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Mechanical Systems in the Quantum Limit 

Classical system 
•  acoustic frequency 
•  Room temperature 
•  thermal excitations 

Quantum limit  
•  high frequency  
•  relatively high Q-factor 
•  strong coupling with other 
     nanoscale devices  



Harmonic motion of trapped ions 
(Brown et al, Nature 2011) 

Atomic cloud in optical cavity 
(Brooks et al, Nature 2012) 

Optomechanical systems 
(Kippenberg,Vahala, Science 2008, review) 

Mechanical Systems in the Quantum Limit 

Nanoelectromechanical systems 
(O’Connell et al, Nature 2010 
Teufel et al, Nature 2011) 



Mechanical Systems in the Quantum Limit 

•  Strong coupling between light and mechanical modes 
      microwave:  Teufel et al Nature (2011) 
      
      optical experiment: Verhagen et al Nature (2012) 
       

•  Mechanical modes reach quantum ground state – cavity cooling or high 
      resonator frequency – reported in several recent experiments 
 
•  Optomechanically induced transparency, mechanical dark mode  
      Weis et al, Science (2010), Teufel et al, Nature (2011), Safavi-Naeini et al   
      Nature (2011), C. Dong et al Science (2012) 
 
Recent review:  Aspelmeyer, Meystre, Schwab, Phys. Today (2012)  

Recent progresses 

!m/2⇡, 10MHz /2⇡, 100 kHz g/2⇡, 1MHz

g/2⇡, 10MHz/2⇡, 7MHz!m/2⇡, 100MHz



Ø  Strong/controllable light-matter coupling 
Ø  Can connect very different systems – hybrid system 
Ø  Connect different parts of a quantum network 
Cirac, Zoller, Kimble, Mabuchi, PRL (1997). 

Optomechanical Quantum Interface 
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Mechanical Effects of Light 

F 
a(λ1) 

Radiation pressure force on the mirror – cavity backaction  

Optical cavity + movable mirror 
Photon scattered by mirror 
Forces on mirror ~ photon number 
 
Superconducting resonator - NEMS 
Mechanical motion changes capacitance 
Forces on NEMS ~ photon number 
 
Various effects studied: 
Cooling to quantum limit 
Strong coupling regime 
… 

Hint = G0a
†ax̂ = F · x̂ = ~�! · a†a

e.g. C.K. Law, PRA (1995) 



Radiation pressure force and effective linear coupling 

HG = �Gia
†
iaiq

Heff = ✏ia
†
i bm + ✏?i b

†
mai

ais =
�iEi

i/2� i(�i +Giqs)

Cavity-mechanical mode coupling: mechanical shift of cavity resonance 
 
 
Pumping on cavity mode – steady state amplitude, Δi: laser detuning 
 
 
 
Red sideband driving – effective linear coupling  
(all terms relative to steady state) 
 
 
 
Blue sideband driving – effective linear coupling (instability etc…) 
 

Optomechanical Quantum Interface 

Heff = i✏i

⇣
a†i b

†
m � bmai

⌘



Radiation pressure force and effective linear coupling 

Optomechanical Quantum Interface 

Red detuned driving 	
   Blue detuned driving 	
  



Radiation pressure force and effective linear coupling 

Optomechanical Quantum Interface 

Red sideband driving – beam-splitter operation 
 
 
Generate transformation - Swapping of modes with for π/2 pulse 
 
 
 
Blue sideband driving – parametric amplifier 
 
 
Generate two-mode squeezing – Gaussian EPR pairs and entanglement 
Combined with beam-splitter – squeezing of each mode   

Heff = ✏ia
†
i bm + ✏?i b

†
mai

Heff = i✏i

⇣
a†i b

†
m � bmai

⌘

ai(t) = cos(✏it)ai(0) + i sin(✏it)bm(0)

bm(t) = cos(✏it)bm(0) + i sin(✏it)ai(0)

bm(t) = cosh(✏it)bm(0) + i sinh(✏it)a
†
i (0)

ai(t) = cosh(✏it)ai(0) + i sinh(✏it)b
†
m(0)



Outstanding questions for this talk: 

Ø Quantum manipulations of light modes via mechanical mode 

Ø  Effect of mechanical noise 
 
Ø Can we suppress effect of noise? 

Ø Answer: via dark mode – control the pumping 

Optomechanical Quantum Interface 



a1in a2in

a2
out

a1
out

b
out

bin

a1 a2

bm

Two cavity modes (quantum channels) and a mechanical mode (interface) 

F 
a(λ2) a(λ1) 

a1, a2, bm

Optomechanical Quantum Interface 

1.  Cavity modes can have distinct frequency/system – microwave, optical … 
 (hybrid quantum system) 

2.  Input, output channels for all three modes – mechanical thermal noise  
3.  Thermal noise can degrade fidelity/robustness of quantum schemes 
4.  Extended models: multi-modes/coupling configurations 



Optomechanical Quantum Interface 

•  System: two cavity modes (microwave, optical), mechanical mode 
•  Linearization under strongly pumped cavity modes and RWA 

g2g1

a1 bm a2

ωc2ωd2ωd1 ωc1

−∆1 −∆2

Red-detuned – Red-detuned 
- quantum wavelength conversion 
- discrete state entanglement 
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Red-detuned – Blue-detuned 
- continuous variable entanglement 



Beam-splitter operations 

ωc2ωd2ωd1 ωc1

−∆1 −∆2

Cavity mode a1 – red-detuned drive 
Cavity mode a2 – red-detuned drive 
Both coupling with mechanical mode bm 
 
System Hamiltonian in the strong coupling regime with RWA 
 
 
 
Hamiltonian used for quantum state transfer 

��1 = !m

��2 = !m

Quantum Wavelength Conversion 



Quantum Wavelength Conversion 

1.  Conversion of pre-prepared quantum state in one cavity to the other. Cavity  
     modes have distinct frequency 
 

2.  Transmission of pulse from one input port to another output port at  
     different frequency 

a1in a2in

a2
out

a1
out

b
out

bin

a1 a2

bm
a1
in

! a2
out

F 
a(λ2) a(λ1) 

Goals 
Two cavity modes and  
a mechanical mode: 

a1, a2, bm



Quantum Wavelength Conversion 
Transfer of quantum state : transient scheme by “2” swap pulses 

Tian, Wang, PRA 82, 053806 (2010) 

Double-swap scheme: 
1. Swap modes a1 and bm 
    - initial state to bm 
 
2. Swap modes bm and a2 
    - initial state to a2 
 
3. Solving quantum Langevin 
   equation 

•  Swapping via mechanical mode, thermal noise degrades conversion fidelity 
•  Cavity damping degrades conversion fidelity 
•  Fidelity for gaussian states reduces as:  
     T = time of operation, nth=thermal number 
•  Pre-cooling pulse ‘1’: swap a1 and bm – transient cooling to partially 

remove thermal noise of mechanical mode 
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1.  Matter of principle demonstration of  
optomechanical swap operation  
 
2.  Optical and mechanical signal swap 

3.  Signal swap back to cavity after 
some free time 
 
4.  Signal retrieved by another swap 

Quantum Wavelength Conversion 
Transfer of quantum state : transient scheme by “2” swap pulses 



No damping: mechanical dark mode  
 
 
Dark mode energy separated from  
other modes 
 
 
Remains in dark mode when adjusting 
coupling g1,2 adiabatically  
(Landau-Zener condition) 

�1 = 0, �2,3 = ±
q
g21 + g22

g0 =
q

g21 + g22

 1 = (�g2a1 + g1a2)/g0

0
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Eigenmodes at	
  ��i = !m

Adiabatic scheme via mechanical dark mode 

Quantum Wavelength Conversion 



At time t=0,  g1=0, g2=-g0,   dark mode a1(0) 
at time t=T, g1=g0, g2=0, dark mode a2(T)  
Initial state in mode a1 is transferred to mode a2 
 
Two-way state swapping scheme, S. Huang and L. Tian, in preparation 
(2013) 

a2(T ) = a1(0)

g2
a1 a2

bm

g1 = 0
 1 = a1

t = 0

g2 = 0
 1 = a2

g1
a1 a2

bm

t = T

 1 = (�g2a1 + g1a2)/g0

Adiabatic scheme via mechanical dark mode 

Quantum Wavelength Conversion 



Finite damping: we treat damping terms in M(t) as perturbation terms  
Dark mode contains small contribution from mechanical mode 
 
 
 
Eigenenergy is modified – causes damping 
 
 
 
Hence, adiabatic conversion can be affected by mechanical noise 
How to characterize these effects? 

Langevin eq. in interaction picture 

Not totally dark!	
  

Adiabatic scheme via mechanical dark mode 

Quantum Wavelength Conversion 



Fidelity for gaussian states at time T:     
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Fidelity plotted for κ2=0,  F1, linear vs κ1,  F2, quadratic vs κ1 
δF=F(0)-F(γm) describes contribution from mechanical noise 

iT (cosh(2r)� 1)/2- 2-swap pulse scheme: 

coherent state r=0 
squeezed state r=0.4	
  

Adiabatic scheme via mechanical dark mode 

Quantum Wavelength Conversion 



Input mode a1
in(t) to be transferred to output mode a2

out(t) 
Noise operators a2

in(t) and bin(t) 

Using Langevin equation at constant M and 
input-output relation  

Transmission matrix – unitary operator 

Output operator 
 
Condition for high fidelity 

a1in a2in

a2
out

a1
out

b
out

bin

a1 a2

bm

Pulse transmission at impedance matching and constant coupling 

Quantum Wavelength Conversion 
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•  optimal transmission condition 
     Blue-dashed curve shows non-optimal transmission 
•  Half width derived Δω ~ κi  (~ 0.2 – 0.4 in plots) 
     Fidelity drops with input pulse spectral width σω	


     High fidelity for  

Quantum Wavelength Conversion 

L. Tian, PRL 108, 153604 (2012). See also 
Y. D. Wang & A. Clerk, PRL 108, 153603 (2012) 

Pulse transmission at impedance matching and constant coupling 



Quantum Wavelength Conversion 
Adiabatic scheme via mechanical dark mode 



Various approaches in optomechanics: (photons, photon-phonon) 
-  Stationary state schemes – e.g. Wipf et al, NJP (2008), Vitali et al, PRL 

(2007), Paternostro et al, PRL (2007)  
-  Pulsed scheme – L. Tian, S.M. Carr, PRB (2006), S. G. Hofer et al, PRA 
      (2011), Vanner et al, PNAS (2011) 
 
 
 
 
 
 
 
 
 
Potential issues: 
-    Couplings/entanglement constrained by stability conditions 
-  Thermal noise in mechanical mode 

Entanglement in Optomechanical Systems 
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Current work:  L. Tian, preprint arXiv:1301.5376  
-  Motivated by recent experimental progress in the strong coupling regime 
-  Gives clear picture of the physics of cv entanglement generation in both 

cavity state and cavity output 
 
Strength of this system: 
-  Stability conditions less constrain on couplings – strong entanglement 
-  Strong and robust entanglement in both cavity states and cavity output 
(via Bogoliubov dark mode and quantum interference) 
-  Can be applied to hybrid systems bridging microwave to optical regime 
 
Related work: 
-  Stationary state scheme: Barzanjeh et al, PRL (2012)  
-  Measurement based ideas in atomic systems: Muschik et al PRA (2011) 
-  Other recent work: 
Y.D. Wang, A.A. Clerk, arXiv (2013), 
H. Tan, G. Li, and P. Meystre, arXiv (2013)  

Entanglement in Optomechanical Systems 



ωc2 ωd2ωd1 ωc1

∆2−∆1

Cavity mode a1 – red-detuned drive 
Cavity mode a2 – blue-detuned drive 
Both coupling with mechanical mode bm 
 
System Hamiltonian in the strong coupling regime under RWA 
 
 
 
Stability conditions in strong coupling regime:  
Which indicates g1 > g2 
 

��1 = !m

�2 = !m

g0 =
q

g21 � g22

Robust Entanglement Generation 



Two modes under parametric amplifier coupling 
 
 
System operators evolve in terms of Bogoliubov modes 
 
 
 
 
Entanglement – two-mode squeezed vacuum state (a Gaussian state) 
Covariance matrix 
 
 
 
 
Logarithmic negativity, ref. e.g.  Vidal and Werner, PRA (2002) 
 
 
Ref: Braunstein, van Loock, RMP (2005) 

Continuous Variable Entanglement 



Bogoliubov dark mode and two brights modes 
1. “dark” mode, λ1=0 – one of Bogoliubov modes in two-mode squeezing 
 
 
2. Two other modes and eigenenergies – bright modes 
 
 
 
3. Relations to Bogoliubov modes: 
 
4. Coupling diagram, energy spectrum, and symmetry 
 

�2,3 = ±g0

g1 g2

â1

b̂m

â†2
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Eigenmodes	
  
g0

�g0
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Robust Entanglement Generation 



Bogoliubov dark mode and two brights modes 
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Finite damping rates: Langevin equation for system operators and perturbation 
1.  Eigenmodes – first order corrections 
2.  Relations to Bogoliubov modes: 

 
 
3.  Eigenvalues  

4.  Stability conditions == 

3.  Dependence on damping rates 
(interesting effect on entanglement) 
(κ1, κ2)=(0.3, 0.2) – solid 
(κ1, κ2)=(0.2, 0.3) – dashed 

xi ⇠ i/g0, �m/g0

rc

Robust Entanglement Generation 



•  Entanglement generated via mechanical mode – effect of noise 

•  Excitation of dark mode doesn’t involve mechanical mode => β2(r) 

•  Excitation of bright modes mix cavity and mechanical modes 

•  Quantum interference cancels mechanical modes => β1(r) 
 
•  Cavity/cavity output operators have forms of Bogoliubov operators  
      to leading order with mechanical noise suppressed 

Robust Entanglement Generation 
Central idea 



Robust Entanglement Generation 
Entanglement of cavity states – time domain 

Solving Langevin equation in time domain for operator evolution 
Zero damping rates: 
 
 
Bogoliubov modes at time t 
- Dark mode 
- Bright modes mixing 
 
At time tn with     ,   Bogoliubov modes are free of mechanical mode 
r=squeezing parameter at t; r0=squeezing parameter at t0 



Robust Entanglement Generation 
Entanglement of cavity states – time domain 

Finite damping rates – solving Langevin equation in eigenbasis 
 
 
 
 
 
 
 
 
 
Effect of initial mechanical noise is eliminated to leading order! 

Ideal terms 
zero damping 

Eigenmode 
damping 

First-order mixing  
with mechanical mode 

Bath  
fluctuations 

O(�m/g0)nth



Robust Entanglement Generation 
Entanglement of cavity states – time domain 

Numerical simulation of the covariance matrix nth =0, 10, 100, 1000 
•  Resonances appear for finite nth 
•  Peak height slowly varies with nth  - first order 
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Robust Entanglement Generation 
Entanglement of cavity states – time domain 

Numerical simulation of the covariance matrix nth 
Entanglement at peaks robust against thermal noise 

 
solid: constant couplings 
 
dashed: adiabatic 
 
dotted: stationary scheme 
 

0 5000 100000

1

2

3

nth

E
N

(c) 

0 1 2 3 4 50

1

2

3

E
N

(a) 

t (π/g0)

0 1 2 3 4 50

1

2

3

E
N

(b) 

t (π/g0)
0 1 2 3 4 50

1

2

3

E
N

(d) 

t (π/g0)



Robust Entanglement Generation 
Entanglement of output photons – frequency domain 

Define mode with appropriate commutation relation – x = in, out 
 
 
Solving Langevin equation for eigenmode excitation at given frequency 
 
 
Project cavity modes to output          , similarly 
 
Strong excitation when ωn near eigenvalues 
At ωn=0, dark mode strongly excited ~1/δλ1, 

   bright modes weakly excited ~ 1/g0 
 
At ωn=g0, one bright mode strongly excited 1/δλ2, (similarly at –g0) 

   dark mode weakly excited ~ 1/g0 
   other bright mode weakly excited  ~ 1/2g0 

Entanglement can be strong at these frequencies 

~v(!n) = U~↵(!n) ~v
out

(!
n

)



Robust Entanglement Generation 
Entanglement of output photons – frequency domain 

At ωn=0, dark mode strongly excited ~ 1/δλ1, 
 
 
 
bright modes weakly excited ~ 1/g0 
 
 
 
 
Interesting feature 
 
 
Again, in cavity modes, mechanical input ~ 1/g0 ; cavity inputs ~1/δλ1 
 
At ωn=g0, one bright mode strongly excited 1/δλ2, (similarly at –g0) 

   dark mode weakly excited ~ 1/g0 
   other bright mode weakly excited  ~ 1/2g0	
  



Robust Entanglement Generation 
Entanglement of output photons – frequency domain 
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(κ1, κ2)=(0.2, 0.3) 

Entanglement for 
nth=0, 10, 100, 1000 
 
Strong entanglement  
at 0, g0, -g0  
 
At 0, robust against 
thermal noise 
 
Response differently 
to different damping 
rates – δλi dependence 
	
  



Robust Entanglement Generation 
Discrete state entanglement: beam-splitter operations 

ωc2ωd2ωd1 ωc1

−∆1 −∆2

Cavity mode a1 – red-detuned drive 
Cavity mode a2 – red-detuned drive 
Both coupling with mechanical mode bm 
 
System Hamiltonian in the strong coupling regime with RWA 
 
 
 
Hamiltonian used for quantum state transfer 

��1 = !m

��2 = !m



Robust Entanglement Generation 
Discrete state entanglement: beam-splitter operations 

Adiabatic scheme 
 
At time          ,  with 
 
 
 
 
 
Initial state               , final state 
 
 
Similar arguments for robustness against thermal noise 



Trapped Particle and Superconducting Circuits 

N. Daniilidis, D. J. Gorman, L. Tian, H. Haeffner, preprint (2013) 

•  Hybrid system for scalable quantum machines – best of two worlds 
•  Coherence of atomic systems 

•  Speed of solid-state systems 

Rabi flops on 43Ca+ hyperfine manifold (J. Benmhelm et al., PRA 77 062306) 

J. Chow, PhD thesis (2010) 



Trapped Particle and Superconducting Circuits 
•  Challenges 

Coupling between systems needs to be stronger than noise picked up from 
environment. Initial idea – charge noise comparable to signal of trapped 
particle: (circuit) 

 

 

 

Frequency mismatch between particle motion and superconducting circuits 



Trapped Particle and Superconducting Circuits 

•  Solution – driven electron motion in nonlinear potential 

Particle (electron) trapped by effective harmonic potential 
careful trap simulation was done  
Coupling to pick-up electrode connected with superconducting circuit  
Parametric driving on nonlinear potential to achieve energy conversion 
 
No extra circuit noise  

Ueff = gx

2
'̇

Nonlinear potential 

Trapping potential 
Nonlinear potential 

Pickup electrode 

Pickup electrode 



Trapped Particle and Superconducting Circuits 

•  Solution – driven electron motion in nonlinear potential 
 
Parametric driving on motion of trapped particle – large classical component  
to provide energy difference between quantum motion and superconducting 
circuit 
 
Effective coupling: beam-splitter operation, parametric amplifier operation 



Trapped Particle and Superconducting Circuits 

•  Protocols can be implemented 

Transfer electron motion with superconducting LC oscillators 
 
 
 
 
Connecting distant electrons via transmission line 
 
Electron transmon coupling – with 3D transmon (long coherence time) 
 
 
 
 
 
Architecture for large scale quantum computer … 

Numerical simulation:  
Quantum state transfer (F = 0.992) 
and entanglement (F = 0.997) 



4-wave Mixing Toolbox for Superconducting Resonators 

Initial  
State 

Final 
State â1 â2 â1 â2

Resonators couple to toolbox 
Dispersive 4-wave mixing scheme 
Generate all basic Q operations 
 
 
 
 
 
A. Sharypov, X. Deng, L. Tian, PRB (2012) 



•  Optomechanical quantum interface for high fidelity state conversion  
•  Optomechanical quantum interface for robust entanglement generation  
•  Parametric conversion of trapped particle motion to superconducting 

cicuits 

Conclusions 
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