(Opto)-Mechanical Quantum Interface: Noise Resilient
Operations via Control Techniques

KITP, March 2013

Lin Tian
University of California, Merced

Group Members: Collaborators on these projects:
Xiuhao Deng (graduate student) Hailin Wang (U Oregon)

Dan Hu (graduate student) Nikos Daniilidis

Sumei Huang (postdoc) Dylan Gorman

Feng Mei (postdoc) Hartmut Haeffner (Berkeley)

Supported by




Outline
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Robust photon entanglement 4. a(h,)
(via dark mode) VWV~ ﬂm\ﬂ VWV

Parametric coupling of trapped particle motion with
superconducting circuits

Conclusions



Mechanical Systems in the Quantum Limit

Classical system Quantum limit
* acoustic frequency ‘ * high frequency
 Room temperature  relatively high Q-factor

* thermal excitations * strong coupling with other
nanoscale devices



Mechanical Systems in the Quantum Limit |

Harmonic motion of trapped ions Atomic cloud in optical cavity
(Brown et al, Nature 2011) (Brooks et al, Nature 2012)

o— | _I_ ln_[pn
. R-F: L—er

Optomechanical systems Nanoelectromechanical systems
(Kippenberg, Vahala, Science 2008, review)(O’Connell et al, Nature 2010
Teufel et al, Nature 2011)

50 um

o2m=578MHz




Mechanical Systems in the Quantum Limit

Recent progresses

* Strong coupling between light and mechanical modes
microwave: Teufel et al Nature (2011)

Wi /27,10 MHz /21,100 kHz g/2m,1 MHz
optical experiment: Verhagen et al Nature (2012)
Wi /27,100 MHz k/2m, 7T MHz g/2m, 10 MHz

Mechanical modes reach quantum ground state — cavity cooling or high
resonator frequency — reported in several recent experiments

Optomechanically induced transparency, mechanical dark mode

Weis et al, Science (2010), Teufel et al, Nature (2011), Safavi-Naeini et al
Nature (2011), C. Dong et al Science (2012)

Recent review: Aspelmeyer, Meystre, Schwab, Phys. Today (2012)



Optomechanical Quantum Interface

» Strong/controllable light-matter coupling
» Can connect very different systems — hybrid system

» Connect different parts of a quantum network
Cirac, Zoller, Kimble, Mabuchi, PRL (1997).
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Mechanical Effects of Light

Radiation pressure force on the mirror — cavity backaction

Optical cavity + movable mirror
p Y aOH)

Photon scattered by mirror VAVAVAVAN F #W\H

Forces on mirror ~ photon number

Superconducting resonator - NEMS

B . C
Mechanical motion changes capacitance ‘;’»’_| ' )
Forces on NEMS ~ photon number 1 | ‘(D
Various effects studied: Rlc 3. Tc
Cooling to quantum limit ‘ *
Strong coupling regime ©

H,, =Goa'ai =F -7 =hAw-a'a

e.g. C.K. Law, PRA (199)5)



Optomechanical Quantum Interface

Radiation pressure force and effective linear coupling

Cavity-mechanical mode coupling: mechanical shift of cavity resonance
Hg = —Gz‘a}; a;q

Pumping on cavity mode — steady state amplitude, A;: laser detuning

B —1B;

- Ri/2 = i(A + Gigs)

Ajs

Red sideband driving — effective linear coupling
(all terms relative to steady state)

*

Heff = eia;rbm + €;

b;rn a;

Blue sideband driving — effective linear coupling (instability etc...)

Hepr = i€ (a;-rb;rn — bmai)




Optomechanical Quantum Interface

Radiation pressure force and effective linear coupling

,
<—m> m
. Cavity Cavity
Anti-Stokes resonance resonance Stokes
@ Wys Ws O g

@, ﬁip"'
VAN \N\\NAS
—a, };

Similar to parametric down

Converts phonons to photons. ]

Red detuned driving Blue detuned driving



Optomechanical Quantum Interface

Radiation pressure force and effective linear coupling

Red sideband driving — beam-splitter operation

*

Heff = eia,:-rbm + €;

b;rn a;

Generate transformation - Swapping of modes with for 7t/2 pulse

a;(t) = cos(e;t)a;(0) + isin(e;t)bm (0)
b (t) = cos(€;t)b, (0) 4 ¢ sin(e;t)a; (0)

Blue sideband driving — parametric amplifier
Herr = i€ <a;-rbjn — bmai)

Generate two-mode squeezing — Gaussian EPR pairs and entanglement
Combined with beam-splitter — squeezing of each mode

a;(t) = cosh(e;t)a;(0) + i sinh(e;)b] (0)
by (t) = cosh(e;t)bm, (0) + isinh(e;t)al (0)




Optomechanical Quantum Interface

Outstanding questions for this talk:

» Quantum manipulations of light modes via mechanical mode
» Effect of mechanical noise

» Can we suppress effect of noise?

» Answer: via dark mode — control the pumping



Optomechanical Quantum Interface

Two cavity modes (quantum channels) and a mechanical mode (interface)

ai,as, by, 1 ’L’I’Li Tbout

a(h;) - a(h,) a”in
% ' A% _Z%_—>
2
O'U,t aout

1. Cavity modes can have distinct frequency/system — microwave, optical ...
(hybrid quantum system)

2. Input, output channels for all three modes — mechanical thermal noise

Thermal noise can degrade fidelity/robustness of quantum schemes

4. Extended models: multi-modes/coupling configurations

(V)



Optomechanical Quantum Interface

* System: two cavity modes (microwave, optical), mechanical mode
* Linearization under strongly pumped cavity modes and RWA

Red-detuned — Red-detuned Red-detuned — Blue-detuned
- quantum wavelength conversion - continuous variable entanglement
- discrete state entanglement

i

+ + ] ]
w41 Wel W42 We2 Wd1 Wel We2 Wd2

g1 g2



Quantum Wavelength Conversion

Beam-splitter operations

1
Wd1 Wel

Cavity mode al — red-detuned drive —A1 = wp,
Cavity mode a2 — red-detuned drive — Ay = w,,
Both coupling with mechanical mode bm

System Hamiltonian in the strong coupling regime with RWA
Hr = Z hgi(agbm -+ bjnai) + HJ diss
i=1,2

Hamiltonian used for quantum state transfer



Quantum Wavelength Conversion
Goals

Two cavity modes and

a mechanical mode: a(h,) a(\,)
ai,as, by, VWV . "WH \AVAVAVA

1. Conversion of pre-prepared quantum state in one cavity to the other. Cavity
modes have distinct frequency

2. Transmission of pulse from one input port to another output port at

different frequency
b (Xq) 1‘ b out

1 b 2
a; m a.;
1 2 n mn
a’in — a’out
_Z &_—)
1 2
R e L,



Quantum Wavelength Conversion

Transfer of quantum state : transient scheme by “2” swap pulses

pre-cooling swapping  swapping Double-swap scheme:

I’ 2 3 1. Swap modes a, and b_

y 1 y 2 3 - initial state to b,
a1 —Of —O-

2. Swap modes b, and a,
by - Initial state to a,
a2 CY)' 3. Solving quantum Langevin
equation

Swapping via mechanical mode, thermal noise degrades conversion fidelity
Cavity damping degrades conversion fidelity

Fidelity for gaussian states reduces as: ~ —7¥m1 (2n¢n + 1) cosh(2r) /4

T = time of operation, n,=thermal number -+;1'(cosh(2r) —1)/2
Pre-cooling pulse “1°: swap a, and b, — transient cooling to partially
remove thermal noise of mechanical mode

Tian, Wang, PRA 82, 053806 (2010)



Quantum Wavelength Conversion

Transfer of quantum state : transient scheme by “2” swap pulses

week ending

PRL 107, 133601 (2011) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2011

Storing Optical Information as a Mechanical Excitation in a Silica Optomechanical Resonator

S 1 1 Ly e, 2 1 1
Victor Fiore,” Yong Yang,  Mark C. Kuzyk, Russell Barbour,” Lin Tian,” and Hailin Wang

(b) @, Cavity
1. Matter of principle demonstration of Writing & resohance
optomechanical swap operation fisadout 1 Signal
> @
. : . @,
2. Optical and mechanical signal swap
= 2
. . m O
3. Signal swap back to cavity after & §
some free time = 5
© =
= g
o o
4. Signal retrieved by another swap O <




Quantum Wavelength Conversion

Adiabatic scheme via mechanical dark mode

H =Y —hA;ala;+hgi(albm, +bl,a;)+ hwy,bl by,

i=1,2
[;m No damping: mechanical dark mode
a1 . Y1 = (—g2a1 + g1a2)/90

— - Dark mode energy separated from

a1 a2 other modes ;, — m
Eigenmodes at —A; = wy, A =0, \og = im

Vi + o —— coupling ¢ adiabatically

0 Y1 (Landau—Zéner condition)

—\/ 97 + 95 2

[dgi/dt| /g0 < 8o



Quantum Wavelength Conversion

Adiabatic scheme via mechanical dark mode

Y1 = (—g2a01 + g1a2)/ 90

t=20 t=1T
b, b
;92 91;
a1 az a1 as
gl p— O g2 —
1 = a1 V1 = as

At time =0, g,=0, g,=-g,, dark mode a,(0)

at time t=T, g,=g,, 2,=0, dark mode a,(T) L
Initial state in mode a, 1s transferred to mode a, a2 (T) — a1 (O)

Two-way state swapping scheme, S. Huang and L. Tian, in preparation
(2013)



Quantum Wavelength Conversion

Adiabatic scheme via mechanical dark mode
Langevin eq. in interaction picture

idi(t) /dt = M (£)(t) + iVE Gin(t) —i% gi(t) O
B M(@)=| gi(t) —i3 go(t)

= lay, by, ax]|* E :

V(1) = la, by, a2 0 got) —i%

Finite damping: we treat damping terms in M(t) as perturbation terms
Dark mode contains small contribution from mechanical mode

(K] — K
Y1 = (‘g—zal — (K 2)8182 bi|+ g—ldz> Not totally dark!
80 28, 20

Eigenenergy 1s modified — causes damping
g1 92
A\ =
: (290 2T 502 2Jo )

Hence, adiabatic conversion can be affected by mechanical noise
How to characterize these effects?




Quantum Wavelength Conversion

Adiabatic scheme via mechanical dark mode

Fidelity for gaussian states at time 7 F' = F F
Fy ~ 1 (0, T)i.;osh(Qr) —1)—[ficosh(2r)]  f(0,T) ~ (k1 +k2)T/4

1 | £2
Fom 1917 (0. T)yle)/2 o < Yon(2nan + DT (51 — ) /490)’
2-swap pulse scheme:- ;T (cosh(2r) — 1)/2 —VmT (2n + 1) cosh(2r)/4
1 ' I___'___I___'___I___'___F ' 1 ! 1 ' 1
‘\\F ! Re-6 | coherent state r=0
_, 099t AN - squeezed state r=0.4
‘~\\\ F] h;‘ _
-~ 098 F R S
1 €-0L
0.97 | coherent state r=0
squeezed state r=0.4
o%( ., . o =—~=—/" . . . .
0 0.02 0.04 0 0.02 0.04
K1/ 90 K1/ 90

Fidelity plotted for xk,=0, F, linear vs k;, F',, quadratic vs k;
oF=F(0)-F(y,) describes contribution from mechanical noise



Quantum Wavelength Conversion

Pulse transmission at impedance matching and constant coupling

Input mode al. (t) to be transferred to output mode azout(t)
Noise operators a2 (t) and b, (t)

out 5
Using Langevin equation at constant M and az’n
input-output relation 3
Tout(t) = Tin(t) — VEU(t az az, .

Transmission matrix — unitary operator

Tout (W) = T(w)Tip (w)

Output operator a?)ut( ) T31( ) ! (w‘) + T\32 (w‘)bm(w') + T33 (w’)(lzgn(w‘)

AN

Condition for high fidelity 7%, (w) — 1 Tho(w), Ths(w) — 0



Quantum Wavelength Conversion

Pulse transmission at impedance matching and constant coupling

et

-0.4 -0.2 0 0.2 0.4

* optimal transmission condition g%k, = gik; Tk (w) —> 1
Blue-dashed curve shows non-optimal transmission

* Half width derived Aw ~ k; (~ 0.2 — 0.4 1n plots)
Fidelity drops with input pulse spectral width G,

High fidelity for Aw
g ytor o, < L. Tian, PRL 108, 153604 (2012). See also

Y. D. Wang & A. Clerk, PRL 108, 153603 (2012)



Quantum Wavelength Conversion

Adiabatic scheme via mechanical dark mode

Reports

ScClencexpress

Optomechanical Dark Mode

Chunhua Dong, Victor Fiore, Mark C. Kuzyk, Hailin Wang*

Department of Physics and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, USA.
*To whom correspondence should be addressed. E-mail: hailin@uoregon.edu

Thermal mechanical motion hinders the use of a mechanical system in applications
such as quantum information processing. While the thermal motion can be
overcome by cooling a mechanical oscillator to its motional ground state, an
alternative approach is to exploit the use of a mechanically-dark mode that can
protect the system from mechanical dissipation. We have realized such a dark mode
by coupling two optical modes in a silica resonator to one of its mechanical
breathing modes in the regime of weak optomechanical coupling. The dark mode,

other, effectively mediating an
optomechanical coupling between the
two optical modes. This type of me-
chanically-mediated coupling can be
immune to thermal mechanical motion,
providing a promising mechanism for
interfacing hybrid quantum systems (9,
14, 15).

To introduce the optomechanical
dark mode, we consider an
optomechanical system. in which two
optical modes couple to a mechanical
oscillator with optomechanical cou-
pling rates Gy and G,, respectively (see
Fig. 1B). As illustrated in Fig. 1C, the
ontomechanical counling is driven bv




Entanglement in Optomechanical Systems

Various approaches in optomechanics: (photons, photon-phonon)

- Stationary state schemes — e.g. Wipf et al, NJP (2008), Vitali et al, PRL
(2007), Paternostro et al, PRL (2007)

- Pulsed scheme — L. Tian, S.M. Carr, PRB (2006), S. G. Hofer et al, PRA
(2011), Vanner et al, PNAS (2011)

resonator . . resonator
transmission line
V.?. ' : .Vt‘.
C, (x) : :~ C (%)
L w4 L

[
R
Unknown H):?] T | E:TI

state in a, a,.a; c. b,.a,
Potential issues:

- Couplings/entanglement constrained by stability conditions

- Thermal noise in mechanical mode



Entanglement in Optomechanical Systems

Current work: L. Tian, preprint arXiv:1301.5376

- Motivated by recent experimental progress in the strong coupling regime

- @Gives clear picture of the physics of cv entanglement generation in both
cavity state and cavity output

Strength of this system:

- Stability conditions less constrain on couplings — strong entanglement

- Strong and robust entanglement in both cavity states and cavity output
(via Bogoliubov dark mode and quantum interference)

- Can be applied to hybrid systems bridging microwave to optical regime

Related work:

- Stationary state scheme: Barzanjeh et al, PRL (2012)

- Measurement based ideas in atomic systems: Muschik et al PRA (2011)
- Other recent work:

Y.D. Wang, A.A. Clerk, arXiv (2013),

H. Tan, G. Li, and P. Meystre, arXiv (2013)



Robust Entanglement Generation

i

: :
Wd1 Wel We2 Wd2

Cavity mode al — red-detuned drive —A1 = w,,
Cavity mode a2 — blue-detuned drive Ay = w,,
Both coupling with mechanical mode bm

System Hamiltonian in the strong coupling regime under RWA

H; = hgy(alby, + b1 ay) + ihgo(abbl — asbm) + Hi diss

2
Stability conditions in strong coupling regime: g_ > max { k2 K1 }
Which indicates g, > g, g5 K1 Ko

g1 = gocosh(r) g = gosinh(r) 9go = \/9% ~ 95



Continuous Variable Entanglement

Two modes under parametric amplifier coupling
H, = —gq ((1,1(1.2 + a{a%)

System operators evolve in terms of Bogoliubov modes

a1(t) H B1(r) = cosh (r) a1 + 2 sinh (7) ag

as(t) o Bo(r) = cosh (r) ag + 2 sinh (7) a.J{

Entanglement — two-mode squeezed vacuum state (a Gaussian state)
Covariance matrix

cosh(2r) 0 sinh(2r) 0
v 1 0 cosh(2r) 0 — sinh(27r)
2| sinh(2r) 0 cosh(2r) 0
0 — sinh(2r) 0 cosh(2r)

Logarithmic negativity, ref. e.g. Vidal and Werner, PRA (2002)
En = 2rlog, e

Ref: Braunstein, van Loock, RMP (2005)



Robust Entanglement Generation

Bogoliubov dark mode and two brights modes

1. “dark” mode, A,=0 — one of Bogoliubov modes in two-mode squeezing

a1 = —isinh(r)a; + COSh('I’)(l;
2. Two other modes and eigenenergies — bright modes 2.3 = £go

1
052:3 = —— (COSh(T’)(Ll + bm. + ( sinh(r)(t%)

V2

3. Relations to Bogoliubov modes: | ary = ,8;; (g + 3)/ V2 =B

4. Coupling diagram, energy spectrum, and symmetry

~ Eigenmodes
bim
90 Qa2
g1 g2
0 a1

ai &; —90



Robust Entanglement Generation

Bogoliubov dark mode and two brights modes

Finite damping rates: Langevin equation for system operators and perturbation
1. Eigenmodes — first order corrections x; ~ K;/go, Vi /9o
2. Relations to Bogoliubov modes:

a1 = Bl + z1bp; (a2 + a3)/V2 = B1 — V2x3bn,

3. Eigenvalues 0
)\1 — 1(5)\1 and )\2:3 = ﬂ:go + 1(5)\2

4. Stability conditions == j\; < 0 CE _0.1
20

3. Dependence on damping rates =

(interesting effect on entanglement) < _p.9o

(x1, k2)=(0.3, 0.2) — solid
(x1, ¥2)=(0.2, 0.3) — dashed 0




Robust Entanglement Generation

Central idea

Entanglement generated via mechanical mode — effect of noise
Excitation of dark mode doesn’t involve mechanical mode => ,(r)
Excitation of bright modes mix cavity and mechanical modes
Quantum interference cancels mechanical modes => [3,(r)

Cavity/cavity output operators have forms of Bogoliubov operators
to leading order with mechanical noise suppressed

B1(r) = cosh(r)as + 1 sinh('r)ag

Ba(r) = cosh(r)as + isinh(r)al



Robust Entanglement Generation

Entanglement of cavity states — time domain

Solving Langevin equation in time domain for operator evolution
Zero damping rates:

a1 (t) = a1(0); az,3(t) = exp(Fip(t))az 3(0)

Bogoliubov modes at time t
- Dark mode 32(t) = P2(0)

- Bright modes mixing 3, (¢) = ,"31(0) cos ¢(t) — iby, (0) sin p(t)

At time t, with p(t,,) = nm, Bogoliubov modes are free of mechanical mode
r=squeezing parameter at t; ry=squeezing parameter at t,

aq(t) cosh(r) —isinh(r) cosh(rg)(—1)" isinh(rg)(—1)" a1(0)
ag(t) isinh(r) cosh(r) —i sinh(rg) cosh(rp) ag (0)



Robust Entanglement Generation

Entanglement of cavity states — time domain

Finite damping rates — solving Langevin equation in eigenbasis

a(t,) = [(—1)" cosh(r)aq(0) — isinh(r)a%(O)]

a}(t) ={|i(~1)" sinh(r)a; (0) + cosh(r)a}(0)]

_|_

+

f1(a1(0),a}(0))
fa(a1(0),al(0))

+

_I_

Y1 bm (O)

Y2bm (0)

4 noise integra

Hnoise integral

Ideal terms
zero damping

Effect of initial mechanical noise is eliminated to leading order!

O(k2/g3)ng

v

Eigenmode
damping

O(ki/90)

\ 4

Bath
fluctuations

()(/{.i/go)
O(VYm/go)ntn

First-order mixing
with mechanical mode



Robust Entanglement Generation

Entanglement of cavity states — time domain

Numerical simulation of the covariance matrix n, =0, 10, 100, 1000
* Resonances appear for finite n,, tn, = nw/go
* Peak height slowly varies with n,, - first order

Constant couplings Adiabatic scheme

(0) r(ta) =1




Robust Entanglement Generation

Entanglement of cavity states — time domain

Numerical simulation of the covariance matrix n,
Entanglement at peaks robust against thermal noise

solid: constant couplings
r — 1
dashed: adiabatic
r(t2) =1
dotted: stationary scheme




Robust Entanglement Generation

Entanglement of output photons — frequency domain
Define mode with appropriate commutation relation — x = in, out
o (wn) = [ dogw —wn)a®(w) [0 (wm), 6 (@n)] = Srundiy
Solving Langevin equation for eigenmode excitation at given frequency

d(wn) = i(ITwp — A) " UTVEK Tin (wn)

Project cavity modes to output U(w,, ) = Ud(wy, ), similarly Uy, (wn)

Strong excitation when w  near eigenvalues
At o =0, dark mode strongly excited ~1/0A,,
bright modes weakly excited ~ 1/g,

At o =g,, one bright mode strongly excited 1/0A,, (similarly at —g,)
dark mode weakly excited ~ 1/g,
other bright mode weakly excited ~ 1/2g,

Entanglement can be strong at these frequencies



Robust Entanglement Generation

Entanglement of output photons — frequency domain

At o =0, dark mode strongly excited ~ 1/0A,,

sinh(r) 42z, icosh(r)

bright modes weakly excited ~ 1/g,

cosh(r i sinh(r > —
Q‘2=3(w0) - (:F \/§$§0) _\/5190 T \/_QE)) ) . Alvin(wO)

Interesting feature

B1(wo) = (az(wo) 4+ as(wo))/V2 = —y/Fmbin(wo)/go
Again, in cavity modes, mechanical input ~ 1/g, ; cavity inputs ~1/0A,
At o =g,, one bright mode strongly excited 1/0A,, (similarly at —g,)

dark mode weakly excited ~ 1/g,
other bright mode weakly excited ~ 1/2g,



Robust Entanglement Generation

Entanglement of output photons — frequency domain

Entanglement for 10
n,=0, 10, 100, 1000

Strong entanglement

at 09 gOa _gO

(a)
k1, k2)}=(0.3, 0.2)

At 0, robust against
thermal noise 10

Response differently -

to different damping =Y 9|

rates — OA; dependence

10 -
w, =0 (c)
55
L W = 90
% 4000 8000
Mth
10 -
(d)
54 v
O %000 8000

Mnth



Robust Entanglement Generation

Discrete state entanglement: beam-splitter operations

1
Wd1 Wel

Cavity mode al — red-detuned drive —A1 = wp,
Cavity mode a2 — red-detuned drive — Ay = w,,
Both coupling with mechanical mode bm

System Hamiltonian in the strong coupling regime with RWA
Hr = Z hgi(agbm -+ bjnai) + HJ diss
i=1,2

Hamiltonian used for quantum state transfer



Robust Entanglement Generation

Discrete state entanglement: beam-splitter operations

Adiabatic scheme ¢1(t) = gosin(At) and go(t) = —go cos(At)

Attime ty = /4, with A = go/4n

ai(ty) = i(1.1(0) + (=)™ as(0)
V2 NG
1 (=2
az(ty) = ﬁal(O) - /3 as(0)
Initial state |110q) , final state [Ven) = (|1109) + |04 12>)/\/§
01152) [en) = (|1102) — [0112))/v/2

Similar arguments for robustness against thermal noise



Trapped Particle and Superconducting Circuits

N. Daniilidis, D. J. Gorman, L. Tian, H. Haeffner, preprint (2013)

Hybrid system for scalable quantum machines — best of two worlds
Coherence of atomic systems

5105 3 g
£ o8} i
[

]
T 06}

a
g 04}
Q.

€ 02}
Q
= o0k

L yan L L L L
50 51 52 53 54
Microwave pulse duration (ms)

Rabi flops on #*Ca* hyperfine manifold (J. Benmhelm et al., PRA 77 062306)

Speed of solid-state systems

B 10— — A— & —A— a— = — — 1
0.8
0.6 f
0.4t
02t

0.0 +— I I !
0 20 40 60 80
Pulse Length [ns]

J. Chow, PhD thesis (2010)




Trapped Particle and Superconducting Circuits
* Challenges

Coupling between systems needs to be stronger than noise picked up from
environment. Initial idea — charge noise comparable to signal of trapped
particle: (circuit)

Frequency mismatch between particle motion and superconducting circuits



Trapped Particle and Superconducting Circuits

* Solution — driven electron motion in nonlinear potential

L C S Pickup electrode
p ﬁ ™~ Nonlinear potential
/ e I‘:‘ ' Trapping potential
/{_ A Nonlinear potential

- Pickup electrode

Particle (electron) trapped by effective harmonic potential

careful trap simulation was done

Coupling to pick-up electrode connected with superconducting circuit
Parametric driving on nonlinear potential to achieve energy conversion

Ueff — 933290

No extra circuit noise



Trapped Particle and Superconducting Circuits

* Solution — driven electron motion in nonlinear potential

Parametric driving on motion of trapped particle — large classical component
to provide energy difference between quantum motion and superconducting
circuit

xr; = Agcos(Qut) + ;
Effective coupling: beam-splitter operation, parametric amplifier operation

He, = hg cos(Q2qt) (ei(Q_wy)taLay + ei(Q“’y)taLa



Trapped Particle and Superconducting Circuits

* Protocols can be implemented

Transfer electron motion with superconducting LC oscillators

Connecting distant electrons via transmission line

Electron transmon coupling — with 3D transmon (long coherence time)

Numerical simulation:
Quantum state transfer (F = 0.992)
and entanglement (F = 0.997)

Architecture for large scale quantum computer ...



4-wave Mixing Toolbox for Superconducting Resonators

Resonators couple to toolbox
Dispersive 4-wave mixing scheme
Generate all basic Q operations

(Pm. @1, ®2)

Beam-Splitter Two-mode Squeezing

Initial » > Final

~State State

a1 a9 ap a2
Cross-Kerr Single-mode Squeezing

A. Sharypov, X. Deng, L. Tian, PRB (2012) Classical Driving
En Cn

ot




Conclusions

* Optomechanical quantum interface for high fidelity state conversion
* Optomechanical quantum interface for robust entanglement generation
* Parametric conversion of trapped particle motion to superconducting

cicuits
People Involved
Group Members: Collaborators on these projects:
Xiuhao Deng (graduate student) Hailin Wang (U Oregon)
Dan Hu (graduate student) Nikos Daniilidis
Sumei Huang (postdoc) Dylan Gorman

Feng Mei (postdoc) Hartmut Haeffner (Berkeley)



