–dipole (a 5 3) couplings. Experimentally, we demon-
strate excellent agreement with a theory for 0.05= a= 1.4. This
demonstration, coupled with the high spin count, excellent
quantum control and low technical complexity of the Penning trap,
brings within reach the simulation of otherwise computationally
intractable problems in quantum magnetism.

A challenge in condensed-matter physics is the fact that many
quantum magnetic interactions cannot currently be modelled in a
meaningful way. A canonical example is the spin liquid, an exotic state
postulated1 to arise in a collection of spin-1/2 particles residing on a
triangular lattice and coupled to each other by a nearest-neighbour
antiferromagnetic Heisenberg interaction. The spin liquid’s ground
state is highly degenerate, owing to spin frustration, and is expected
to have unusual behaviours including phase transitions at zero tem-
perature driven by quantum fluctuations15. However, despite recent
advances16,17 a detailed understanding of large-scale frustration in
solids remains elusive2,18–20.

Atomic physicists have recently provided a bottom-up approach to
the problem by engineering the relevant spin interactions in quantum
simulators5,21,22. The necessary experimental capabilities—laser cool-
ing, deterministic spin localization, precise spin-state quantum con-
trol, high-fidelity read-out and engineered spin–spin coupling—were
first demonstrated in the context of atomic clocks (see, for example,
ref. 23). In the domain of quantum magnetism, this tool set permits

control of parameters commonly viewed as immutable in natural
solids, for example lattice spacing and geometry, and spin–spin inter-
action strength and range.

Initial simulations of quantum Ising and Heisenberg interactions
with localized spins were done with neutral atoms in optical lattices6,11,
atomic ions in Paul traps9,10,13,14 and photons12. This work involved
simulations readily calculable on a classical computer: interactions
between N < 10 qubits localized in one-dimensional (1D) chains.
The move to quantum magnetic interactions on two-dimensional
(2D) lattices and between larger, computationally relevant numbers
of particles is the crucial next step but at present requires more
technological development24.

In our Penning trap apparatus, laser-cooled 9Be1 ions naturally
form a stable 2D Coulomb crystal on a triangular lattice with ,300
spins (Fig. 1). Each ion is a spin-1/2 system (qubit) over which we exert
high-fidelity quantum control25. In this paper, we demonstrate the use
of a spin-dependent optical dipole force (ODF) to engineer a continuously
tunable Ising-type spin–spin coupling Ji,j!d{a

i,j . This capability, in
tandem with a modified measurement routine (for example by more
sophisticated processing of images such as that in Fig. 1), is a key
advance towards useful simulations of quantum magnetism.

A Penning trap confines ions in a static quadrupolar electric potential
(Methods) and a strong, homogeneous magnetic field B 5 B0ẑ
(B0 5 4.46 T). Axial trapping (along z) is due to the electric field. Ion
rotation at frequency vr (about z) produces a radial restoring potential
due to the velocity-dependent Lorentz force (qv|B, where q and v are
respectively the ion’s charge and velocity). Tuning the ratio of the axial
to radial confinement allows controlled formation of a planar geometry
and, after Doppler laser cooling, the formation of a 2D Coulomb crystal
on a triangular lattice26 (Methods). We routinely generate crystals with
N ions (100=N= 350), where the valence-electron spin state of each
ion serves as a qubit25. Following techniques developed in linear (1D)
Paul traps27, spins confined in the same trapping potential are coupled
through their shared motional degrees of freedom.

Using well-controlled external fields, we engineer spin interactions
of the form

ĤB~
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where ŝi~(ŝx
i ,ŝ
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i ,ŝz

i ) is the vector of Pauli matrices for ion i. We label
the qubit spin states j"æ ; jms 5 11/2æ and j#æ ; jms 5 21/2æ, where
ms is the spin’s projection along the quantizing field B0ẑ, such that
ŝz

i :ij i~ :ij i and ŝz
i ;ij i~ ;ij i. The Hamiltonian ĤB encodes an inter-

action due to an effective magnetic field, Bm (generated by externally
applied microwaves at 124 GHz), that couples equally to all spins and
permits global rotations (Fig. 1). The interaction ĤI describes a general
coupling, Ji,j, between spins i and j a distance di,j apart28,29. For Ji,j . 0
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Engineered two-dimensional Ising interactions in a
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The presence of long-range quantum spin correlations underlies a
variety of physical phenomena in condensed-matter systems,
potentially including high-temperature superconductivity1,2.
However, many properties of exotic, strongly correlated spin
systems, such as spin liquids, have proved difficult to study, in part
because calculations involving N-body entanglement become
intractable for as few as N < 30 particles3. Feynman predicted that
a quantum simulator—a special-purpose ‘analogue’ processor
built using quantum bits (qubits)—would be inherently suited to
solving such problems4,5. In the context of quantum magnetism, a
number of experiments have demonstrated the feasibility of this
approach6–14, but simulations allowing controlled, tunable inter-
actions between spins localized on two- or three-dimensional
lattices of more than a few tens of qubits have yet to be demon-
strated, in part because of the technical challenge of realizing
large-scale qubit arrays. Here we demonstrate a variable-range
Ising-type spin–spin interaction, Ji,j, on a naturally occurring,
two-dimensional triangular crystal lattice of hundreds of spin-half
particles (beryllium ions stored in a Penning trap). This is a com-
putationally relevant scale more than an order of magnitude larger
than previous experiments. We show that a spin-dependent optical
dipole force can produce an antiferromagnetic interaction
J i,j!d{a

i,j , where 0 # a # 3 and di,j is the distance between spin
pairs. These power laws correspond physically to infinite-range
(a 5 0), Coulomb–like (a 5 1), monopole–dipole (a 5 2) and
dipole–dipole (a 5 3) couplings. Experimentally, we demon-
strate excellent agreement with a theory for 0.05= a= 1.4. This
demonstration, coupled with the high spin count, excellent
quantum control and low technical complexity of the Penning trap,
brings within reach the simulation of otherwise computationally
intractable problems in quantum magnetism.

A challenge in condensed-matter physics is the fact that many
quantum magnetic interactions cannot currently be modelled in a
meaningful way. A canonical example is the spin liquid, an exotic state
postulated1 to arise in a collection of spin-1/2 particles residing on a
triangular lattice and coupled to each other by a nearest-neighbour
antiferromagnetic Heisenberg interaction. The spin liquid’s ground
state is highly degenerate, owing to spin frustration, and is expected
to have unusual behaviours including phase transitions at zero tem-
perature driven by quantum fluctuations15. However, despite recent
advances16,17 a detailed understanding of large-scale frustration in
solids remains elusive2,18–20.

Atomic physicists have recently provided a bottom-up approach to
the problem by engineering the relevant spin interactions in quantum
simulators5,21,22. The necessary experimental capabilities—laser cool-
ing, deterministic spin localization, precise spin-state quantum con-
trol, high-fidelity read-out and engineered spin–spin coupling—were
first demonstrated in the context of atomic clocks (see, for example,
ref. 23). In the domain of quantum magnetism, this tool set permits

control of parameters commonly viewed as immutable in natural
solids, for example lattice spacing and geometry, and spin–spin inter-
action strength and range.

Initial simulations of quantum Ising and Heisenberg interactions
with localized spins were done with neutral atoms in optical lattices6,11,
atomic ions in Paul traps9,10,13,14 and photons12. This work involved
simulations readily calculable on a classical computer: interactions
between N < 10 qubits localized in one-dimensional (1D) chains.
The move to quantum magnetic interactions on two-dimensional
(2D) lattices and between larger, computationally relevant numbers
of particles is the crucial next step but at present requires more
technological development24.

In our Penning trap apparatus, laser-cooled 9Be1 ions naturally
form a stable 2D Coulomb crystal on a triangular lattice with ,300
spins (Fig. 1). Each ion is a spin-1/2 system (qubit) over which we exert
high-fidelity quantum control25. In this paper, we demonstrate the use
of a spin-dependent optical dipole force (ODF) to engineer a continuously
tunable Ising-type spin–spin coupling Ji,j!d{a

i,j . This capability, in
tandem with a modified measurement routine (for example by more
sophisticated processing of images such as that in Fig. 1), is a key
advance towards useful simulations of quantum magnetism.

A Penning trap confines ions in a static quadrupolar electric potential
(Methods) and a strong, homogeneous magnetic field B 5 B0ẑ
(B0 5 4.46 T). Axial trapping (along z) is due to the electric field. Ion
rotation at frequency vr (about z) produces a radial restoring potential
due to the velocity-dependent Lorentz force (qv|B, where q and v are
respectively the ion’s charge and velocity). Tuning the ratio of the axial
to radial confinement allows controlled formation of a planar geometry
and, after Doppler laser cooling, the formation of a 2D Coulomb crystal
on a triangular lattice26 (Methods). We routinely generate crystals with
N ions (100=N= 350), where the valence-electron spin state of each
ion serves as a qubit25. Following techniques developed in linear (1D)
Paul traps27, spins confined in the same trapping potential are coupled
through their shared motional degrees of freedom.

Using well-controlled external fields, we engineer spin interactions
of the form
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i ) is the vector of Pauli matrices for ion i. We label
the qubit spin states j"æ ; jms 5 11/2æ and j#æ ; jms 5 21/2æ, where
ms is the spin’s projection along the quantizing field B0ẑ, such that
ŝz

i :ij i~ :ij i and ŝz
i ;ij i~ ;ij i. The Hamiltonian ĤB encodes an inter-

action due to an effective magnetic field, Bm (generated by externally
applied microwaves at 124 GHz), that couples equally to all spins and
permits global rotations (Fig. 1). The interaction ĤI describes a general
coupling, Ji,j, between spins i and j a distance di,j apart28,29. For Ji,j . 0
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the coupling is antiferromagnetic and for Ji,j , 0 the coupling is
ferromagnetic.

We implement ĤI using a spatially uniform, spin-dependent ODF
generated by a pair of off-resonance laser beams with difference fre-
quency mR (Fig. 1 and Supplementary Information). The ODF couples
each ion’s spin to one or more of the N transverse (along z) motional
modes of the Coulomb crystal by forcing coherent displacements of
the ions that in turn modify the ions’ Coulomb potential energy
through the interaction

ĤODF~{
XN

i

Fz(t)ẑiŝ
z
i

Here Fz(t) 5 F0cos(mRt) is the ODF; ẑi~
PN

m~1 bi,m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=2Mvm

p

(âme{ivmtzâ{meivmt) is the axial position operator for ion i; bi,m are
elements of the N transverse phonon eigenfunctions, bm, at frequencies

vm, normalized as
PN

m~1 bi,mj j2~
PN

i~1 bi,mj j2~1 (refs 28, 29); M is
the ion mass; and B is Planck’s constant divided by 2p. The modes
include the centre-of-mass (COM) mode (v1) as well as an array of
modes of higher spatial frequencies that may be derived from atomistic
calculations (Fig. 2a) and confirmed by experimental measurement30.

For small, coherent displacements, where residual spin–motion
entanglement can be neglected29 (Methods), ĤODF is equivalent to
ĤI in equation (1): spins i and j are coupled in proportion to their spin
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Figure 1 | The Penning trap confines hundreds of spin-1/2 qubits on a 2D
triangular lattice. Each qubit is the valence-electron spin of a 9Be1 ion. Bottom:
a Penning trap confines ions using a combination of static electric and magnetic
fields. The trap parameters are configured such that laser-cooled ions form a
triangular 2D crystal. A general spin–spin interaction, ĤI, is generated by a spin-
dependent excitation of the transverse (along z) motional modes of the ion
crystal. This coupling is implemented using an optical dipole force (ODF)
produced by a pair of off-resonance laser beams (left side) with angular
separation hR and difference frequency mR. Microwaves at 124 GHz permit
global spin rotations ĤB. Top: a representative top-view resonance fluorescence
image showing the centre region of an ion crystal captured in the ions’ rest frame;
in the laboratory frame, the ions rotate at vr 5 2p3 43.8 kHz (ref. 26).
Fluorescence is an indication of the qubit spin state ( |"æ, bright; |#æ, dark); here,
the ions are in the state |"æ. The lattice constant is d0 < 20mm.
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Figure 2 | Spin–spin interactions are mediated by the ion crystal’s
transverse motional degrees of freedom. a, For a 2D crystal with N 5 217 ions
and vr 5 2p3 45.6 kHz, we calculate the eigenfunctions, bm, and
eigenfrequencies, vm, for the N transverse motional modes (Supplementary
Information). Plotted here are vm and bm for the 14 highest-frequency modes.
Relative mode amplitude is indicated by colour. The COM motion is the highest in
frequency (v1 < 2p3 795 kHz); b1 has no spatial variation. The lowest-frequency
mode is v217 < 2p3 200 kHz; b217 has spatial variation at the lattice-spacing
length scale, d0 < 20mm. b, Using equation (2), we calculate Ji,j explicitly for
N 5 217 spins and plot it as a function of spin–spin separation, di,j. For
mR 2 v1 , 2p3 1 kHz, ĤODF principally excites COM motion in which all ions
equally participate: the spin–spin interaction is spatially uniform. As the detuning
is increased, modes of higher spatial frequency participate in the interaction and Ji,j

develops a finite interaction length. We find the scaling of Ji,j with di,j follows the
power law Ji,j / d{a

i,j . For mR 2 v1? 2p3 500 kHz, all transverse modes
participate and the spin–spin coupling power-law exponent, a, approaches 3. The
solid lines are power-law fits to the theory points. For comparison with other
experiments, the nearest-neighbour coupling (d0 5 20mm) is marked by the
dashed line. c–e, The power-law nature of Ji,j is qualitatively illustrated for N 5 19
(for larger N, diagrams of similar size are illegible). Spins (nodes) are joined by lines
coloured in proportion to their coupling strength for various values of a. f, For
context, the graph for a 1D nearest-neighbour Ising interaction, a well-known
model in quantum field theory, is plotted.
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Example:



Questions for discussion
• How robust is an analog quantum emulator for information we 

seek to extract, and is the robust information simulatable (poly 
efficiently) on a classical digital computer?

• How do we verify that a quantum emulator is reliable?

• Even if we don’t emulate the exact model to a known 
precision, do we learn something important different from a 
physics experiment on a complex many-body system?

• Real materials are imperfect.  What class of complex states 
does nature access?  Is this different from a digital QC?

• Do we have sufficient algorithms on to perform digital 
simulation on a fault-tolerant quantum computer?


