

The Kavli Institute for Theoretical Physics University of California, Santa Barbara

Control of Complex Quantum Systems

February 19, 2013

Advances in Dynamical Quantum Error Suppression

Lorenza Viola Dept. Physics & Astronomy Dartmouth College

The Kavli Institute for Theoretical Physics University of California, Santa Barbara

Control of Complex Quantum Systems

February 19, 2013

Advances in Dynamical Quantum Error Suppression

Lorenza Viola Dept. Physics & Astronomy Dartmouth College

'Quantum Firmware Collaboration'

Michael J. Biercuk U. Sydney

Amir Yacoby Harvard

[Hendrik Bluhm U. Aachen] Dynamical Quantum Error Suppression = Non-dissipative QEC: Open-loop Hamiltonian engineering based on unitary control operations.

<u>Simplest setting</u>: Multipulse decoherence control for quantum memory \Rightarrow Dynamical Decoupling LV & Lloyd, PRA <u>Key principle</u>: Time-scale separation \Rightarrow Coherent averaging of interactions Paradigmatic example: Spin echo Effective time-reversal Hahn 1950. t = 0b) $t = \tau^$ c) t = t

Dynamical Quantum Error Suppression = Non-dissipative QEC: Open-loop Hamiltonian engineering based on unitary control operations.

Simplest setting: Multipulse decoherence control for quantum memory \Rightarrow Dynamical Decoupling LV & Lloyd, PRA <u>Key principle</u>: Time-scale separation \Rightarrow Coherent averaging of interactions Paradigmatic example: Spin echo Effective time-reversal Hahn 1950. t = 0Key features: Non-Markovian open quantum system dynamics (1) Error component may include coupling to *quantum* bath **b**) Error suppression is enforced *perturbatively* $t = \tau^-$ (2) $\frac{\mathbf{L}_{control}}{\mathbf{T}_{c}} \sim \omega_{c} \mathbf{T}_{control} \qquad small \text{ parameter}$ (3) Error suppression/control synthesis are achieved *without* c) requiring quantitative knowledge of error sources $t = \tau$ [basic difference wrto optimal control theory approaches]

Control-theoretic setting

• Target system exposed to noise due to a *quantum or classical* environment /bath

 $H = \begin{bmatrix} H_{S,g} + H_{S,err} \end{bmatrix} \otimes I_B + I_B \otimes H_B + H_{SB} \sum_a S_a \otimes B_a$

I System operators $\{S_a\}$ form Hermitian operator basis, with $S_0 = I_S$ and $S_{a \neq 0}$ traceless.

Bath operators $\{B_a\}$ are bounded but otherwise arbitrary [possibly *unknown*]. Classical bath limit [stochastic field] is formally recovered for $B_a = I_s$ and $B_0 = 0$.

Control-theoretic setting

• Target system exposed to noise due to a *quantum or classical* environment/bath

 $H = \begin{bmatrix} H_{S,g} + H_{S,err} \end{bmatrix} \otimes I_B + I_B \otimes H_B + H_{SB} \sum_a S_a \otimes B_a$

□ System operators $\{S_a\}$ form Hermitian operator basis, with $S_0 = I_S$ and $S_{a \neq 0}$ traceless. □ Bath operators $\{B_a\}$ are bounded but otherwise arbitrary [possibly unknown]. Classical bath limit [stochastic field] is formally recovered for $B_a = I_S$ and $B_0 = 0$.

• Environment B is *uncontrollable*. Controller acts on *system* only,

$$H_{tot}(t) \equiv H + H_{ctrt}(t), \qquad H_{ctrl,0}(t) = \sum_{m} (H_{m} \otimes I_{B}) h_{m}(t) \quad \leftarrow \quad \text{Control inputs}$$
$$U_{0}(t) = Texp\{-i \int_{0}^{t} ds \left[H_{ctrl,0}(s) + H_{S,g}\right]\} \quad \leftarrow \quad \text{'Toggling frame'}$$
propagator

□ Universal control on *S* may or may not require a non-zero pure-system [*drift*] Hamiltonian. □ Control capabilities are typically restricted, and themselves *noisy* [systematic + random].

DQES: Overview and challenges

- DQES theory has diversified into a [still growing...] number of related directions Broadly categorized based on control objective:
 - Arbitrary state preservation \Rightarrow DQES theory for quantum memory
 - ✓ Pulsed dynamical decoupling 'Bang-bang' limit/instantaneous pulses
 - ✓ Pulsed dynamical decoupling Bounded control/'fat' pulses
 - Continuous time-dependent modulation

- Quantum gate synthesis \Rightarrow DQES theory for quantum computation
 - ✓ Hybrid DD-QC schemes BB resources w or w/o encoding
- ✓ Dynamically corrected gates Bounded control only
- ✓ Optimal control/convex optimization approaches
- DQES has been validated in a variety of proof-of-principle experiments in different systems Emerging method of choice for resource-efficient physical-layer decoherence control...

Recent DD/DCG experiments [partial list...]

:

YEAR	PROTOCOL	QUBIT SYSTEM	NOISE
2009	CPMG, UDD, LODD	Be ⁺ trapped ion Eng	ineered phase noise
	CPMG, UDD	ESR in crystals	Natural dephasing
	XY4	Polarization	qubit Engineered depolarization
2010	CPMG, UDD	<i>Atomic ensemble</i>	<i>Collisional dephasing</i>
	CPMG, UDD, CDD	Double QD	Spin-bath dephasing
	CPMG, UDD, PDD	NV-center	Spin-bath dephasing/pulse errors
	CPMG, XY4	NV-center	Spin-bath dephasing
	CPMG, XY4, CDD	ESR in Si:P	Spin-bath dephasing/pulse err
2011	Hahn, CPMG	<i>Double QD</i>	Spin-bath dephasing
	Hahn, CPMG	NV-centers	Spin-bath dephasing
	CPMG, UDD	Ca ⁺ trappedions	Natural dephasing
	CPMG, XY4, CDD	Solid-state NMR	Spin-bath dephasing
	CPMG, UDD, PDD	Flux qubit	Natural phase noise
2012	CPMG	<i>Rare-earth crystal</i>	Spin-bath dephasing
	Hahn, XY4	ESR in Si:P	Spin-bath/defect dephasin
	DCGs	Be trapped ion	Laser-frequency jitter

DQES: overview and challenges

- DQES theory has diversified into a [still growing...] number of related directions Broadly categorized based on control objective:
 - Arbitrary state preservation \Rightarrow DQES theory for quantum memory
 - ✓ Pulsed dynamical decoupling 'Bang-bang' limit/instantaneous pulses
 - ✓ Pulsed dynamical decoupling Bounded control/'fat' pulses
 - ✓ Continuous time-dependent modulation

- 2 Quantum gate synthesis \Rightarrow DQES theory for quantum computation
 - ✓ Hybrid DD-QC schemes BB resources w or w/o encoding
 - Dynamically corrected gates Bounded control only
 - ✓ Optimal control/convex optimization approaches
- DQES has been validated in a variety of proof-of-principle experiments in different systems -Emerging method of choice for resource-efficient physical-layer decoherence control...
- Going *beyond* proof-of principle [inevitably] entails more 'complex' control scenarios \Rightarrow

Key challenge: To systematically address and incorporate practical [system and control] constraints.

Sample Problem 1: High-fidelity Long-time Low-latency Quantum Memory

Khodjasteh, Sastrawan, Hayes, Green, Biercuk & LV, *Nature Commun.*, submitted.

Setting and control objective

• Simplest DD scenario: Single purely-dephasing qubit controlled by perfect π pulses

- DD sequence of duration T_p specified in terms of pulse pattern $p = \{t_j\}, j = 1, ..., n$
- I Qubit coherence decays as $e^{-\chi_p}$, with DD error at $t = T_p$ determined by spectral overlap

$$\chi_p = \int_0^\infty \frac{S(\omega)}{2\pi\omega^2} F_p(\omega) d\,\omega$$

$$\begin{array}{lll} & \text{Power spectrum} & \times & \text{Filter Function (FF)} \\ S\left(\omega\right) \propto \omega^{s} f\left(\omega, \omega_{c}\right) & F_{p}(\omega) \propto (\omega \tau)^{2(\alpha_{p}+1)} \\ & & \tau \equiv \min(t_{j+1}-t_{j}) & \text{Minimum 'switching time'} \end{array}$$

The larger the order of error suppression α_p , the higher the degree of error cancellation as long as $\omega_c \tau$ is perturbatively small.

Uhrig, PRL **98** 2007; Cywinski&al, PRB **77** (2008; Khodjasteh, Erdelyi & LV, PRA **83** (2011).

Setting and control objective

- Simplest DD scenario: Single purely-dephasing qubit controlled by perfect π pulses
 - DD sequence of duration T_p specified in terms of pulse pattern $p = \{t_j\}, j = 1,...,n$
 - I Qubit coherence decays as $e^{-\chi_p}$, with DD error at $t = T_p$ determined by spectral overlap

$$\chi_p = \int_0^\infty \frac{S(\omega)}{2\pi\omega^2} F_p(\omega) d\,\omega$$

Power spectrum ×Filter Function (FF)
$$S(\omega) \propto \omega^s f(\omega, \omega_c)$$
 $F_p(\omega) \propto (\omega \tau)^{2(\alpha_p+1)}$ $\tau \equiv min(t_{j+1} - t_j)$ Minimum 'switching time'

The larger the order of error suppression α_p , the higher the degree of error cancellation as long as $\omega_c \tau$ is perturbatively small.

Uhrig, PRL **98** 2007; Cywinski&al, PRB **77** (2008; Khodjasteh, Erdelyi & LV, PRA **83** (2011).

• <u>Goal</u>: Achieve high fidelity over desired storage time $T_s \Rightarrow$ Straightforward *in principle*... I Simply use high-order DD sequence with $T_s = T_p$, e.g. Uhrig $DD \equiv t_1 = O(T_p/n^2)$

Quantum memory requirements

- In *practical* quantum-memory applications, high fidelity should be delivered while
 - allowing arbitrarily long storage time T_s ; (1)
 - (2)
 - minimizing latency for information retrieval; operating under technological [timing and sequencing] control limitations.
- Interconnected issues to address:
 - □ Perturbative DD (CDD, UDD...) is *not viable* if min switching time is constrained for fixed $\tau > 0$, a max storage time exists, beyond which increasing α_p no longer helps...

 \Box Numerical DD (BADD...) is *not viable* – search complexity grows exponentially with T_{s} ...

 \Box Mid-sequence interruptions are *not permitted* – min accesslatency is set by T_p ...

• <u>Strategy</u>: Periodically repeat a high-order DD sequence

$$\chi_{[p]^{n}} = \int_{0}^{\infty} \frac{S(\omega)}{2\pi\omega^{2}} \frac{\sin^{2}(m\omega T_{p}/2)}{\sin^{2}(\omega T_{p}/2)} F_{p}(\omega) d\omega$$
Long-time coherence determined by α_{p} , s ,
and high-frequency contributions at
'resonating frequencies' $\omega_{res} \equiv k \ 2\pi/mT_{p}$.
Assume a hard spectral cutoff, then
 $\chi_{[p]^{n}} = \int_{0}^{\omega_{c}} \frac{S(\omega)}{4\pi\omega^{2}} \frac{F_{p}(\omega)}{\sin^{2}(\omega T_{p}/2)} d\omega$

$$\int_{0}^{\omega_{c}} \frac{F_{p}(\omega)}{\sin^{2}(\omega T_{p}/2)} d\omega$$

$$\int_{0}^{\omega_{c}} \frac{S(\omega)}{10^{-10}} \frac{F_{p}(\omega)}{10^{-10}} d\omega$$

$$\int_{0}^{\omega_{c}} \frac{S(\omega)}{10^{-2}} \frac{F_{p}(\omega)}{10^{-10}} d\omega$$

• Strategy: Periodically repeat a high-order DD sequence

• A *coherence plateau* may be engineered by judicious selection of a base sequence:

$$s + 2\alpha_p > 1, \quad \omega_c T_p < 2\pi$$

I Guaranteed high fidelity throughout long storage times, with latency capped at $T_p \ll T_s$.

Quantum memory via repetition: Results

• A direct search up to $t = T_s$ is viable by restricting to *digital* DD sequences in the 'Walsh family' I Minimize *sequencing complexity*. Number of Walsh DD sequences: $(1/2)T_s/\tau$ vs. 2^{Ts/ τ}

Hayes, Khodjasteh, LV & Biercuk, PRA 84 (2011).

A periodic sequence structure emerges *naturally* for sufficiently long storage time.

Realistic effects: Pulse errors and soft cutoffs

• In reality, pulses are imperfect, noise need not have a hard cutoff nor be purely dephasing... A coherence plateau with finite yet exceptionally long duration may still be engineered.

Delta Pulse-length errors may be included using *multi-axis FF formalism*. New plateau conditions:

$$s + 2\alpha_p > 1, \quad s + 2\alpha_{pul} > 1, \quad \omega_c T_p < 2\pi$$

Coherence plateau can be restored by replacing 'primitive' with 'error-corrected' pulses. Storage times in excess of 1s ($\approx T_1$) at plateauerror rates of 10⁹ with realistic noise spectrum

Sample Problem 2: Automated Dynamically Corrected Quantum Gates

Khodjasteh, Bluhm & LV, Phys. Rev. A 86, 042329 (2012).

Setting and control objective

• <u>Goal</u>: To suppress evolution due to unwanted Hamiltonians, $H_{err} = H_{S,err} + H_B + H_{SB} + H_{ctrl,err}$ I Intended evolution \Rightarrow Ideal gate propagator over duration *T*:

$$U^{ideal}(T) = U_0(T) \otimes \boldsymbol{I}_B \equiv \boldsymbol{Q} \otimes \boldsymbol{I}_B = Texp\left\{-i \int_0^T ds \left[H_{ctrl,0}(s) + H_{s,g}\right] \otimes \boldsymbol{I}_B\right\}$$

 \square Actual evolution \Rightarrow Total gate propagator over duration *T*:

$$U^{actual}(T) = Texp\{-i\int_{0}^{T} ds \left[H_{ctrl}(s) + H_{S,g} + H_{err}\right]\} \equiv Q \exp(-iE_{Q[T]})$$
$$\exp(-iE_{Q[T]}) = Texp\{-i\int_{0}^{T} ds \left[U_{0}(s)^{\dagger}H_{err}U_{0}(s)\right]\}$$
Error action operator

Setting and control objective

• <u>Goal</u>: To suppress evolution due to unwanted Hamiltonians, $H_{err} = H_{S,err} + H_B + H_{SB} + H_{ctrl,err}$ I Intended evolution \Rightarrow Ideal gate propagator over duration *T*:

$$U^{ideal}(T) = U_0(T) \otimes \boldsymbol{I}_B \equiv Q \otimes \boldsymbol{I}_B = Texp\left\{-i \int_0^T ds \left[H_{ctrl,0}(s) + H_{S,g}\right] \otimes \boldsymbol{I}_B\right\}$$

 \square Actual evolution \Rightarrow Total gate propagator over duration *T*:

$$U^{actual}(T) = Texp\{-i\int_{0}^{T} ds \left[H_{ctrl}(s) + H_{S,g} + H_{err}\right]\} \equiv Q \exp(-iE_{Q[T]})$$

$$\exp(-iE_{Q[T]}) = Texp\{-i\int_{0}^{T} ds \left[U_{0}(s)^{\dagger}H_{err}U_{0}(s)\right]\}$$

Error action operator

• <u>Fact:</u> The norm of the error action operator 'modulo pure-bath terms' upper-bounds the distance [fidelity loss] between the intended and the actual system evolution:

$$mod_{B}(E) \equiv E - \frac{I_{S}}{d_{S}} \otimes trace_{S}(E)$$

$$\text{Lidar, Zanardi & Khodjasteh, PRA 78 2008
Khodjasteh & LV, PRL 102 2009
$$1 - f_{Uhlman}(T) \leq \left\| \rho_{S}^{ideal}(T) - \rho_{S}^{actual}(T) \right\|_{1} \leq \left\| mod_{B}(E_{Q[T]}) \right\|_{op} \equiv \text{EPG}$$$$

I Fidelity loss in DQES is reduced by *minimizing EPG*.

DCG synthesis \Leftrightarrow Seek control modulation such that effect of H_{err} is perturbatively canceled.

• System assumptions: Driftless - System Hamiltonian is zero/not needed for complete control,

$$H_{S,g} = 0, H_S \equiv H_{S,err} \Rightarrow \exp(-iE_{Q[T]}) = Texp\{-i\int_0^T ds \left[U_0(s)^{\dagger}H_{err}U_0(s)\right]\}$$
$$U_0(t) = Texp\{-i\int_0^t ds \ H_{ctrl,0}(s)\}$$

• <u>Control assumptions</u>: Access to universal set of 'primitive' control Hamiltonians – e.g. $\begin{cases} h_x(t)\sigma_x^{(i)}, h_y(t)\sigma_y^{(i)}, h_{zz}(t)\sigma_z^{(i)} \otimes \sigma_z^{(j)} \end{cases}, \quad i, j=1,...,N, \qquad \text{subject to} \end{cases}$

(C1) Finite-power and bandwidth constraints - *Bounded* amplitude, fixed *minimum* gate duration
 (C2) Perfect control - Bath coupling is the *only* error source

(C3) Stretchable control profiles - Same primitive gate achievable with different 'speeds'

Stretching gives controllable relationship between EPGs of different gat

Analytical DCGs: Constructions

• If target gate Q = I (NOOP), a solution is given by Eulerian DD. To effect non-trivial Q, identify two combinations of primitive gates that have *same* [first-order] EPG

$$Q_* = Q \exp(-i E_Q), \quad I_Q = \exp(-i E_Q)$$

- Modified Eulerian construction: Implement control path starting at *I* on *'augmented' Cayley graph* ⇒
 - (i) To non-identity vertex, attach edge labeled by I_O
 - (ii) To identity vertex, attach edge labeled by Q_*

$$E_{DCG} = E_{EDD} + \sum_{i=1}^{G} U_{g_i}^{\dagger} E_{Q} U_{g_i} + E_{DCG}^{[2+]}$$

Total first-order error vanishes as long as the primitive gate errors and E_O obey DD condition \Rightarrow

$$\| mod_{B}(E_{DCG}) \| = \| mod_{B}(E_{DCG}^{[2+]}) \| = O(\|H_{err}\|^{2})$$

Significantly smaller error compared to 'direct switching'.
 Higher-order cancellation achievable by concatenation.

LV & Knill, PRL 90 2003.

[First-order] 'balance pair'

Euler path: X I Y I X I Y Y X Y X Q

Khodjasteh & LV, PRL 102 2009; PRA 80 2009

Khodjasteh, Lidar & LV, PRL 104 2010.

11/16

Hayes, Khodjasteh, LV & Biercul Haves et al

Recently implemented Mølmer-Sørensen composite gate sequences can be interpreted as DCGs under a simple error model...

$$U_{Q}(t) = \exp[S_{N}(\alpha(t)a^{\dagger} - \alpha(t)^{*}a)]Q, \quad Q = \exp[-i\Phi(t)S_{N}^{2}] \qquad \text{Spin-dependent gate}$$
$$\alpha(t) = \frac{\Omega}{2}\int_{0}^{t} \exp[-i(\delta + \Delta)s]ds \qquad \Delta = \text{Detuning error} \ll \delta$$

 $-iE_{O}(t) = S_{N}(\alpha(t)a^{\dagger} - \alpha(t)^{*}a)$

I Key simplifications:

- (1) Target gate commutes with spin-flips (X gate); (2) Error action anti-commutes with X gate \Rightarrow

$$X Q \exp(-i E_Q) X Q \exp(-i E_Q) =$$
$$Q^2 X \exp(-i E_Q) X \exp(-i E_Q) = Q^2$$

 \square First-order implementation of gate $Q^2 \Rightarrow$ Iterate to achieve higher-order suppression...

- Problem: Control requirements are still too stringent for many lab settings
 - I Control fields are themselves imperfect/noisy...
 - □ Stretchable control profiles need not be available...
 - □ Complete control often relies on internal system Hamiltonian...

Analytic DCG constructions become ineffective (

- Problem: Control requirements are still too stringent for many lab settings
 - □ Control fields are themselves imperfect/noisy...
 - □ Stretchable control profiles need not be available...
 - □ Complete control often relies on internal system Hamiltonian...

Analytic DCG constructions become ineffective (

Goal: To synthesize 'aDCGs' that cancel *both* [non-Markovian] decoherence *and* control errors, without relying on stretching and allowing for/exploiting internal drift.
 <u>Strategy:</u> Relax portability and exploit control knowledge to achieve [non-competing] objectives of gate synthesis and error cancellation ⇒ multi-objective minimization problem:

$$F({x_i}) = dist\left(Q, Texp\left\{-i\int_0^T ds\left[H_{ctrl,0}(s) + H_{s,g}\right]\right\}\right)$$
 Primitive gate synthesis

[First-order] error cancellation/ 'sensitivity minimization'

□ Solving for $F = 0 = G_j$, for all *j*, yields gate implementation that is insensitive to the error parameters $\delta_j \Rightarrow$ Robust control solution as long as errors are perturbatively small.

Complete controllability of targetsystemessentialto justify existence of aDCG solution

 $B_{i}G_{i}(\{x_{i}\}) = \left\| \partial mod_{B}\left(E_{O[T]}^{(\vec{\delta})}\right)/\partial \delta_{i} \right\|_{\vec{\delta}=0}$

Case study: Single-triplet spin qubit

• Model Hamiltonian in the logical singlet-triplet basis $|S\rangle$, $|T_0\rangle$

 $H(t) = \begin{bmatrix} B + \delta B(t) \end{bmatrix} \frac{\sigma_x}{2} + J(t) \frac{\sigma_z}{2},$ Known static magnetic field gradient [drift] Hyperfine-induced error Hamiltonian [additive noise] $J(t) = J_0(t) \begin{bmatrix} 1 + \delta J(t) \end{bmatrix}$ Exchange splitting control, subject to [multiplicative] voltage noise

I Quasi-static Gaussian approximation is an adequate starting point for both noise sources:

$$\sqrt{\langle \delta B^2 \rangle} \equiv \sigma_{\delta B}, \quad \sigma_{\delta B/2\pi} \le 0.15 \text{ MHz}, \qquad \sqrt{\langle \delta J^2 \rangle} \equiv \sigma_{\delta J}, \quad \sigma_{\delta J} \le 0.02$$

Foletti et al, Nature Phys. 2009; Bluhm et al, PRL 2010.

:

Zeeman drift term is crucial for universality. Available exchange control is constrained in magnitude and sign [stretching *not* an option!]:

$$B/2\pi \in [0.03, 0.2]$$
 GHz, $0 < J_0/2\pi \le J_{max}/2\pi = 0.3$ GHz,

Each aDCG consists of a sequence of n pulses characterized by a *fixed* [digitized] profile with *fixed* duration, τ = 3 ns, compatible with current horizontal temporal resolutions.
□ Control variables = Pulse amplitudes, {x_i} ≡ {h_i}. Error sources 'marked' b(𝔅 𝔅 𝔅, 𝔅 𝑌).
□ Weighted objective function: O({h_i}) ≡ F + λ₁G^(𝔅 𝔅) + λ₂G^(𝔅𝑌)

Automated DCGs: Results

• aDCG synthesis: Search problem solved by off-the-shelf Matlab routines (FMINCON)

I Same aDCG sequence applies to *fully quantum* spin-bath model.

Uncorrected • aDCG performance: Evaluate average fidelity $\langle 1-f \rangle = 1 - \frac{1}{2} \left\langle \left| Tr(Q^{\dagger}Q_{DCG}^{(\delta B, \delta J)}) \right| \right\rangle_{\delta B, \delta J}$ 10-4 \$ 10-7 I aDCGs are simultaneously robust against Corrected [non-Markovian] gradient field fluctuations = 10⁻¹⁰ and voltage noise to leading order provided 10-2 10-13 10-3 10-4 10-1 10-2 10-3 $\sigma_{\delta B/B} + \sigma_{\delta I} \leq 0.1$ 10-5 10-5 10-4 $\sigma_{\delta B/B}$

Conclusion and outlook

• DQES has the potential to reduce memory and gate errors below the level required by accuracy threshold for non-Markovian quantum error correction.

□ Systematic/quantitative comparison between DCGs and *composite pulses*?...

Kabytayev, Green, LV, Biercuk and Brown, in preparation.

□ DQES with *continuous* driving fields?...

Fanchini & al, arXiv:1005.1666; Chaudhry & Gong, arXiv:1110.4695; Jones, Ladd & Fong, arXiv:1205.2402.

• Plenty of room exists for tailoring and/or improving DQES constructions and for optimizing performance under specific system and/or control assumptions.

- ✓ Single-qubit setting:
 - © Complexity/convergence/landscape of aDCG solution... Impose *time-optimality* on top?
- ✓ Many-qubit setting:

Better exploitation of *locality and sparsity* of physical error models...

□ Impact and role of *correlation* effects... DQES for *noise spectroscopy*?

• Dedicated experimental realizations/benchmarking of DQES schemes can continue to validate theoretical insights and identify key trade-offs/practical constraints to address.