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  The premise: DQES The premise: DQES 

    = -  :Dynamical Quantum Error Suppression Non dissipative QEC
-     Open loop Hamiltonian engineering based on   .unitary control operations

 Key principle: -   Time scale separation ⇒ Co    herent averaging of interactions 

 :         Paradigmatic example Spin echo               -           Effective time reversal

            Hahn .1950

 Simplest setting:       Multipulse decoherence control for quantum memory ⇒  Dynamical Decoupling

             & ,  LV Lloyd PRA  .1998
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  The premise: DQES The premise: DQES 

    = -  :Dynamical Quantum Error Suppression Non dissipative QEC
-     Open loop Hamiltonian engineering based on   .unitary control operations

 Key principle: -   Time scale separation ⇒ Co    herent averaging of interactions 

 :         Paradigmatic example Spin echo               -           Effective time reversal

            Hahn .1950

 Simplest setting:       Multipulse decoherence control for quantum memory ⇒  Dynamical Decoupling

    Key features: -     Non Markovian open quantum system dynamics

τcontrol
τ c

∼ ωc τcontrol
 small parameter 

( )       1 Error component may include coupling to quantum  bath

( )    2 Error suppression is enforced  perturbatively

( )  /     3 Error suppression control synthesis are achieved without 
            requiring quantitative knowledge of error sources
      [       ]   basic difference wrto optimal control theory approaches

             & ,  LV Lloyd PRA  .1998
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  Control-theoretic setting Control-theoretic setting 

 

         Target system exposed to noise due to a   quantum or classical  /  environment bath   

≡∑a
Sa⊗Ba

    System operators {Sa}    ,  form Hermitian operator basis with S0 = IS    and Sa ≠0  .traceless  
  

H = [HS,g + HS,err] ⊗ IB + IB ⊗ HB + HSB    
Pure-system Pure-bath

    Bath operators {Ba}      [  are bounded but otherwise arbitrary possibly unknown].
        [  ]     Classical bath limit stochastic field is formally recovered for Bα = IS

 
  and B0 = 0.

Target 
System, S

Controlled 
Dynamics

Bath, B

Classical 
Controller
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  Control-theoretic setting Control-theoretic setting 

 

         Target system exposed to noise due to a   quantum or classical /  environment bath   

≡∑a
Sa⊗Ba

    System operators {Sa}    ,  form Hermitian operator basis with S0 = IS    and Sa ≠0  .traceless  
  

H = [HS,g + HS,err] ⊗ IB + IB ⊗ HB + HSB    
Pure-system Pure-bath

    Bath operators {Ba}      [  are bounded but otherwise arbitrary possibly unknown].
        [  ]     Classical bath limit stochastic field is formally recovered for Bα = IS

 
  and B0 = 0.

  Environment B is uncontrollable:    Controller acts on system ,only  

∑m (H m⊗ I B ) hm( t)Htot(t)  H + Hctrl(t),      Hctrl,0 (t) =  

'Toggling frame' 
propagator

Control inputs

    Universal control on S       -  -  [may or may not require a non zero pure system drift] . Hamiltonian
      ,   Control capabilities are typically restricted and themselves noisy [  + ].systematic random

Target 
System, S

Controlled 
Dynamics

Bath, B

Classical 
Controller

U 0(t) = Texp {−i∫0

t
ds [H ctrl ,0(s) + H S , g ] }
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  DQES: Overview and challenges  DQES: Overview and challenges  

       [  ...]     – DQES theory has diversified into a still growing number of related directions

     :Broadly categorized based on control objective

   Arbitrary state preservation ⇒     DQES theory for quantum memory11

   Quantum gate synthesis ⇒      DQES theory for quantum computation

✔    – -  /     Pulsed dynamical decoupling 'Bang bang' limit instantaneous pulses
✔    –  /  Pulsed dynamical decoupling Bounded control 'fat' pulses
✔  -   Continuous time dependent modulation

✔  -   –     /    Hybrid DD QC schemes BB resources w or w o encoding
✔    –    Dynamically corrected gates Bounded control only
✔  /   Optimal control convex optimization approaches

22

         - -      – DQES has been validated in a variety of proof of principle experiments in different systems

     -  -   ...   Emerging method of choice for resource efficient physical layer decoherence control
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  Recent DD/DCG experiments [partial list...]Recent DD/DCG experiments [partial list...]

⋮

                                                                                                      YEAR PROTOCOL QUBIT SYSTEM NOISE REFERENCE  

   2009       , ,       CPMG UDD LODD Be+                                   trapped ion Engineered phase noise &Biercuk al
                  ,                                                                           CPMG UDD ESR in crystals Natural dephasing &   Du al
                                                             XY4 Polarization qubit Engineered depolarization &Damodarakurup al 
                                                                                                                                                     
          ,                                                           2010 CPMG UDD Atomic ensemble Collisional dephasing  &Sagi al 
                  , ,                           -                               CPMG UDD CDD Double QD Spin bath dephasing &  Barthel al
                  , ,          -                  -  /              CPMG UDD PDD NV center Spin bath dephasing pulse errors &Ryan al
                  ,                     -                   -                            CPMG XY4 NV center Spin bath dephasing  &de Lange al
                  , ,             :                   -  /      CPMG XY4 CDD ESR in Si P Spin bath dephasing pulse errors &Tyryshkin al

   2011       ,                                   -                                 Hahn CPMG Double QD Spin bath dephasing &Bluhm al
                  ,                  -                 -                           Hahn CPMG NV centers Spin bath dephasing &Naydenov al
                  ,                  CPMG UDD Ca+                                              trappedions Natural dephasing &Szwer al
                  , ,          -        CPMG XY4 CDD Solid state NMR    -                                    Spin bath dephasing &Ajoy al
                  , ,                                                           CPMG UDD PDD Flux qubit Natural phase noise &Bylander al

                                     -        -                   2012 CPMG Rare earth crystal Spin bath dephasing - &Pascual Winter al
                  ,                       :                    - /                Hahn XY4 ESR in Si P Spin bath defect dephasing  &  Jarryd Pla al
                                                           -     DCGs Be trapped ion Laser frequency jitter                             &  Hayes al



  

  DQES: overview and challenges  DQES: overview and challenges  

       [  ...]     – DQES theory has diversified into a still growing number of related directions

     :Broadly categorized based on control objective

   Arbitrary state preservation ⇒     DQES theory for quantum memory11

   Quantum gate synthesis ⇒      DQES theory for quantum computation

✔    – -  /     Pulsed dynamical decoupling 'Bang bang' limit instantaneous pulses
✔    –  /  Pulsed dynamical decoupling Bounded control 'fat' pulses
✔  -   Continuous time dependent modulation

✔  -   –     /    Hybrid DD QC schemes BB resources w or w o encoding
✔    –    Dynamically corrected gates Bounded control only
✔  /   Optimal control convex optimization approaches

22

         - -      – DQES has been validated in a variety of proof of principle experiments in different systems

     -  -   ...   Emerging method of choice for resource efficient physical layer decoherence control

  Going  beyond -   [ ]      proof of principle inevitably entails more 'complex' control scenarios ⇒  

 : Key challenge
      [To systematically address and incorporate practical   system and control] .constraints
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Sample Problem 1:Sample Problem 1:
High-fidelity Long-time Low-latency High-fidelity Long-time Low-latency 

Quantum MemoryQuantum Memory  
Khodjasteh, Sastrawan, Hayes, Green, Biercuk & LV,

Nature Commun., submitted.



  

  Setting and control objectiveSetting and control objective

   :  -      Simplest DD scenario Single purely dephasing qubit controlled by perfect π  pulses

χ p =∫0

∞ S (ω)

2πω2 F p(ω)d ω

              ,      Qubit coherence decays as with DD error at t =Tp    determined by spectral overlap

     The larger the     order of error suppression αp,       ,the higher the degreeof error cancellation
         as long as ωcτ  i   .  s perturbatively small  

  

e−χ p

Power spectrum   x Filter Function (FF)

      DD sequence of duration Tp       specified in terms of pulse pattern p = {tj }, j =1,...,n 

S (ω) ∝ ω s f (ω ,ωc) F p(ω) ∝ (ω τ )
2(α p+1)

,  Uhrig PRL 98 ; & ,  2007 Cywinski al PRB 77 ( );2008
,  & ,  Khodjasteh Erdelyi LV PRA 83 ( ).2011

τ ≡ min( t j+1 − t j) Minimum 'switching time'
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  Setting and control objectiveSetting and control objective

   :  -      Simplest DD scenario Single purely dephasing qubit controlled by perfect π  pulses

 Goal:        Achieve high fidelity over desired storage time Ts   ⇒   Straightforward  in principle... 

χ p =∫0

∞ S (ω)

2πω2 F p(ω)d ω

              ,      Qubit coherence decays as with DD error at t =Tp    determined by spectral overlap

     The larger the     order of error suppression αp,       ,the higher the degreeof error cancellation
         as long as ωcτ  i   .  s perturbatively small  

  

e−χ p

Power spectrum   x Filter Function (FF)

      DD sequence of duration Tp       specified in terms of pulse pattern p = {tj }, j =1,...,n 

S (ω) ∝ ω s f (ω ,ωc) F p(ω) ∝ (ω τ )
2(α p+1)

,  Uhrig PRL 98 ; & ,  2007 Cywinski al PRB 77 ( );2008
,  & ,  Khodjasteh Erdelyi LV PRA 83 ( ).2011

τ ≡ min( t j+1 − t j) Minimum 'switching time'

    -     Simply use high order DD sequence with Ts  = Tp , . .  , e g Uhrig DDτ ≡ t 1 = O(T p /n
2)
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  Quantum memory requirementsQuantum memory requirements

  In practical -  ,       quantum memory applications high fidelity should be delivered while  

    : Interconnected issues to address

( )      1 allowing arbitrarily long storage time Ts;   

( )     ; 2 minimizing latency for information retrieval
( )    [   ]  .3 operating under technological timing and sequencing control limitations

    ( , ...)  Perturbative DD CDD UDD is  not viable        –  if min switching time is constrained
       for fixed τ > ,     ,    0 a max storage time exists beyond which increasing αp   ...no longer helps

    ( ...)  Numerical DD BADD is  not viable  –      search complexity grows exponentially with Ts... 

  -    Mid sequence interruptions are  not permitted  –       min accesslatencyis set by Tp...  

UDD5
GaAs S-T spin qubit 

S (ω) ∝ ω−2 e−ω
2
/ ωc

2

ωc /2π = 10kHz

T 2
∗≈35 ns , τ=1μ s
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Quantum memory via repetitionQuantum memory via repetition

 Strategy:    -    Periodically repeat a high order DD sequence

χ
[ p]m =∫0

∞ S (ω)

2πω2

sin2(mωT p /2)

sin2(ωT p/ 2)
F p(ω)d ω

  -     Long time coherence determined by αp, s, 
      -    and high frequency contributions at
       'resonating frequencies' ωres ≡  k 2π/mTp.  

    Assume a   hard spectral cutoff,   then
   

χ
[ p]∞ =∫0

ωc S (ω)

4πω2

F p(ω)

sin2(ωT p/2)
d ω

6/16
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Quantum memory via repetitionQuantum memory via repetition

 Strategy:    -    Periodically repeat a high order DD sequence

χ
[ p]m =∫0

∞ S (ω)

2πω2

sin2(mωT p /2)

sin2(ωT p/ 2)
F p(ω)d ω

  -     Long time coherence determined by αp, s, 
      -    and high frequency contributions at
       'resonating frequencies' ωres ≡  k 2π/mTp.  

    Assume a   hard spectral cutoff,   then
   

χ
[ p]∞ =∫0

ωc S (ω)

4πω2

F p(ω)

sin2(ωT p/2)
d ω

  A   coherence plateau          :may be engineered by judicious selection of a base sequence

s + 2α p > 1, ωc T p < 2π

        ,     Guaranteed high fidelity throughout long storage times with latency capped at Tp   ≪ Ts .
   

6/16

(16 slots, 10 pulses)



  

Quantum memory via repetition: ResultsQuantum memory via repetition: Results

      A direct search up to t = Ts       is viable by restricting to   digital     DD sequences in the  'Walsh family'

, ,  & ,  Hayes Khodjasteh LV Biercuk PRA 84 ( ).2011

   Minimize  sequencing complexity.     :  ( / )Number of Walsh DD sequences 1 2 Ts/ τ  .  vs 2 Ts/ τ

   

       A periodic sequence structure emerges   naturally     .for sufficiently long storage time
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Realistic effects: Pulse errors and soft cutoffsRealistic effects: Pulse errors and soft cutoffs

s + 2α p > 1, s + 2α pul>1, ωc T p < 2π

  ,   ,           ... In reality pulses are imperfect noise need not have a hard cutoff nor be purely dephasing

            .A coherence plateau with finite yet exceptionally long duration may still be engineered

  -       Pulse length errors may be included using -   multi axis FF formalism.   :New plateau conditions
   

           -  .Coherence plateau can be restored by replacing 'primitive' with 'error corrected' pulses
          Storage times in excess of 1s (≈ T1)      at plateauerror ratesof 10-9    !with realistic noise spectrum
   

    Results extend to -multi qubit memory
    . under independent dephasing noise

8/16



  

Sample Problem 2:Sample Problem 2:
Automated Dynamically Corrected Automated Dynamically Corrected 

Quantum GatesQuantum Gates  
Khodjasteh, Bluhm & LV, Phys. Rev. A 86, 042329 (2012).



  

  Setting and control objective Setting and control objective 

 :Goal       To suppress evolution due to  unwanted ,Hamiltonians   

    Intended evolution ⇒ I      deal gate propagator over duration T: 

U ideal (T ) = U 0(T )⊗ I B ≡ Q ⊗ I B =Texp {−i∫0

T
ds [ H ctrl ,0(s) + H S ,g ] ⊗ I B}

    Actual evolution ⇒  Total g     ate propagator over duration T: 

U actual
(T ) = Texp{−i∫0

T

ds [H ctrl (s) + H S , g+ H err ]}≡ Q exp(−i EQ[T ])

Error action 
operatorexp(−i EQ[T ]) = Texp {−i∫0

T
ds [U 0(s)

† H err U 0(s)]}

H err = H S ,err+H B+H SB+H ctrl ,err
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  Setting and control objective Setting and control objective 

 :Goal       To suppress evolution due to  unwanted ,Hamiltonians   

 :Fact          -   -   The norm of the error action operator 'modulo pure bath terms' upper bounds the

 [  ]        :distance fidelity loss between the intended and the actual system evolution

mod B (E) ≡ E −
I S

d S

⊗ traceS (E )
,  & ,  Lidar Zanardi Khodjasteh PRA  78 ;2008

 & ,  Khodjasteh LV PRL 102 .2009

         Fidelity loss in DQES is reduced by  .minimizing EPG   

1− f Uhlman(T ) ⩽∥ρS
ideal

(T )−ρS
actual

(T )∥1 ⩽∥mod B (EQ [T ])∥op ≡ EPG

  DCG synthesis ⇔        Seek control modulation such that effect of H  err   . is perturbatively canceled

    Intended evolution ⇒ I      deal gate propagator over duration T: 

U ideal (T ) = U 0(T )⊗ I B ≡ Q ⊗ I B =Texp {−i∫0

T
ds [ H ctrl ,0(s) + H S ,g ] ⊗ I B}

    Actual evolution ⇒  Total g     ate propagator over duration T: 

U actual
(T ) = Texp{−i∫0

T

ds [H ctrl (s) + H S , g+ H err ]}≡ Q exp(−i EQ[T ])

Error action 
operatorexp(−i EQ[T ]) = Texp {−i∫0

T
ds [U 0(s)

† H err U 0(s)]}

H err = H S ,err+H B+H SB+H ctrl ,err
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  Analytical DCGs: AssumptionsAnalytical DCGs: Assumptions

exp(−i EQ [T ]) = Texp {−i∫0

T
ds [U 0(s)

† H err U 0(s)]}

  :System assumptions  Driftless –    /     ,System Hamiltonian is zero not needed for complete control   

 HS,g= 0, HS ≡ H
S,err ⇒ 

  :Control assumptions    Access to      universal set of 'primitive' control Hamiltonians – . .  e g

{ h x( t)σ x
(i) , h y (t)σ y

(i) , h zz( t)σz
(i)⊗σz

( j) } , i , j=1,… , N ,  subject to

( ) C1 -     – Finite power and bandwidth constraints  Bounded ,  amplitude fixed minimum   gate duration   

( )  C2 Perfect control –     Bath coupling is the only    error source

( ) C3   Stretchable control profiles – Same       primitive gate achievable with different 'speeds'  

Trapezoidal Rectangularh(t ) →
1
r

h( t
r )

EQ [T ] → r EQ [rT ]

Stretching gives controllable relationship between EPGs of different gate implementations...

U 0(t) = Texp {−i∫0

t
ds H ctrl ,0(s) }

10/16



  

  Analytical DCGs: ConstructionsAnalytical DCGs: Constructions

 & ,  LV Knill PRL 90 .2003    If target gate Q = I  ( ),      NOOP a solution is given by  .Eulerian DD

   :Modified Eulerian construction     Implement control path

  starting at I on     'augmented' Cayley graph ⇒  

  -  To effect non trivial Q ,      identify two combinations of primitive gates
  that have same [ - ]   first order EPG  

= Q exp(−i EQ) , I Q= exp(−i EQ)Q* 
[First-order] 
'balance pair' 

EDCG=E EDD+∑i=1

G
U gi

† EQ U g i
+E DCG

[2+]

 -       Total first order error vanishes as long as the
  primitive gate errors and EQ    obey DD condition ⇒

( )   -  ,     i To non identity vertex attach edge labeled by IQ

( )   ,      ii To identity vertex attach edge labeled by Q*

∥mod B(EDCG)∥=∥mod B (E DCG
[2+]

)∥= O (∥H err∥
2 )

 & ,  Khodjasteh LV PRL 102 ;  2009 PRA 80 .2009

        .Significantly smaller error compared to 'direct switching'

,  & ,  Khodjasteh Lidar LV PRL 104 .2010  -     .Higher order cancellation achievable by concatenation  

 :Euler path  Q

Q
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  DCGs in the lab: Trapped ionsDCGs in the lab: Trapped ions

, ,  & ,   ;Hayes Khodjasteh LV Biercuk PRA 84 2011
                                      ,   Hayes et al PRL 109 2012.

    Recently implemented Mø -lmer Sø         rensen composite gate sequences can be interpreted as
          ...  DCGs under a simple error model

U Q( t) = exp [S N (α( t )a
†− α(t )∗a)] Q , Q = exp[−iΦ(t) S N

2 ] -  Spin dependent gate 

                                   Gate relies on disentangling spin and motional degrees of freedom at ⇒
 -      Residual spin motional entanglement results in error action

α(t ) = Ω
2
∫0

t
exp[−i(δ+Δ)s ]ds

t g = j 2π/δ

Δ =   Detuning error ≪ δ 

−i EQ(t )= S N (α( t )a
†− α(t )∗a)

   : Key simplifications
    ( )     -  (  );1 Target gate commutes with spin flips X gate
    ( )   -    2 Error action anti commutes with X gate ⇒

Uncorrected

DCG[1]

DCG[2]X Q exp (−i EQ )X Q exp(−i EQ) =

Q2 X exp (−i EQ )X exp (−i EQ) = Q2

  Fir -     st order implementation of gate Q2  ⇒ 
     I    -  ...  terate to achieve higher order suppression  

12/16



  

  Automated DCGs in a nutshellAutomated DCGs in a nutshell

 :Problem      Control requirements are still  too stringent     for many lab settings  

      / ...Control fields are themselves imperfect noisy
        ...Stretchable control profiles need not be available
         ...Complete control often relies on internal system Hamiltonian

Analytic DCG constructions become ineffective (if viable at all!)
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  Automated DCGs in a nutshellAutomated DCGs in a nutshell

 :Problem      Control requirements are still  too stringent     for many lab settings  

 :Goal       To synthesize 'aDCGs' that cancel both [ - ] non Markovian decoherence and  ,control errors

      / ...Control fields are themselves imperfect noisy
        ...Stretchable control profiles need not be available
         ...Complete control often relies on internal system Hamiltonian

      /   .without relying on stretching and allowing for exploiting internal drift  
:Strategy          [ - ]  Relax portability and exploit control knowledge to achieve non competing objectives

      of gate synthesis and error cancellation  ⇒  -   :multi objective minimization problem   

F ({xi}) = dist (Q ,Texp {−i∫0

T
ds [H ctrl ,0(s) + H S , g ]})

B j G j ({xi})=∥ ∂mod B (EQ [T ]

(δ⃗) ) /∂δ j∥ δ⃗=0

    Solving for F =  = 0 Gj ,  for all j,          yields gate implementation that is insensitive to the error
     parameters δj  ⇒          .Robust control solution as long as errors are perturbatively small  

 Primitive gate synthesis

 [First-order] 
error cancellation/

'sensitivity minimization'

   Complete controllability          .of targetsystemessentialto justify existenceof aDCG solution

Analytic DCG constructions become ineffective (if viable at all!)
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  Case study: Single-triplet spin qubitCase study: Single-triplet spin qubit

  ,  . ;   ,  .Foletti et al Nature Phys 2009 Bluhm et al PRL 2010

      -                   :    Model Hamiltonian in the logical singlet triplet basis

H (t ) = [ B+δ B( t) ]
σ x

2
+ J (t )

σ z

2
, J ( t ) = J 0(t) [ 1+δ J (t ) ]

Known static magnetic 
field gradient [drift] Hyperfine-induced error 

Hamiltonian [additive noise]

Exchange splitting control, subject to 
[multiplicative] voltage noise

{∣S 〉 ,∣T 0〉}

  -   Quasi static Gaussian approximation         is an adequate starting point for both noise sources:

√ 〈δ B2〉 ≡ σδ B , σδ B /2π ≤ 0.15 √〈δ J 2〉 ≡ σδ J , σδ J ≤ 0.02MHz,

      Zeeman drift term is   crucial for universality.     Available exchange control is constrained
       in magnitude and sign [  stretching not  !]:  an option

B / 2π ∈ [0.03,0.2 ] 0 < J 0/ 2π ≤ J max/2π = 0.3GHz, GHz,

        Each aDCG consists of a sequence of n     pulses characterized by a fixed [ ]   digitized profile

with fixed , duration τ =  ,      . 3 ns compatible with current horizontal temporal resolutions

    =  , Control variables Pulse amplitudes {x
i
}≡ {h

i
}.     Error sources 'marked' by   

    : Weighted objective function O ({hi}) ≡ F+λ1 G(δ B)
+λ 2G(δJ )

(δB ,δ J ).
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  Automated DCGs: ResultsAutomated DCGs: Results

Q = π/8 gate 

Q =  Hadamard gate 
ADCG implementations 

using n = 17 pulses

      aDCGs are simultaneously robust against
     [ - ]    non Markovian gradient field fluctuations
               and voltage noise to leading order provided

σδ B /B + σ δJ < 0.1

 Uncorrected 

 Corrected 

  :     - -    aDCG synthesis Search problem solved by off the shelf Matlab routines (FMINCON)    

B /2π = 0.1 J max=0.3GHz, GHz,

       Same aDCG sequence applies to  fully quantum -  .spin bath model

  :   aDCG performance Evaluate average fidelity

〈1− f 〉 = 1− 1
2 〈 ∣Tr (Q †QDCG

(δ B ,δ J))∣ 〉δB ,δ J


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  Conclusion and outlookConclusion and outlook

 & , : . ;  & , : . ;Fanchini al arXiv 1005 1666 Chaudhry Gong arXiv 1110 4695
,  & , : . .Jones Ladd Fong arXiv 1205 2402

✔ -  :Single qubit setting

✔ -  :Many qubit setting

  / /    ...  Complexity convergence landscape of aDCG solution Impose -time optimality       on top?

   /        Dedicated experimental realizations benchmarking of DQES schemes can continue to
       - /    .validate theoretical insights and identify key trade offs practical constraints to address

               DQES has the potential to reduce memory and gate errors below the level required

     -    . by accuracy threshold for non Markovian quantum error correction

       /      Plenty of room exists for tailoring and or improving DQES constructions and
      /   .for optimizing performance under specific system and or control assumptions

  /      Systematic quantitative comparison between DCGs and  composite pulses ... ?

     Better exploitation of    locality and sparsity    ...of physical error models

      Impact and role of correlation ...   effects DQES for  noise spectroscopy?

    DQES with continuous  ... driving fields?
, , ,   ,  .Kabytayev Green LV Biercuk and Brown in preparation

10/16

 & , : . .De Pryadko arXiv 1209 2764
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