Fui

BURCH GROUP

burchlab.org @Burch_Lab

Avial Higgs Mode from ieometry nsity Wave

t al Nature (2022)

Axial Higgs Mode via Q.G. + C.D.W.

Higgs

Intensity (a.u.) Square Scattering

Interference

Highlights

BARDA

PLOPMEN^V

BURCH GROUP

burchlab.org @Burch Lab

Y. Wang, KSB, Nature (2022)

Square Scattering

New Order

Interference

Gauge? SUPERFLUID

D. Pekker and C. Varma Annu. Rev. CMP (2015)

nature physics

LETTERS

Higgs mode and its decay in a two-dimensional antiferromagnet

A. Jain^{1,2†}, M. Krautloher^{1†}, J. Porras^{1†}, G. H. Ryu^{1‡}, D. P. Chen¹, D. L. Abernathy³, J. T. Park⁴, A. Ivanov⁵, J. Chaloupka⁶, G. Khaliullin¹, B. Keimer^{1*} and B. J. Kim^{1,7*}

Higgs

Nat. Comm 2020

Square Scattering

"It is worth noting that an essential feature of this type of theory ... is the prediction of an incomplete multiplet of scalar and vector bosons"

Superfield ³He Multiple Symmetry Breaking?

G.E.Volovik & M.A. Zubkov Low Temp Phys (20)

Mirror Time Reversal ✓ 180°

Interference

Goldstone (Phason)

Higgs (Amplitudon) Highlights

Square Scattering

Fröhlich (1954) and Peierls (1955)

G. Gruner, RMP (1988) M.D Johannes, I. Mazin PRB 2008

- Particle-Hole
- High T/E
- Applications

A. Balandin, et al, APL (2021)

Charge Density Waves

Goldstone (Phason)

Higgs (Amplitudon)

Backup

S. Lei, **L. Schoop et** I al Sci. Adv. (2020)

LnTe₃

P. Walmsley, I. Fisher et al, PRB 102, 045150 (2020)

Higgs

С

P_v

EF

Materials

S. Klemenz, J. Cano, L. Schoop et al JACS (2020)

Highlights

PRB 13, 169 (1976) Proc. Phys. Soc. 86, 699 (1965) T. Devereaux Rev. Mod Phys. 79, 175 (2007)

A Postpandemic Ioo

1918-1920: Spanish Flu $(\pi, 0) \ (\pi, \pi)$ 1922: Raman to Mediterranean

Peer Pressure in the

Interference

Symmetry

Axial Higgs <u>Amplitude Mode</u>

Room T in LaTe₃ & GdTe₃

Y. Wang, L. Schoop, KSB et al

 R_{ba}

Highlights

Higgs

• What microscopically sets the phase?

Unconventional CDW?

• CDW & Quantum Geometry?

Sliding CDW + Topology?

Quantum Optics for Quantum Materials?

Square Scattering

Interference

Highlights

 \hat{e}_s \hat{e}_i

Higgs

Square Scattering

Domains?

 $\sigma^+\sigma^- \sigma^-\sigma^+$

Interference

Higgs

Dirk Wulferding and Changyoung Kim (SNU)

And others...

LnTe₃

P. Walmsley, I. Fisher et al, PRB 102, 045150 (2020)

Square Scattering

Rotation

Interference

LASE Team Yiping Wang (Columbia) G. McNamara **B. Singh** V. Plisson M. Geiwitz G. Natale W. Liu G. Osterhoudt (Thorlabs) M. Romanelli (UIUC) M. Hosen (Intel) N. Kumar (Giner) M. Gray (Resonant) R. O'Connor (Tufts) E. Sheridan (AFRL)

LnTe₃ S. Lei (Rice) L. Schoop (Princeton) . Hart

Theory: . Petrides P. Narang (UCLA) D. Xiao (U.W.)

Thanks!

TEM (Cornell): J.J. Cha Raman (UMass): Y.C.Wu J.Yan

ks.burch@bc.edu @Burch Lab

Square Scattering

Summary

Interference

Y. Wang, KSB et al, Nature (2022)

BURCH burchlab.org @Burch_Lab Interference and Axial in Raman GROUP

PHYSICAL REVIEW B

VOLUME 31, NUMBER 6

Interference effects: A key to understanding forbidden Raman scattering by LO phonons in GaAs

José Menéndez and Manuel Cardona

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-7000 Stuttgart 80, Federal Republic of Germany (Received 22 October 1984)

- · · · ·		иDР	0		
$\vec{R}_{DP} =$	a _{DP}	. 0	0	. (1)
	0	0	0	· ·	. 1

In addition, the forbidden LO-phonon Raman scattering tensor is given (via the Fröhlich interaction) by

$$\vec{\mathbf{R}}_{F} = \begin{bmatrix} a_{F} & 0 & 0 \\ 0 & a_{F} & 0 \\ 0 & 0 & a_{F} \end{bmatrix} .$$
(2)

The scattering efficiency is therefore proportional to

$$\frac{dS}{d\Omega}$$

$$\propto \begin{cases} |a_F + a_{DP}|^2 & \text{for the } z(x',x')\overline{z} \text{ configuration }, \quad (3a) \\ |a_F - a_{DP}|^2 & \text{for the } z(y',y')\overline{z} \text{ configuration }, \quad (3b) \\ |a_F|^2 & \text{for the } z(x,x)\overline{z} \text{ configuration }. \quad (3c) \end{cases}$$

15 MARCH 1985

MOLECULAR STRUCTURE

Experimental Observation of an Antisymmetric Raman Scattering Tensor

Trivalent Lanthanides Electronic Raman

J.A. Koningstein et al, Nature (1968); Chem. Phys. 48, 3971 (1968)

emperature

Backup

burchlab.org @Burch_Lab

GROUP

BURCH

Square Scattering

Higgs

Y. Wang, L. Schoop, KSB et al (Nature - 2022)

Interference vs Degeneracy

180

225

270

$$I = |R_{Ag} + R_{aS}|^2$$

0

315

0

BURCH GROUP burchlab.org @Burch_Lab $\overrightarrow{P} = \alpha \overrightarrow{E} = (\alpha_0 + \frac{d\alpha}{d\hat{O}}\delta\hat{O})\overrightarrow{E}$ $I_{ij}(\omega) = |\hat{\epsilon}_i \cdot R_{ij} \cdot \hat{\epsilon}_j|^2$ $R_{\alpha\beta} = \sum \langle f | \langle g | er_{\alpha} | n \rangle \langle n | G | n' \rangle \langle n' | er_{\beta} | g \rangle | i \rangle$ *n*,*n*′=1

 $G_{nn'} = \delta_{nn'} G_n$

Higgs

no coupling between states: $R_{\alpha\beta} = R_{\beta\alpha}$ R.A. Harris et al, J. Chem Phys. 96, 15 1992

Square Scattering

Interference in Raman

$\langle n \mid G \mid n' \rangle$ $\langle g | r_{\beta}$

$\rightarrow 2$ states uncoupled double slits in electronic space reverse process looks same Can tell which path (commute?) No interference

Improved Setup

Mirrors

N. Kumar et. al., Nat. Comm. 8, 1 (2017);

ransport

"Protected" by Symmetry? "Protected" by Topology?

Backup

(Ta,Nb)As

300 200 100 U **T (K)**

Φ

WP₂

G. Osterhoudt, KSB PRX (2021)

NbGe₂

H.-Y. Yang, KSB, Tafti Nature Comm (2021)

$$\begin{array}{c}
\mathbf{A}_{1}(1) \\
\mathbf{A}_{1}(2) \\
\mathbf{A}_{2}(2) \\
\mathbf{A}_{2}$$

300

Backup

Our Postpandemic Ioo

Y. Tian, KSB, et al Rev. Sci. Inst. 87, 4 (2016); M.Gray, KSB et al, RSI (2020) Backup

Quantum Topology

Magnetic $\longrightarrow \Omega(k), \overset{\chi=0}{A(k)} \rightarrow \infty$ Monopole

 $\chi = 2$

Y.Tokura et al., Nature Physics (2017)

Clean and Correlated

pubs.acs.org/NanoLett

Modulation Doping via a Two-Dimensional Atomic Crystalline Acceptor

Yiping Wang, Jesse Balgley, Eli Gerber, Mason Gray, Narendra Kumar, Xiaobo Lu, Jia-Qiang Yan, Arash Fereidouni, Rabindra Basnet, Seok Joon Yun, Dhavala Suri, Hikari Kitadai, Takashi Taniguchi, Kenji Watanabe, Xi Ling, Jagadeesh Moodera, Young Hee Lee, Hugh O. H. Churchill, Jin Hu, Li Yang, Eun-Ah Kim, David G. Mandrus, Erik A. Henriksen,* and Kenneth S. Burch*

Square Scattering

Cite This: Nano Lett. 2020, 20, 8446–8452

2D Toobox

Interference

E_F~600meV

Square Scattering

Modulation Doping

D. Rizzo et al, Nanoletters (2022) J. Bagley et al, Nanoletter (2022)

$\sim 3 \times 10^{13} \text{ cm}^{-2} \times (\mu \text{m}) \sim 6 \times 10^{13} \text{ cm}^{-2}$

Y. Wang, KSB et al, Nanoletters (2020)

Interference

Optimal Modulation Doping

Twist Agnostic Sweeping ~1.5×10¹⁴cm⁻² Annealing $E_F \sim 1.2 \text{ eV}$

Injection Current

Square Scattering

 $\Omega(k_x) = B_0 \hat{y}$

J.E. Sipe, & I. Shkrebtii, PRB 61, 5337 (2000) T. Morimoto & N. Nagaosa, Sci. Adv. 2, 150524 (2016) L.Z. Tan et al., NPJ Comp. Mat. 2, 16026 (2016)

Interference

Interference

Square Scattering

Device Design

Seebeck

Symmetry

Penetration & Loss

Circular: $S_2Sin(2\theta)$ $E_x E_y: S_4 Sin(4\theta)$ $|E_x|^{2+}|E_y|^{2}$: D+C₂Cos(2 θ)+C₄Cos(4 θ)

Fast

Our Devices

 $C_4 = 1.86$ $S_4 = -0.89$

 $\Phi = -130$

Topology and geometry under the nonlinear electromagnetic spotlight

Qiong Ma^{1,2}, Adolfo G. Grushin³ and Kenneth S. Burch²

Colossa!

MAY 2019 VOL 18 NO 5

TaAs (this SiO₂ Natu

nature www.nature.com/naturematerials materials

A topological shift

MACHINE LEARNING Diagnosis and drug development

ORGANIC LEDS AND SOLAR CELLS Finding the right balance

HYDROGEN SENSING Palladium-polymer plasmonics

