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Setting the scene...

Cafe Central Vienna.



Setting the scene...

The Cafe Josephinum is a smell first, a stinging smell of roasted
Turkish beans too heavy to waft on air and so waiting instead for
the more powerful current of steam blown off the surface of boiling
saucers fomenting to coffee.

. . . the coffee is a fuel to power ideas.

A MADMAN DREAMS OF TURING MACHINES by Janna Levin



Erwin Schrödinger: 1887-1961.





I was born and educated in Vienna with Ernest Mach’s teaching
and personality still pervading the atmosphere. I was devoted to
his numerous writings . . . Both Boltzmann and Mach were just as
much interested in philosophy . . . as they were in physics.

Boltzmann’s approach had consisted in forming ”pictures”,
mainly in order to be extremely certain of avoiding contradictory
assumptions.

E. Schrödinger in a letter to Eddington, 1940 .



January 1926

Ψ

Schrödinger published in Annalen der Physik,

” Quantisierung als Eigenwertproblem ”∗

. . . what is now known as the Schrödinger equation.

∗tr. Quantisation as an Eigenvalue Problem.



Quantum coherence.

Functional engineered quantum systems exploit quantum
coherence.

Quantum coherence: the hidden lever of the physical world.

Controlling quantum coherence enables us to reversibly change
irreducible uncertainty into perfect certainty.
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Functional engineered quantum systems exploit quantum
coherence.

Quantum coherence: the hidden lever of the physical world.
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Quantum coherence.

The physical universe is irreducibly random.

Given complete knowledge of the state of a physical system, there
is at least one measurement the results of which are completely
random.



Quantum coherence.

Given complete knowledge of a physical state there is at least one
measurement the results of which are completely certain.



Probability in QM.

QM calculus to determine the probability for measurement
outcomes.

Probabilities are determined at a fundamental level by probability
amplitudes.

Probability of an outcome is the square of the probability
amplitudes.

Probability amplitudes for one kind of measurement determine
probability amplitudes for all kinds of measurements.

A list of probability amplitudes is a state
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Example: single photon at a beam splitter.

QM1: Introduction to quantum mechanics.	



Probability of reflection    =1/2	


Probability of transmission=1/2	


	



	

	


Prob. Count photon  at U=1/2	


Prob. Count photon at D =1/2	



	

 	

 	


	

	



	


Is this a coin-toss ?	



Does this encode one bit?	



A coin toss with photons. 	



Partially transmitting mirror	





Example: single photon at a beam splitter.

QM1: Introduction to quantum mechanics.	



 Toss a photon twice.	



Is this like tossing a coin twice ?	



Perfectly reflecting mirrors	





Example: single photon at a beam splitter.

QM1: Introduction to quantum mechanics.	



 HINT: beam splitters can be time reversed.	



Perfectly reflecting mirrors	





Example: single photon at a beam splitter.

QM1: Introduction to quantum mechanics.	



	



	

	


Experiment:	


	

detection at U is certain.	


	

	



	



–  Irreducible randomness is made certain ! 	



A one photon bit?   No. 



Example: single photon at a beam splitter.

QM1: Introduction to quantum mechanics.	



  Bayes' sum rule  ☞  Feynman’s sum rule	



–  if an event can happen in two (or more) 
indistinguishable ways, first add the probability 
amplitudes, then square to get the probability.	



–  probability amplitudes are not necessarily 
positive real numbers ! 



Example: single photon at a beam splitter.

QM1: Introduction to quantum mechanics.	



  Count at U can happen in two ways:	


–  Two reflections (RR) &  and two transmissions (TT),    

indistinguishable.	


–  Need probability amplitudes: A(RR) and A(TT)	



  Count at D can happen in two ways:	


–  RT & TR, indistinguishable.	


–  Need probability amplitudes: A(RT) and A(TR)	



  Probability for  count at U or D:	


–  P(count at U)= (A(RR) + A(TT))2	



–  P(count at D)= (A(RT) + A(TR))2	





Example: single photon at a beam splitter.

QM2: Introduction to quantum mechanics.	



 Assignment of probabilities.	


» Choose distinct output amplitudes 

for each distinct input:	



A(D) (U)= 1
2
;     A(D) (D)= 1

2

A(U)(U)= 1
2
;     A(U)(D)= − 1
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Represent amplitudes as	


an ordered pair: 	



	

( A(D),  A(U) )	
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Example: single photon at a beam splitter.
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P(D) = |A(RT ) + A(TR)|2 = 0
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LIGO: the largest quantum machine.

LIGO: The largest quantum machine. 

LIGO Livingston Observatory 
Louisiana 

Laser Interferometer Gravitational (wave) Observatory 



LIGO: the largest quantum machine.
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LIGO: the largest quantum machine.

LIGO: The largest quantum machine. 

  
Objective:  measure the change 
in the distance between the 
mirrors due to a gravitational 
wave. 

Sensitivity required: 

 

 

Gravitational waves are weak! 



Quantum description.

X1
X2

Two different path lengths at two distinct times in the period of
the gravitational force.
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Quantum description.

Each single photon trial provides less than a single bit of
information on average.

Repeat for N trials, varying θ, and compute relative frequency for
U detections.
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Quantum description.

Each single photon trial provides less than a single bit of
information on average.

Repeat for N trials, varying θ, and compute relative frequency for
U detections.
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Quantum description.

Readout: x = 0 if detected at U

Mean and variance of result:

X̄ = cos θ

∆X 2 = P(U)(1− P(U)) =
sin2(2θ)

4

The error in the estimate of θ from the data:

δθ2 ≥ 1

4N

for N trials.

Need N >> 1.

perfect measurement of relative path length???
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LIGO: the largest quantum machine.

Enter quantum mechanics . . . Heisenberg uncertainty principle:

If we measure the relative position of the mirrors accurately we
necessarily kick the mirrors uncontrollably . . . radiation pressure.

accurate measurements cost!



Enforcing the uncertainty principle.

Radiation pressure shot noise...

incident

re�ected
transmitted

Random reflections of photons shake the mirror.



The standard quantum limit.

noise

Radiation pressure noise enforces the Heisenberg uncertainty
principle.



Measurement of radiation pressure noise.



Quantum entanglement.

QM4: Introduction to quantum mechanics.	



 Quantum entanglement.	


– Measurements made on the joint state of separate 

systems.	


» Reveal correlations that cannot arise from classical 

statistical theory. 	



– Quantum correlation is called entanglement.	


» Entanglement arise when Feynman’s rule is applied to the 

results of measurements made on two or more systems  



Quantum entanglement.

QM4: Introduction to quantum mechanics.	



  Classical correlation.	



–  Bellsville,  an urban allegory. 	


»  No more than the result of a single yes/no question can be recorded.	


»  Loophole: Ask different questions of each of a pair of twins.	



–  Choose questions from	



»  H (height) 	

+ if tall, - otherwise	



»  S (sex)	

+ if female, - if male	



»  C (eye color) 	

+ if blue, - otherwise. 	



–  Perfect correlation.	


»  If same question is asked on each twin of a pair, the answers are identical	





Quantum entanglement.

QM4: Introduction to quantum mechanics.	



  What correlations occur for different questions ?	



  In how many cases are the answers the same ?	


   (Note: in each run, one trait remains unknown.)	


 	



A 
S 

H 

S 

C 

H 

C 

. 

. 

.

B 
H 
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C 

S 

C 

H 

. 

. 

.



Quantum entanglement.

QM4: Introduction to quantum mechanics.	



  The standard analysis.	


–  Answers are determined by hidden genes, randomly distributed.	


–  Gene is an  ordered triple: eg   (S,H,C)  ☛ (+,+, -) 	


–  There are 23 = 8 possible genes for three traits.	



  What is the probability for S = +, H = +  ?	


	



P(S = +, H = +) = P(+ + −) + P(+ + +)  (Bayes'  rule)

                         = 1
8
+

1
8
=

1
4



Quantum entanglement.

QM4: Introduction to quantum mechanics.	



  Classical correlation.	


–  What is the probability that the same answer is found for different 

questions ?	



P(same) = P(S+,H+) + P(S−,H−)

P(S+, H+ ) = P(S−,H−) =
1
4

∴P(same) = 1
2



Quantum entanglement.

QM4: Introduction to quantum mechanics.	



 Twin  polarised photons.	


– Spontaneous parametric down conversion	



» A property of certain crystals to absorb a single photon 
and emit two photons, each with half the frequency 
(double the wavelength).	



»  In type II down conversion, each photon has strongly 
correlated polarisation: can be made to have the same 
polarisation.   	



	





Quantum entanglement.

	



  When both polarisers are set to the same angle θa = θb , both 
measurements give the same  result, either ++ or --. Each case 
(++) or (--) occurs with equal probability.	



	



Polarised photon twins: Type II down conversion.  

QM4: Introduction to quantum mechanics.	





Quantum entanglement.

  What is the probability that when the polarisers are set at 
different  angles the results are the same ?  	



  By analogy with the experiment on twins we might expect that 
the answer is 1/2. 	



  The experiment gives 1/4 for certain choices of angles.	



QM4: Introduction to quantum mechanics.	





Quantum entanglement.

	


Example:  choice of angles we find 	


– A(+,+,+) =              ; A(+,+,-) =	



– P( A + , B + ) =          	



  Likewise P( A - , B - )  =  1/8	


  P(same) = P( A + , B + )  + P( A - , B - )  =   1/8 + 1/8   =   1/4	


  A similar calculation shows that 	

P(different)  =  3/4.	



1
4 2

−3
4 2

1
4 2

−
3
4 2

2

=
1
8

Apply Feynman’s rule:	



QM4: Introduction to quantum mechanics.	



Q. Where do these 
come from?…	


A. Quantum 
electrodynamics	


…which is a bit 
beyond the level of 
this subject.	





Quantum information.

Coding bits in quantum states.
The one photon qubit. 

 State of photon after beam 
splitter ? 

 
Not reflected or transmitted. 
Not logical 1 or 0. 
 

 It is a superposition of both 
possibilities. 

 

It is a qubit. 
  



Quantum information.

The one photon qubit. 

 State of photon after beam 
splitter ? 

 
Not reflected or transmitted. 
Not logical 1 or 0. 
 

 It is a superposition of both 
possibilities. 

 

It is a qubit. 
  

Coding bits in quantum states. D : (1, 0)→ 1 U : (0, 1)→ 0



Quantum information.

Quantum parallel input. 

  superposition of binary strings. 

1→ 1 + 0 0→ 1− 0



Quantum information.

Superpositions of binary strings length 2

Quantum parallel input. 

  superposition of binary strings. 
– Length 2 

Two  physical qubits can 
encode four binary  
numbers simultaneously  

1 1→ 1 1 + 1 0 + 0 1 + 0 0



Quantum information.

Quantum parallel computation 

N  physical qubits can encode  2N binary  numbers simultaneously 
 
 
A quantum computer can process all 2N numbers in parallel on a 
single machine with N physical qubits.    



Quantum information.
The image cannot be displayed. Your 
computer may not have enough memory to 
open the image, or the image may have been 
corrupted. Restart your computer, and then 

 D. Deutsch, Oxford, 1985 
Quantum theory, the Church-Turing principle and the 

universal quantum computer. 
 

 Prepare input as a superposition of all 
possible inputs. 

 Run computer once to give all possible  
values of the calculation. 

The ultimate quantum machine: the quantum computer 



Quantum information.
The image cannot be displayed. Your 
computer may not have enough memory to 
open the image, or the image may have been 
corrupted. Restart your computer, and then 

 A physical computer operating by 
quantum rules. 

 
 could it compute more efficiently than a 

conventional computer ? 

The ultimate quantum machine: the quantum computer 



Quantum information.
The image cannot be displayed. Your 
computer may not have enough memory to 
open the image, or the image may have been 
corrupted. Restart your computer, and then 

  Turing machines. 

  Church-Turing thesis: 
A computable function is one that is computable by a universal 

Turing machine. 

The ultimate quantum machine: the quantum computer 



Quantum information.
The image cannot be displayed. Your 
computer may not have enough memory to 
open the image, or the image may have been 
corrupted. Restart your computer, and then 

  Efficiency: 
–  How many steps are required to compute a function (how many 

operations per second)? 
–  How does the number of steps depend on the size of the problem. 

The ultimate quantum machine: the quantum computer 



Quantum information.
The image cannot be displayed. Your 
computer may not have enough memory to 
open the image, or the image may have been 
corrupted. Restart your computer, and then 

  Find the prime factors of  
 2385269  (1001000110010101110101) 

How ?…divide by 2….no 
Divide by 3….no 
And so on until 
Divide by 541…yes... 2385269 = 541  x 4409 
 

 In general to factor integer X, need           steps. 
Add one digit to X, need about three times as many steps 

that is an exponential increase !   
  

X

The ultimate quantum machine: the quantum computer 



Quantum information.
The image cannot be displayed. Your 
computer may not have enough memory to 
open the image, or the image may have been 
corrupted. Restart your computer, and then 

  Peter Shor, AT&T, USA, 1993 
–  a quantum algorithm to find prime 

factors of large composites N 
–  public key cryptography no longer 

safe ! 

  Key step: 
–  find the ‘order’ of the function:  
 
 
 
(x  is random, but GCD(x,N)=1) 

f (a) = x a mod N

The ultimate quantum machine: the quantum computer 



Quantum computing today.

Ion traps.

Z

X

Y

DC

DC

RF

RF

ground

ground

Innsbruck trap, Blatt et al. 

Blatt group, Innsbruck.



Quantum computing today.

Superconducting circuits.

Martinis group UCSB.



Quantum computing today.

Photonic circuits.

White group EQuS, Brisbane.



Quantum information.

Aaronson & Arkipov:

Predicting the (probabilistic) results of a given
quantum-mechanical experiment, to finite accuracy,
cannot be done by a classical computer in probabilistic
polynomial time, unless factoring integers can as well.



The boson sampling problem.

Finding the permananent of a n × n matrix is a hard∗ problem.

Perm

 a b c
l m n
p q r

 = a(mr + nq) + b(lr + np) + c(lq + mp)

Aaronson & Arkipov: In a photonic QC with linear optics, the
output probability distributions are given by permanents.
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The boson sampling problem.



Engineered quantum systems.

Teufel et al. (NIST) Nature, March (2011).  

-Fabricated (artificial) devices that operate by the control of
quantum coherence.
-Involves a very large number of atomic systems.
- Quantise a collective, macroscopic degree of freedom.



Optomechanics: an engineered quantum systems.

Painter Nature, 2012Kippenberg,
Nature, 2012

Aspelmeyer, 
Physik in unserer Zeit, 2011

Coupling photons to bulk quantised elastic modes.
Use laser cooling to reach the vibrational ground state.



Macroscopic to microscopic.

Engineered quantum systems ...
   .... moving the quantum/classical border. 

 
 



Applications: metrology.

Ultra-precise sensing of: 
• Biomolecule binding/motion 
• Magnetic/electric fields  
• Nanoparticle mass 
• Electron/nuclear spins... 
 

QNL Sensitivity: 
∆ν ∝ Q-1 ≈ 1 Hz/Hz1/2 

 → ∆x ≈ am/Hz1/2 

      ∆F ≈ aN/Hz1/2 

Bowen lab, UQ.



The quantum world is strange ..

and enables powerful new technologies.
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