Optimal transfer of population for quantum systems

Haidong Yuan Hong Kong Polytechnic University

With Christiane Koch, Peter Salamon, and David Tannor

Phys. Rev. A 85, 033417, 2012

COHERENT CONTROL ON POPULATION TRANSFER

ADIABATIC TRANSFER

Adiabatic Basis, dressed states Time-dependent Schrödinger equation $i\hbar \frac{\partial}{\partial t} \Psi(t) = \hat{H}(t) \Psi(t)$ $|\Psi(t) = a_1(t)|1\rangle + a_2(t)|2\rangle + a_3(t)|3\rangle$ $\Omega_{\rm s}(t)$ $\Omega_{p}(t)$ In the rotating wave approximation(RWA) $|3\rangle$ $\hat{H}(t) = -\frac{\hbar}{2} \begin{pmatrix} 0 & \Omega_{p}(t) & 0\\ \Omega_{p}(t) & 2\Delta & \Omega_{s}(t)\\ 0 & \Omega_{s}(t) & 0 \end{pmatrix}$

Three level atom- Λ configuration

$$H(t) = \frac{\hbar}{2} \begin{bmatrix} 0 & \Omega_p & 0\\ \Omega_p & 2\Delta & \Omega_s\\ 0 & \Omega_s & 0 \end{bmatrix}$$

 $\phi_{-}(t), \phi_{0}(t), \phi_{+}(t) -$

adiabatic basis (eigenvectors of H(t))

 $\phi_{-}(t) = \psi_1 \sin \vartheta(t) \cos \varphi(t) - \psi_2 \sin \varphi(t) + \psi_3 \cos \varphi(t) \cos \vartheta(t)$

 $\phi_0(t) = \psi_1 \cos \vartheta(t) - \psi_3 \sin \vartheta(t) - \operatorname{dark state}$

 $\phi_{+}(t) = \psi_1 \sin \vartheta(t) \sin \varphi(t) + \psi_2 \cos \varphi(t) + \psi_3 \sin \varphi(t) \cos \vartheta(t)$

$$\tan 2\varphi(t) = \frac{\sqrt{\Omega_p^2(t) + \Omega_s^2(t)}}{\Delta} \qquad \tan \vartheta(t) = \frac{\Omega_p(t)}{\Omega_s(t)}$$

STIRAP

K. Bergmann and H. Theuer and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70, 1003(1998).

POPULATION TRANSFER IN THREE LEVEL SYSTEM

$$\frac{d}{dt} \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = -i \begin{pmatrix} 0 & \Omega_p & 0 \\ \Omega_p & -ik & \Omega_s \\ 0 & \Omega_s & 0 \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix}$$

 $|1\rangle \rightarrow |3\rangle$

THREE LEVEL SYSTEM

$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & -\Omega_p & 0 \\ \Omega_p & -k & -\Omega_s \\ 0 & \Omega_s & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Initial (1, 0, 0)Maximize $x_3(T)$

Optimal Control

$$r_1 = \sqrt{x_1^2 + x_2^2}, \, r_2 = x_3$$

$$\frac{d}{dt} \left(\begin{array}{c} r_1 \\ r_2 \end{array} \right) = \left(\begin{array}{cc} -k\cos^2\theta & -\Omega_s\cos\theta \\ \Omega_s\cos\theta & 0 \end{array} \right) \left(\begin{array}{c} r_1 \\ r_2 \end{array} \right)$$

 $|\Omega_s| \le A \qquad \qquad u = \cos\theta \qquad \theta \in [0, \frac{\pi}{2}]$

$$\frac{d}{dt} \left(\begin{array}{c} r_1 \\ r_2 \end{array} \right) = \left(\begin{array}{cc} -ku^2 & -Au \\ Au & 0 \end{array} \right) \left(\begin{array}{c} r_1 \\ r_2 \end{array} \right)$$

Initial (1,0)Maximize $r_2(T)$

θ

 x_1

 x_2

 r_1

OPTIMAL CONTROL

Denote the maximum achievable value of $r_2(T)$ by $V(r_1, r_2, t)$

$$V(r_1, r_2, t) = max_u V(r_1 + \delta r_1, r_2 + \delta r_2, t + \delta t)$$
$$\frac{\partial V}{\partial t} + max_u H(u) = 0$$
$$H(u) = \frac{\partial V}{\partial r_1} \dot{r}_1 + \frac{\partial V}{\partial r_2} \dot{r}_2 = \begin{pmatrix} \frac{\partial V}{\partial r_1} & \frac{\partial V}{\partial r_2} \end{pmatrix} \begin{pmatrix} -ku^2 & -Au \\ Au & 0 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$
$$\lambda_1 = \frac{\partial V}{\partial r_1}, \lambda_2 = \frac{\partial V}{\partial r_2}$$
$$\frac{d}{dt} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} ku^2 & -Au \\ Au & 0 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$$

OPTIMAL CONTROL

$$H(u) = -k\lambda_1 r_1 \left\{ \left[u - \frac{A}{2k} \left(\frac{\lambda_2}{\lambda_1} - \frac{r_2}{r_1} \right) \right]^2 - \left[\frac{A}{2k} \left(\frac{\lambda_2}{\lambda_1} - \frac{r_2}{r_1} \right) \right]^2 \right\}$$

 $u = argmax_u H(u)$

$$a = \frac{\lambda_2}{\lambda_1}, b = \frac{r_2}{r_1}$$

$$u = \begin{cases} 0 & \text{if } \frac{A}{2k}(a-b) < 0\\ \frac{A}{2k}(a-b) & \text{if } 0 \le \frac{A}{2k}(a-b) \le 1\\ 1 & \text{if } \frac{A}{2k}(a-b) > 1 \end{cases}$$

11

a-b 🖊

Optimal Control

$$u = \begin{cases} 0 & \text{if } \frac{A}{2k}(a-b) < 0\\ \frac{A}{2k}(a-b) & \text{if } 0 \le \frac{A}{2k}(a-b) \le 1\\ 1 & \text{if } \frac{A}{2k}(a-b) > 1 \end{cases} \qquad a = \frac{\lambda_2}{\lambda_1}, b = \frac{r_2}{r_1}$$

$$\frac{d}{dt}(a-b) = (a+b)u[A(a-b) - ku] \ge 0$$

CONNECT TO STIRAP

When
$$T \to \infty$$
 $u^*(t) = \begin{cases} \frac{1}{\sqrt{A^2(\tau^2 - t^2) + 2k(\tau - t) + 1}} & \text{for } t \in [0, \tau] \\ 1 & \text{for } t \in [\tau, T] \end{cases}$,

$$x_{2} = r_{1}u^{*} \sim 0$$
$$x_{1}|1\rangle + x_{3}|3\rangle$$
$$\frac{x_{3}}{x_{1}} = \frac{\Omega_{p}}{\Omega_{s}}$$

Dark state!

4-LEVEL SYSTEM

$$\frac{d}{dt} \begin{pmatrix} x_1' \\ x_2' \\ x_3' \\ x_4' \end{pmatrix} = -i \begin{pmatrix} 0 & \Omega_p & 0 & 0 \\ \Omega_p & -ik & \Omega_I & 0 \\ 0 & \Omega_I & -ik & \Omega_s \\ 0 & 0 & \Omega_s & 0 \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ x_3' \\ x_4' \end{pmatrix}$$

4-LEVEL SYSTEM

$$x_{1} = x'_{1}, x_{2} = ix'_{2}, x_{3} = -x'_{3}, x_{4} = -ix'_{4}$$

$$\frac{d}{dt} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} 0 & -\Omega_{p} & 0 & 0 \\ \Omega_{p} & -k & -\Omega_{I} & 0 \\ 0 & \Omega_{I} & -k & -\Omega_{s} \\ 0 & 0 & \Omega_{s} & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix}$$

Initial (1, 0, 0, 0)Maximize $x_4(T)$

4-LEVEL SYSTEM

 $u_1 = \cos \theta_1$ $u_2 = \cos \theta_2$ $|\Omega_I| \le A$ $\frac{d}{dt} \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} = \begin{pmatrix} -ku_1^2 & -Au_1u_2 \\ Au_1u_2 & -ku_2^2 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$ When $T \leq \frac{\cot^{-1}(2\xi)}{4}$ $u_1^*(t) = u_2^*(t) = 1$ 1 1 Phase I Phase II Phase II When $T > \frac{\cot^{-1}(2\xi)}{4}$ 0.5 $\xi = \frac{k}{4}$ u_1 0 0.5 0 1

OPTIMAL CONTROL FOR 4-LEVEL SYSTEM

OPTIMAL CONTROL FOR 4-LEVEL SYSTEM

In the limit that T goes to infinity

$$\eta = \sqrt{1 + \xi^2} - \xi$$

 $\xi = \frac{k}{A}$

the transfer efficiency can reach unity only when $\xi = 0$, i.e., $\frac{k}{A} = 0$

WITH DETUNING

$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = -i \begin{pmatrix} 0 & \Omega_p & 0 & 0 \\ \Omega_p & \Delta_2 - ik & \Omega_i & 0 \\ 0 & \Omega_i & \Delta_3 - ik & \Omega_s \\ 0 & 0 & \Omega_s & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

Suppose there is a trajectory achieving full population transfer with detuning, then on this trajectory x_2 and x_3 remain 0, which means the size of the detuning and relaxation rate has no effect, replacing the detuning with 0 will then lead to a contradiction with previous result.

CONTROLLABILITY ON RELAXATION FREE SUBSPACE

CONTROLLABILITY ON RELAXATION FREE SUBSPACE

If and only if any two eigenstates in the subspace can be connected by a path that never visits two consecutive states that both suffer relaxation.

h

THANKS!