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A critical result in superconductivity is that flat bands, though dispersionless, can still host
nonzero superfluid weight due to quantum geometry. We show that the derivation of the mean
field superfluid weight in previous literature is incomplete, which can lead to severe quantitative
and even qualitative errors. We derive the complete equations and demonstrate that the minimal
quantum metric— the metric with minimum trace — is related to the superfluid weight in iso-
lated flat bands. We complement this result with an exact calculation of the Cooper pair mass in
attractive Hubbard models with the uniform pairing condition. When the orbitals are located at
high symmetry positions, the Cooper pair mass is exactly given by the quantum metric, which is
guaranteed to be minimal. Moreover, we study the effect of closing the band gap between the flat
and dispersive bands, and develop a mean-field theory of pairing for different band-touching points
via the S-matrix construction. In mean field, we show that a non-isolated flat band can actually
be beneficial for superconductivity. This is a promising result in the search for high temperature
superconductivity as the material does not need to have flat bands that are isolated from other
bands by the thermal energy. Our work resolves a fundamental caveat in understanding the relation
of multiband superconductivity to quantum geometry, and the results on band touchings widen the
class of systems advantageous for the search of high temperature flat band superconductivity.

I. INTRODUCTION

Systems with dispersionless (flat) bands host exotic
phenomena, as even small interactions will dominate
the kinetic energy. For example, flat bands have been
predicted to increase the critical temperature for su-
perconductivity. Bardeen-Cooper-Schrieffer (BCS) the-
ory predicts that the critical temperature is given by

Tc ∝ exp
(
− 1

|U|ρ0(EF )

)
, where |U | is the strength of the

effective attractive interaction and ρ0(EF ) is the density
of states at the Fermi surface. In a flat band, where
the density of states diverges, Tc is proportional [1–3] to
|U |, implying that the critical temperature can be much
higher in flat bands than in dispersive bands at low in-
teraction strengths.
However, the BCS critical temperature does not by

itself indicate superconductivity, as it is only the criti-
cal temperature for Cooper pair formation. The Meiss-
ner effect and the possibility of dissipationless transport
are also required. These are characterized by a nonzero
superfluid weight Ds or, equivalently, superfluid stiff-
ness [4]. Moreover, a nonzero superfluid weight is a
necessary condition for a nonzero Berezinsky-Kosterlitz-
Thouless (BKT) transition temperature, which is the
critical temperature for superconductivity in two dimen-
sions. The superfluid weight is conventionally given by
Ds = ne/m∗, where ne is the total particle density and

∗ kukka-emilia.huhtinen@aalto.fi
† paivi.torma@aalto.fi

m∗ is the effective mass. In a flat band, single parti-
cles localize and m∗ diverges, which indicates vanish-
ing superfluid weight. However, in multiband models,
the superfluid weight has an additional geometric con-
tribution which can be nonzero even in the case of flat
bands [5–7]. In the isolated band limit, this contribution
has been shown [5] to be related to the quantum met-
ric [8–10]. Monte Carlo results are in good agreement
with this prediction [11–13]. Flat band superconductiv-
ity has attracted immense interest due to its relevance in
magic-angle twisted bilayer graphene [14–16] and other
moiré materials [17–21]. In particular, the potential im-
portance of the geometric contribution to the superfluid
weight has been shown in theoretical studies of twisted
bilayer graphene [22–25], and has also been explored ex-
perimentally [26].

There is, however, a fundamental problem in the re-
lation between the superfluid weight and the quantum
metric as presented in previous literature. Consider a
gedanken transformation that changes the orbital loca-
tions of a lattice model without altering the hopping
terms. The superfluid weight is invariant under such
transformations. On the other hand, the quantum metric
depends not only on the tight-binding parameters of the
lattice model, but also on the locations of the orbitals.
We show that this discrepancy in mean-field theory is re-
solved by properly accounting for the dependence of the
order parameters on the magnetic vector potential. This
dependence is crucial in multiband models, where the
order parameters in different orbitals can have different
complex phases. We show that accounting for the behav-
ior of the order parameters is necessary even in systems

k

E

In the limit of m*  —>  ∞

  ?D(s) = 0

Depending on electronic structure details, bands can have non-zero Chern numbers10,11,32,33, allowing 
for the possibility of orbital magnetism and anomalous Hall effects.  Gapped states at non-zero + occur 
only when interactions are strong enough to shift band energies by more than the flat band width when 
they are occupied, otherwise they lead to semi-metallic states.  
 
Correlated states at all integer moiré filling factors 
 

 
 
 

Figure 1 | Integer-filling correlated states and new superconducting domes. a, Schematic of a 
typical hBN encapsulated MAG device with a graphite back gate. b, AFM image and four-probe 
measurement schematic, with the scale bar 2 µm. c, 4-terminal longitudinal resistance Rxx as a function 
of carrier density n at different perpendicular magnetic fields from 0T (black trace) to 480mT (red 
trace). d, Color plot of Rxx vs. n and T, showing different phases including metal, band insulator (BI), 
correlated state (CS) and superconducting state (SC). The boundaries of the superconducting domes 
indicated by yellow lines are defined by 50% resistance values relative to the normal state. Note that 
the metal-SC transition is not sharp at some carrier densities, adding uncertainty to the Tc extraction e, 
Longitudinal resistance Rxx at optimal doping of the superconducting domes as a function of 
temperature. The resistance is normalized to its value at 8K. f, Conductance Gxx vs. inverse temperature 
at n corresponding to + = 0, 1, ±2	and	3 . The straight lines are fits to ~	?@A	(−∆/2DE)  activated 
behavior and give gap values of 0.35 meV (+ = −2), 0.14 meV (+ = 1), 0.37 meV (+ = 2), 0.27 meV 
(+ = 3) and 0.86 meV (CNP/	+ = 0). g, Mean-field phase diagram for neutral + = 0 (CNP) twisted 
bilayer graphene, as a function of twist angle θ and interaction strength ε-1, showing differnet 
configurations of C2T symmetry and Chern number (C). 

 
Fig. 1a shows the typical device schematic of a graphite back-gated, hexagonal boron nitride (hBN) 
encapsulated MAG hetero-structure. Our stack was fabricated using a previously developed “tear and 

Xiaobo Lu et al. Nature (2019)

Conventional analysis tells us 
that the superconducting weight 

 should scale as:D(s)

lim
!=0
kk=0,
k?!0

Kµ⌫(k,!) = �D
(s)
µ⌫

⇡
;

jµ = D
(s)
µ⌫ lim

k?!0
A⌫(kk = 0,! = 0)

D =
n

m⇤ ;

D
(s) =

n

m⇤ .

HBdG| ii = Ei| ii

D
(s) =

n

m⇤
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Distance Between Vectors in Hilbert Space
Given a Hilbert space, , using the inner product we can define a distance between two vectors  in . 
We can use k  to parametrize the  vectors.

ℋ ℋ
Test

| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� (k))(| (k+ dk)i � | (k)i)

h | i = 1

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫

1

Test

| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

h | i = 1

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫

1

Using the fact that the vectors are  normalized,               , we then find:

Test

| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫

⇢
X

X

1

Tes
t

| (
k)
i

| (
k)
i;

| (
k+

dk
)i

ds
2
=

(h 
(k

+
dk

)|�
h (

k)
|)(|
 (

k+
dk

)i�
| (

k)
i)

[h 
| i

=
1]

| (
k+

dk
µ)i

⇡|
 (

k)
i+

@ k µ
| (

k)
idk

µ

@ µ
| i

ds
2
=

h@ µ
 |@

⌫ 
idk

µ dk
⌫

⇢ X X 1

Test

| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫

⇢
X

X

Mµ⌫

�µ⌫ ⌘ 1

2
(Mµ⌫ +M⌫µ)

Bµ⌫ ⌘ 1

2
(Mµ⌫ �M⌫µ)
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Test

| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫ ;
⇢
X

X

Mµ⌫

�µ⌫ ⌘ 1

2
(Mµ⌫ +M⌫µ);

Bµ⌫ ⌘ 1

2
(Mµ⌫ �M⌫µ);

x

x

x

x

x

x

x

x

x

x

x
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Test

| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫ ;
⇢
X

X

Mµ⌫

�µ⌫ ⌘ 1

2
(Mµ⌫ +M⌫µ);

Bµ⌫ ⌘ 1

2
(Mµ⌫ �M⌫µ);

h@µ |@⌫ i = h@⌫ |@µ i⇤

x

x

x

x

x

x

x

x

x

x

1

 is purely realγ(s)
μν

 is purely imaginary. Let  =  γ(a)
μν γ(a)

μν iBμν

Symmetric part:

Test

| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫ ;
⇢
X

X

Mµ⌫

�(s)
µ⌫ ⌘ 1

2
(Mµ⌫ +M⌫µ);

�(a)
µ⌫ ⌘ 1

2
(Mµ⌫ �M⌫µ);

h@µ |@⌫ i = h@⌫ |@µ i⇤

x

x

x

x

x

x

x

x

x

x

1

Antisymmetric part:

Test

| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫ ;
⇢
X

X

Mµ⌫

�(s)
µ⌫ ⌘ 1

2
(Mµ⌫ +M⌫µ);

�(a)
µ⌫ ⌘ 1

2
(Mµ⌫ �M⌫µ);

h@µ |@⌫ i = h@⌫ |@µ i⇤

x
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x
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1
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[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫

1

We can write 
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+
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)|)

(| 
(k

+
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)i�
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Quantum Geometric Tensor

Consider gauge transformation

Test

| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫ ;
⇢
X

X

Mµ⌫

�(s)
µ⌫ ⌘ 1

2
(Mµ⌫ +M⌫µ);

�(a)
µ⌫ ⌘ 1

2
(Mµ⌫ �M⌫µ);

h@µ |@⌫ i = h@⌫ |@µ i⇤

�µ ⌘ ih |@µ i

⌦µ⌫ ⌘ @�µ � @�⌫ = 2�(a)
µ⌫ = 2iBµ⌫

| (k)i ! ei↵(k)| (k)i

�(s)
µ⌫ ! �(s)

µ⌫ + (�µ � i@µ↵)(�⌫ � i@⌫↵)� �µ�⌫

Qµ⌫ = h@µ |@⌫ i � h@µ | ih |@⌫ i = h@µ |[1� | ih |]|@⌫ i

x

x

x

x

x

1

Test

| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫ ;
⇢
X

X

Mµ⌫

�(s)
µ⌫ ⌘ 1

2
(Mµ⌫ +M⌫µ);

�(a)
µ⌫ ⌘ 1

2
(Mµ⌫ �M⌫µ);

h@µ |@⌫ i = h@⌫ |@µ i⇤

�µ ⌘ ih |@µ i

⌦µ⌫ ⌘ @�µ � @�⌫ = 2�(a)
µ⌫ = 2iBµ⌫

| (k)i ! ei↵(k)| (k)i

�(s)
µ⌫ ! �(s)

µ⌫ + (�µ � i@µ↵)(�⌫ � i@⌫↵)� �µ�⌫

Qµ⌫ = h@µ |@⌫ i � h@µ | ih |@⌫ i = h@µ |[1� | ih |]|@⌫ i

x

x

x

x

x

1

 is not:γ(s)
μν

However, we can easily redefine  in a way that is gauge invariant and so  useful to define the distance 
between two physical quantum states (rays in the projective Hilbert space ):

Mμν
Pℋ

and so, considering that  is antisymmetric:Bμν

Test

| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫ ;
⇢
X

X

Mµ⌫

�(s)
µ⌫ ⌘ 1

2
(Mµ⌫ +M⌫µ);

�(a)
µ⌫ ⌘ 1

2
(Mµ⌫ �M⌫µ);

h@µ |@⌫ i = h@⌫ |@µ i⇤

�µ ⌘ ih |@µ i

⌦µ⌫ ⌘ @�µ � @�⌫ = 2�(a)
µ⌫ = 2iBµ⌫

| (k)i ! ei↵(k)| (k)i

�(s)
µ⌫ ! �(s)

µ⌫ + (�µ � i@µ↵)(�⌫ � i@⌫↵)� �µ�⌫

Mµ⌫ ! Qµ⌫ ⌘ h@µ |@⌫ i � h@µ | ih |@⌫ i;

= h@µ |[1� | ih |]|@⌫ i

Qµ⌫ = gµ⌫ + iBµ⌫

ds2 = Qµ⌫dk
µdk⌫ = gµ⌫dk

µdk⌫

x

x

x

1

 is invariant; Bμν
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| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫ ;
⇢
X

X

Mµ⌫

�(s)
µ⌫ ⌘ 1

2
(Mµ⌫ +M⌫µ);

�(a)
µ⌫ ⌘ 1

2
(Mµ⌫ �M⌫µ);

h@µ |@⌫ i = h@⌫ |@µ i⇤

�µ ⌘ ih |@µ i

⌦µ⌫ ⌘ @�µ � @�⌫ = 2�(a)
µ⌫ = 2iBµ⌫

| (k)i ! ei↵(k)| (k)i

�(s)
µ⌫ ! �(s)

µ⌫ + (�µ � i@µ↵)(�⌫ � i@⌫↵)� �µ�⌫

Mµ⌫ ! Qµ⌫ ⌘ h@µ |@⌫ i � h@µ | ih |@⌫ i

= h@µ |[1� | ih |]|@⌫ i

Qµ⌫ = gµ⌫ + iBµ⌫

ds2 = Qµ⌫dk
µdk⌫ = gµ⌫dk

µdk⌫

x

x

x

1

Quantum  
Geometric 

Tensor
Real  
Part

Imaginary part 
Berry 

curvature

•  is positive 
semidefinite
Qμν

Test

| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫ ;
⇢
X

X

Mµ⌫

�(s)
µ⌫ ⌘ 1

2
(Mµ⌫ +M⌫µ);

�(a)
µ⌫ ⌘ 1

2
(Mµ⌫ �M⌫µ);

h@µ |@⌫ i = h@⌫ |@µ i⇤

�µ ⌘ ih |@µ i

⌦µ⌫ ⌘ @�µ � @�⌫ = 2�(a)
µ⌫ = 2iBµ⌫

| (k)i ! ei↵(k)| (k)i

�(s)
µ⌫ ! �(s)

µ⌫ + (�µ � i@µ↵)(�⌫ � i@⌫↵)� �µ�⌫

Mµ⌫ ! Qµ⌫ ⌘ h@µ |@⌫ i � h@µ | ih |@⌫ i

= h@µ |[1� | ih |]|@⌫ i

Qµ⌫ = gµ⌫ + iBµ⌫

ds2 = Qµ⌫dk
µdk⌫ = gµ⌫dk

µdk⌫

x

x

x

1

 Fubini-Study Quantum Metricgμν

•  is the unique Riemannian metric on  
that is invariant under unitary transformations
gμν Pℋ

J.P. Provost, G. Vallee, Comm. Math. Phys. (1980)

Recall:
Berry connection: Berry curvature: 

Test

| (k)i

| (k)i; | (k+ dk)i

ds2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds2 = h@µ |@⌫ idkµdk⌫ ;
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X

Mµ⌫

�(s)
µ⌫ ⌘ 1

2
(Mµ⌫ +M⌫µ);

�(a)
µ⌫ ⌘ 1

2
(Mµ⌫ �M⌫µ);

h@µ |@⌫ i = h@⌫ |@µ i⇤

�µ ⌘ ih |@µ i

⌦µ⌫ ⌘ @�µ � @�⌫ = 2�(a)
µ⌫ = 2iBµ⌫

x

x

x

x

x

x

x

x
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Test

| (k)i

| (k)i; | (k+ dk)i

ds
2 = (h (k+ dk)|� h (k)|)(| (k+ dk)i � | (k)i)

[h | i = 1]

| (k+ dkµ)i ⇡ | (k)i+ @kµ | (k)idkµ

@µ| i

ds
2 = h@µ |@⌫ idkµ

dk
⌫ ;

⇢
X

X

Mµ⌫

�
(s)
µ⌫ ⌘ 1

2
(Mµ⌫ +M⌫µ);

�
(a)
µ⌫ ⌘ 1

2
(Mµ⌫ �M⌫µ);

h@µ |@⌫ i = h@⌫ |@µ i⇤

�µ ⌘ ih |@µ i

⌦µ⌫ ⌘ @µ�⌫ � @⌫�µ = 2�(a)
µ⌫ = 2iBµ⌫

| (k)i ! e
i↵(k)| (k)i

�
(s)
µ⌫ ! �

(s)
µ⌫ + (�µ � i@µ↵)(�⌫ � i@⌫↵)� �µ�⌫

Mµ⌫ ! Qµ⌫ ⌘ h@µ |@⌫ i � h@µ | ih |@⌫ i;

= h@µ |[1� | ih |]|@⌫ i

Qµ⌫ = gµ⌫ + iBµ⌫

ds
2 = Qµ⌫dk

µ
dk

⌫ = gµ⌫dk
µ
dk

⌫

h n|(@µĤ)| mi = @µ✏m�nm + (✏m � ✏n)h n|@µ mi
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2

CPn�1 formed by the lines through the origin of a complex
Euclidean space. The inner-product of H endows PH with the
structure of a Kähler manifold, i.e. a manifold with a a proper
metric tensor [43; 44]. PH can be parametrized by an element
� of a space V (that itself can be a manifold) like real space,
or momentum space. In the remainder we assume the space
V to be the momentum space with elements identified by the
momentum wave-vector k.

The inner product of H leads to the natural definition of
the distance ds

2 between two vectors | (k)i, | (k + dk)i
with infinitesimally close momenta, k, k + dk: ds

2 =
h@µ |@⌫ idk

µ
dk

⌫ , where @µ ⌘ @/@kµ. Given that quantum
states are represented by elements of PH, not H, the expres-
sion of ds2 is not the proper distance between two quantum
states with infinitesimally close momenta. This is also re-
flected by the fact that h@µ |@⌫ i, in general, is not gauge
invariant. The proper distance between quantum states can be
obtained by redefining ds

2 to remove the effects of a gauge
transformation [20–23]. This leads to the expression:

ds
2 = Qµ⌫dk

µ
dk

⌫ ; (1)
Qµ⌫ ⌘ h@µ |@⌫ i � h@µ | ih |@⌫ i (2)
Bµ⌫ ⌘ Im[Qµ⌫ ] (3)
gµ⌫ ⌘ Re[Qµ⌫ ] (4)

where we have introduced the quantum geometric tensor Qµ⌫ .
Qµ⌫ is gauge invariant. Its imaginary part is the Berry cur-
vature, Bµ⌫ , and is completely antisymmetric and therefore
does not contribute to ds

2. Its real part, gµ⌫ , is the Fubini-
Study quantum metric [45; 46]. It is interesting to point out
that the Fubini-Study metric is the unique Riemannian metric
on PH that is invariant under the action of unitary transforma-
tions (U(n)) on CP

n�1. The quantum geometric tensor Qµ⌫

is positive semidefinite [20]. This fact implies the following
two inequalities [47]:

det gµ⌫ � |Bµ⌫ |
2
, (5)

Trgµ⌫ � 2|Bµ⌫ | (6)

It is possible to generalize the definition of Qµ⌫ to the
non-Abelian case [48], in analogy to the non-Abelian gener-
alization of the Berry curvature [49]. In this generalization
one takes into account that at the degeneracy points quantum
states related by a rotation in the subspace spanned by the
degenerate eigenstates are equivalent. By properly project-
ing h@µ |@⌫ i one obtains the gauge invariant “non-Abelian”
quantum metric.

The impact of the study of the effects of the Berry curva-
ture Im[Qµ⌫ ] on the properties of quantum systems cannot
be overstated. Just in the context of condensed matter sys-
tems the Berry curvature, and associated Berry phase [24],
greatly impacted the understanding of the quantum Hall ef-
fect, the anomalous Hall effect, orbital magnetism [50] and
it lead to the discovery of topological materials [27; 51], and
Weyl semimetals [32]. By contrast the effect of Re[Qµ⌫ ] has
so far been much less studied. gµ⌫ has been shown to be con-
nected to the Hall viscosity [52–60], a quantity that is difficult
to measure [61–67]. For a perfect conductor the longitudi-
nal electric conductivity �xx(!) as a function of frequency !

has a delta function D�(!), where D is the Drude weight.
The Drude weight has also been shown to be connected to the
quantum metric gµ⌫ , [68–71]. Such connection, however, is
also difficult to ascertain experimentally given that at finite
temperature, or in the presence of any amount of disorder,
�xx(!) does not have a Dirac’s delta for ! = 0 and there-
fore D = 0.

The experimental challenges to verify the relation between
gµ⌫ , the Hall viscosity, and D are likely an important reason
for the fact that much less research activity has been focused
on the study of the effects of the quantum metric than on the
study of the effects of the Berry curvature. Recently, how-
ever, novel connections [47; 72–78] have been made between
the quantum metric and properties of electronic systems. In
Refs. [47; 72] the quantum metric of a fractional Chern insu-
lator [79] has been bee shown to be related to the stability of
the fractional quantum Hall (FQH) phase of these systems. In
particular it was shown that for a fractional Chern insulator
band j the trace Tr[g(j)µ⌫ � |Bµ⌫ |] is correlated to the gap of the
FQH-like phase [72]. It is also known that the magnetic sus-
ceptibility of a periodic multi orbital electron system depends
on the metric properties of the quantum states [73; 74; 80].
In Ref. [75] this connection has been made more explicit for
the case of two-band models. The metric tensor of a singular
2D flat band [81], i.e. a flat band with a crossing point with
a dispersive band, has also been shown to be connected to the
energy spread of the Landau levels arising from the singular
2D flat band in the presence of a magnetic field [76].

For systems in which the interactions induce a collective
ground state that breaks a U(1) symmetry it has become ap-
parent that the quantum metric is connected to the phase stiff-

ness, ⇢(s)µ⌫ , of the collective ground state. This can be seen
considering that in this case the effective Ginzburg-Landau ac-
tion describing the low energy physics of the collective ground
state has a term of the form

S = �
1

2

Z
dr⇢(s)|r |2 (7)

where  =  0e
i� is the complex order parameter describ-

ing the ground state,  0 being the amplitude and � the phase
parametrizing U(1), and � = 1/(kBT ), T being the temper-
ature and kB the Boltzmann constant. To simplify the nota-
tion in Eq. (7) we have assumed the stiffness to be diagonal
and isotropic ⇢(s)µ⌫ = ⇢

(s)
�µ⌫ . We can then introduce a gauge

field Ae↵ associated to the U(1) charge ẽ. In the presence of
Ae↵ the gradient in Eq. (7) must be replaced by the gauge co-
variant gradient r� iẽAe↵ from which we get mix terms of
the form �iẽAe↵r that describe the coupling of the system
to the field Ae↵ . From this we can see that that the current
operator j coupling to Ae↵ is ⇠ ẽrx, and that ⇢s must be
related to the strength of the current-current response (K) of
the system to the probing field Ae↵ . This is completely anal-
ogous to the case of a superconductor, discussed in the next
section, in which the connection between the metric of the
quantum states and ⇢(s)µ⌫ is shown explicitly. This connection
was first shown explicitly for simple cases in superconduc-
tors [82–84] and for flat ferromagnetic states in systems with
flat bands [85].
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one takes into account that at the degeneracy points quantum
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degenerate eigenstates are equivalent. By properly project-
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quantum metric.

The impact of the study of the effects of the Berry curva-
ture Im[Qµ⌫ ] on the properties of quantum systems cannot
be overstated. Just in the context of condensed matter sys-
tems the Berry curvature, and associated Berry phase [24],
greatly impacted the understanding of the quantum Hall ef-
fect, the anomalous Hall effect, orbital magnetism [50] and
it lead to the discovery of topological materials [27; 51], and
Weyl semimetals [32]. By contrast the effect of Re[Qµ⌫ ] has
so far been much less studied. gµ⌫ has been shown to be con-
nected to the Hall viscosity [52–60], a quantity that is difficult
to measure [61–67]. For a perfect conductor the longitudi-
nal electric conductivity �xx(!) as a function of frequency !

has a delta function D�(!), where D is the Drude weight.
The Drude weight has also been shown to be connected to the
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also difficult to ascertain experimentally given that at finite
temperature, or in the presence of any amount of disorder,
�xx(!) does not have a Dirac’s delta for ! = 0 and there-
fore D = 0.
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gµ⌫ , the Hall viscosity, and D are likely an important reason
for the fact that much less research activity has been focused
on the study of the effects of the quantum metric than on the
study of the effects of the Berry curvature. Recently, how-
ever, novel connections [47; 72–78] have been made between
the quantum metric and properties of electronic systems. In
Refs. [47; 72] the quantum metric of a fractional Chern insu-
lator [79] has been bee shown to be related to the stability of
the fractional quantum Hall (FQH) phase of these systems. In
particular it was shown that for a fractional Chern insulator
band j the trace Tr[g(j)µ⌫ � |Bµ⌫ |] is correlated to the gap of the
FQH-like phase [72]. It is also known that the magnetic sus-
ceptibility of a periodic multi orbital electron system depends
on the metric properties of the quantum states [73; 74; 80].
In Ref. [75] this connection has been made more explicit for
the case of two-band models. The metric tensor of a singular
2D flat band [81], i.e. a flat band with a crossing point with
a dispersive band, has also been shown to be connected to the
energy spread of the Landau levels arising from the singular
2D flat band in the presence of a magnetic field [76].

For systems in which the interactions induce a collective
ground state that breaks a U(1) symmetry it has become ap-
parent that the quantum metric is connected to the phase stiff-

ness, ⇢(s)µ⌫ , of the collective ground state. This can be seen
considering that in this case the effective Ginzburg-Landau ac-
tion describing the low energy physics of the collective ground
state has a term of the form

S = �
1

2

Z
dr⇢(s)|r |2 (7)

where  =  0e
i� is the complex order parameter describ-

ing the ground state,  0 being the amplitude and � the phase
parametrizing U(1), and � = 1/(kBT ), T being the temper-
ature and kB the Boltzmann constant. To simplify the nota-
tion in Eq. (7) we have assumed the stiffness to be diagonal
and isotropic ⇢(s)µ⌫ = ⇢

(s)
�µ⌫ . We can then introduce a gauge

field Ae↵ associated to the U(1) charge ẽ. In the presence of
Ae↵ the gradient in Eq. (7) must be replaced by the gauge co-
variant gradient r� iẽAe↵ from which we get mix terms of
the form �iẽAe↵r that describe the coupling of the system
to the field Ae↵ . From this we can see that that the current
operator j coupling to Ae↵ is ⇠ ẽrx, and that ⇢s must be
related to the strength of the current-current response (K) of
the system to the probing field Ae↵ . This is completely anal-
ogous to the case of a superconductor, discussed in the next
section, in which the connection between the metric of the
quantum states and ⇢(s)µ⌫ is shown explicitly. This connection
was first shown explicitly for simple cases in superconduc-
tors [82–84] and for flat ferromagnetic states in systems with
flat bands [85].
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Among all the types of condensed matter systems in which
the ground states spontaneously break a U(1) symmetry two
are particularly important and common: ferromagnets (FMs)
and superconductors (SCs). For both classes of systems
Re[Qµ⌫ ] can play an essential role in determining the prop-
erties of the collective ground state. For magnetic systems
Re[Qµ⌫ ] enters the expression of the spin-stiffness, ⇢(s,spin)µ⌫ ,
for superconductors it contributes to the superfluid stiffness,
⇢
(s)
µ⌫ , or, equivalently, the superfluid weight D(s)

µ⌫ . ⇢(s,spin)µ⌫ and
⇢
(s)
µ⌫ can be measured and are not affected by small amounts of

disorder and so their relationship to Re[Qµ⌫ ] can be verified
experimentally.

For 2D systems for which the ground state spontaneously
breaks a U(1) symmetry, ⇢

(s)
µ⌫ governs the Berezinskii-

Kosterlitz-Thouless [86; 87] (BKT) transition, in particular it
fixes the value of the temperature, TKT , at which the transi-
tion takes place. For an isotropic system ⇢

(s)
µ⌫ = ⇢

(s)
�µ⌫ and

⇢
(s) fixes TKT via the relation [87]:

kBTKT =
⇡

2
⇢
(s)(TKT ). (8)

As we discuss in the following two sections, equation (8) can
be used to estimate the value of ⇢s in 2D systems.

For a multi-orbital system ⇢
(s)
µ⌫ has a contribution due to the

curvature of the bands, the so called “conventional” contri-
bution, ⇢(s,conv)µ⌫ , and a contribution due to Re[Qµ⌫ ], the so
called “geometric” contribution, ⇢(s,geo)µ⌫ . Re[Qµ⌫ ] can be dif-
ferent from zero only for multiband systems. It is therefore
clear that the geometric contribution to ⇢

(s)
µ⌫ can be dominant

in multi-orbital systems with flat bands. This is precisely the
situation in MATBLG: the effective moiré lattice of MATBG
has a multiband spectrum with the lowest energy bands, the
ones that participate in the formation of collective ground
states such as superconducting and ferromagnetic states [88–
90], extremely flat. The advent of systems like MATBLG has
then greatly increased our ability to study and understand the
relation between the metric of quantum states and the macro-
scopic properties of collective ground states.

III. QUANTUM METRIC AND SUPERFLUID STIFFNESS

To exemplify in concrete terms the connection between the
quantum metric and the stiffness of a ground state breaking a
U(1) symmetry we consider the case of a superconductor. For
the linear current response to an external vector potential, in
momentum and frequency space we have

jµ(k,!) = Kµ⌫(k,!)A⌫(k,!) (9)

where jµ(k,!), Aµ(k,!), and Kµ⌫(k,!) are the Fourier am-
plitude with wave vector k and frequency ! of the µ com-
ponent of the current density, the µ component of the vector
potential A, and of the µ⌫ component of the current-current
response function, respectively. The superfluid weight, D(s)

µ⌫

is the tensor that relates, within the linear approximation, jµ

to the ⌫ component of a static (! = 0) transverse vector po-
tential, k · A = 0, in the limit k ! 0. Denoting by kk, k?,
the components of k parallel and perpendicular to A, respec-
tively, we have [91; 92]:

D
(s)
µ⌫ ⌘ � lim

k?!0
Kµ⌫(kk = 0,! = 0). (10)

By combining Eqs. (9), (10) we obtain London’s equation

lim
k?!0

jµ(kk = 0,! = 0) = �D
(s)
µ⌫ lim

k?!0
A⌫(kk = 0,! = 0)

(11)
that captures the key features, such as the Meissner effect,
of the superconducting state. ⇢

(s)
µ⌫ is directly proportional to

D
(s)
µ⌫ :

⇢
(s)
µ⌫ =

~2
e2

D
(s)
µ⌫ (12)

Notice that Eq. (11) was obtained requiring ! = 0, kk = 0,
and then taking the limit k? ! 0. As a consequence Eq. (11)
cannot be used to relate a time-dependent current to a time-
dependent vector potential. This can only be done by allowing
! 6= 0 when calculating Kµ⌫(k,!). The value of Kµ⌫(k,!)
in the limit (k = 0,! ! 0) is proportional to the Drude
weight [91; 92] (see Sec. II).

For an isolated parabolic band, at zero temperature, ⇢(s)µ⌫ =
~2(n/m⇤)�µ⌫ [91; 92], where n is the electron density, and
m

⇤ is the effective mass of the band. This conventional result
would lead us to the conclusion that for systems like MAT-
BLG, for which m

⇤
! 1, ⇢

(s)
µ⌫ should be very small so

that the hallmark signatures of superconductivity such as the
Meissner effect (for 3D systems) should be extremely weak.
This is in contrast with the experimental observations and
shows that the conventional expression for ⇢(s)µ⌫ obtained for
a single parabolic band is not general enough.

For the case of a multi-band system we need to derive the
expression of ⇢(s)µ⌫ from the general expression of Kµ⌫(k,!).
Using the Kubo formula we have:

Kµ⌫(k,!) = hTµ⌫i+ h�
p
µ⌫(k,!)i (13)

where Tµ⌫ is the diamagnetic current operator

Tµ⌫ =
X

�

Z
dk

(2⇡)d
c
†

k�@µ@⌫H(k,�)ck�, (14)

and

�
p
µ⌫(k,!) = �i

Z
1

0
dte

i!+t
h[jpµ(k, t), j

p
⌫ (�k, 0)]i (15)

is the time Fourier transform of the correlator of the paramag-
netic current operator

j
p
µ(k) =

X

�

Z
dk

(2⇡)d
c
†

k0�@µH(k0 + k/2,�)ck0+k�. (16)

The angle brackets denote expectation values over the ground
state, and [, ] is the commutator. In Eq. (14), (16) c†k0� (ck0�)
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and superconductors (SCs). For both classes of systems
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ponent of the current density, the µ component of the vector
potential A, and of the µ⌫ component of the current-current
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that the hallmark signatures of superconductivity such as the
Meissner effect (for 3D systems) should be extremely weak.
This is in contrast with the experimental observations and
shows that the conventional expression for ⇢(s)µ⌫ obtained for
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Among all the types of condensed matter systems in which
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Re[Qµ⌫ ] can play an essential role in determining the prop-
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fixes the value of the temperature, TKT , at which the transi-
tion takes place. For an isotropic system ⇢

(s)
µ⌫ = ⇢

(s)
�µ⌫ and

⇢
(s) fixes TKT via the relation [87]:

kBTKT =
⇡

2
⇢
(s)(TKT ). (8)

As we discuss in the following two sections, equation (8) can
be used to estimate the value of ⇢s in 2D systems.
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curvature of the bands, the so called “conventional” contri-
bution, ⇢(s,conv)µ⌫ , and a contribution due to Re[Qµ⌫ ], the so
called “geometric” contribution, ⇢(s,geo)µ⌫ . Re[Qµ⌫ ] can be dif-
ferent from zero only for multiband systems. It is therefore
clear that the geometric contribution to ⇢
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µ⌫ can be dominant

in multi-orbital systems with flat bands. This is precisely the
situation in MATBLG: the effective moiré lattice of MATBG
has a multiband spectrum with the lowest energy bands, the
ones that participate in the formation of collective ground
states such as superconducting and ferromagnetic states [88–
90], extremely flat. The advent of systems like MATBLG has
then greatly increased our ability to study and understand the
relation between the metric of quantum states and the macro-
scopic properties of collective ground states.
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To exemplify in concrete terms the connection between the
quantum metric and the stiffness of a ground state breaking a
U(1) symmetry we consider the case of a superconductor. For
the linear current response to an external vector potential, in
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ponent of the current density, the µ component of the vector
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response function, respectively. The superfluid weight, D(s)
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is the tensor that relates, within the linear approximation, jµ

to the ⌫ component of a static (! = 0) transverse vector po-
tential, k · A = 0, in the limit k ! 0. Denoting by kk, k?,
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tively, we have [91; 92]:
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µ⌫ is directly proportional to
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Notice that Eq. (11) was obtained requiring ! = 0, kk = 0,
and then taking the limit k? ! 0. As a consequence Eq. (11)
cannot be used to relate a time-dependent current to a time-
dependent vector potential. This can only be done by allowing
! 6= 0 when calculating Kµ⌫(k,!). The value of Kµ⌫(k,!)
in the limit (k = 0,! ! 0) is proportional to the Drude
weight [91; 92] (see Sec. II).

For an isolated parabolic band, at zero temperature, ⇢(s)µ⌫ =
~2(n/m⇤)�µ⌫ [91; 92], where n is the electron density, and
m

⇤ is the effective mass of the band. This conventional result
would lead us to the conclusion that for systems like MAT-
BLG, for which m

⇤
! 1, ⇢

(s)
µ⌫ should be very small so

that the hallmark signatures of superconductivity such as the
Meissner effect (for 3D systems) should be extremely weak.
This is in contrast with the experimental observations and
shows that the conventional expression for ⇢(s)µ⌫ obtained for
a single parabolic band is not general enough.

For the case of a multi-band system we need to derive the
expression of ⇢(s)µ⌫ from the general expression of Kµ⌫(k,!).
Using the Kubo formula we have:
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We want to consider the long-wavelength static limit. There are two ways to take this limit:
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Drude weight

However, for a multiband system, we have a contribution to D and D(s) from the quantum metric. 
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| (k)i;| (k+dk)i

ds
2
=(h (k+dk)|�h (k)|)(| (k+dk)i�| (k)i)

[h | i=1]

| (k+dkµ)i⇡| (k)i+@kµ| (k)idk
µ

@µ| i

ds
2
=h@µ |@⌫ idk

µ
dk

⌫

⇢
X

X

1

Insulator

lim
!=0
kk=0,
k?!0

Kµ⌫(k,!) = �D
(s)
µ⌫

⇡
;

jµ = D
(s)
µ⌫ lim

k?!0
A⌫(kk = 0,! = 0)

x

x

x

x

x

x

x

x

x

2

Meissner Effect

Superfluid Weight
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Superfluid Weight in Multiband System
We start from BdG Hamiltonian (assume for TRS):

4

is the creation (annihilation) operator for an electron with mo-
mentum k and spin �, and d is the dimensionality of the sys-
tem. H is the matrix Hamiltonian describing the system ex-
pressed in the basis used for the creation annihilation opera-
tors (spin-momentum basis).

A superconductor can be described in general by a Bo-
golyubov de Gennes Hamiltonian HBdG of the form:

HBdG = ( †

T B)HBdG

✓
 T

 
†

B

◆
, HBdG =

✓
HT �̂
�̂†

�HB

◆

(17)
where  †

T ,  †

B ( T ,  B) are the creation (annihilation) spinor
operators for the states, described in the normal phase by the
matrix Hamiltonians HT , HB , respectively, that pair to form
the condensate characterized by the pairing matrix �̂. Using
the expression of HBdG given in Eq. (17), for hTµ⌫i, in the
Matsubara formalism, we obtain:

hTµ⌫i =
1

�

Z
dk

(2⇡)d

X

!n

Tr[@µ@⌫HBdGG(i!n,k)] (18)

where !n = ⇡kBT (2n + 1), with n 2 Z, are the fermionic
Matsubara frequencies and

G(i!n,k) = [i!n �HBdG]
�1 =

X

j

| j(k)ih j(k)|

i!n � Ej(k)
(19)

is the retarded Green’s function. In Eq. (19) Ej and | j(k)i
are the eignenvalues and eigenvectors, respectively, of HBdG.
By performing the integration over k by parts, and considering
that, from the definition of G, @µG = �G

2
@µHBdG, we can

rewrite Eq. (18) in the form:

hTµ⌫i =
1

�

Z
dk

(2⇡)d

X

!n

Tr[@µHBdGG
2(i!n,k)@⌫HBdG].

(20)
Similarly for the contribution arising from the paramagnetic
currents we obtain:

h�
p
µ⌫(k, i⌦m)i =

1

�

Z
dk0

(2⇡)d

X

!n

Tr[G(i!n,k
0)

@⌫HBdG(k
0 + k/2)⌧zG(i!n + i⌦m,k0 + k)

@µHBdG(k
0 + k/2)⌧z]. (21)

where ⌦m = 2⇡mkBT (m 2 Z) are the bosonic Mat-
subara frequencies, and ⌧z is the z-Pauli matrix. Combin-
ing Eqs. (13), (19), (20), and (21), after summing over the
fermionic Matsubara frequencies, in the limit i⌦m = 0,
k ! 0, we obtain [84]:

⇢
(s)
µ⌫ =

X

i,j

Z
dk

(2⇡)d
nF (Ei)� nF (Ej)

Ej � Ei

[h i|@µHBdG| jih j |@⌫HBdG| ii

�h i|@µHBdG⌧z| jih j |⌧z@⌫HBdG| ii] (22)

where nF (E) is the Fermi-Dirac function.

Equation (22) can be used to show the connection between
⇢
(s)
µ⌫ and the quantum metric of the Bloch states. The origin

of such connection can be understood by considering that in
general, for a generic Hamiltonian H , the expectation values
h i|@µH| ji of the velocity operator @µH have an anoma-
lous contribution proportional to h i|@µ ji, and that therefore
the terms h i|@µHBdG| jih j |@⌫HBdG| ii in Eq. (22) give
rise to terms of the form h@µ i|@⌫ ii that, as shown above,
Eq. (2), (4), enter the expression of the quantum metric. We
call the part of ⇢(s)µ⌫ arising from these terms the “geometric
part”, ⇢(s,geo)µ⌫ , of ⇢(s)µ⌫ .

We can explicitly separate the contribution to ⇢(s)µ⌫ arising
from the metric of the quantum states from the conventional
one, arising from terms proportional to the derivatives of the
eigenvalues with respect to k. Let {✏(T )

mT } ({✏(B)
mB}), {|mT i}

({|mBi}) be the eigenvalues and eigenstates, respectively, of
HT (HB). The Hilbert space for HBdG is given by the direct
sum of the Hilbert spaces HT of HT and HB of HB . Any
eigenstate | ii of HBdG can be written as (| T

i i, | 
B
i i) with

(| T
i i 2 HT , and (| B

i i 2 HB. Assuming �̂ to be indepen-
dent of k, following [84], we can rewrite Eq. (22) to identify
the contribution to ⇢(s)µ⌫ arising from the quantum metric of the
|mT i, |mBi states, i.e. the quantum metric of the bands in the
normal phase. To do this we start by rewriting the expectation
values h i|@µHBdG| ji in terms of the |mT i, |mBi states

h i|@µHBdG| ji =
X

mT ,mB
nT ,nB

[cTi,mT
J
T
µ,mT ,nT

c
T
nT ,j�

c
B
i,mB

J
B
µ,mB ,nB

c
B
nB ,j ] (23)

where

c
X
i,mX

= h 
X
i |mXi; (24)

J
X
µ,mX ,nX

= hmX |@µHBdG|nXi. (25)

and X = (T,B). To simplify the notation in Eqs. (23)-(25)
we do not show explicitly the dependence of the quantities
on the momentum k. Using Eqs. (23)-(25) we can rewrite
Eq. (22) in the form

⇢
(s)
µµ =� 4

X

mT ,nT
pB ,qB ,i,j

Z
dk0

(2⇡)d
Re


nF (Ei)� nF (Ej)

Ej � Ei

c
T
i,mT

(cTj,nT
)⇤cBj,pB

(cBi,qB )
⇤
J
T
µ,mT ,nT

J
B
µ,pB ,qB ] (26)

The current expectation values JX
µ,mX ,nX

can be written as

J
X
µ,mX ,nX

= @µ✏
(X)
mX

�mX ,nX + (✏(X)
nX

� ✏
(X)
mX

)hmX |@µnXi.

(27)
Equation (27) shows that JX

µ,mX ,nX
has a ”conventional” con-

tribution proportional to @µ✏
(X)
mX , and a contribution, the sec-

ond term in Eq. (27), related to the geometry of the quantum
states. Combining Eq. (26) and Eq. (27) we can then identify

lim
!=0
kk=0,
k?!0

Kµ⌫(k,!) = �D
(s)
µ⌫

⇡
;

jµ = D
(s)
µ⌫ lim

k?!0
A⌫(kk = 0,! = 0)

D =
n

m⇤ ;

D
(s) =

n

m⇤ .

HBdG| ii = Ei| ii

x

x

x

x

x

x

2

For D(s) we have:

4

is the creation (annihilation) operator for an electron with mo-
mentum k and spin �, and d is the dimensionality of the sys-
tem. H is the matrix Hamiltonian describing the system ex-
pressed in the basis used for the creation annihilation opera-
tors (spin-momentum basis).

A superconductor can be described in general by a Bo-
golyubov de Gennes Hamiltonian HBdG of the form:

HBdG = ( †

T B)HBdG

✓
 T

 
†

B

◆
, HBdG =

✓
HT �̂
�̂†

�HB

◆

(17)
where  †

T ,  †

B ( T ,  B) are the creation (annihilation) spinor
operators for the states, described in the normal phase by the
matrix Hamiltonians HT , HB , respectively, that pair to form
the condensate characterized by the pairing matrix �̂. Using
the expression of HBdG given in Eq. (17), for hTµ⌫i, in the
Matsubara formalism, we obtain:

hTµ⌫i =
1

�

Z
dk

(2⇡)d

X

!n

Tr[@µ@⌫HBdGG(i!n,k)] (18)

where !n = ⇡kBT (2n + 1), with n 2 Z, are the fermionic
Matsubara frequencies and

G(i!n,k) = [i!n �HBdG]
�1 =

X

j

| j(k)ih j(k)|

i!n � Ej(k)
(19)

is the retarded Green’s function. In Eq. (19) Ej and | j(k)i
are the eignenvalues and eigenvectors, respectively, of HBdG.
By performing the integration over k by parts, and considering
that, from the definition of G, @µG = �G

2
@µHBdG, we can

rewrite Eq. (18) in the form:

hTµ⌫i =
1

�

Z
dk

(2⇡)d

X

!n

Tr[@µHBdGG
2(i!n,k)@⌫HBdG].

(20)
Similarly for the contribution arising from the paramagnetic
currents we obtain:

h�
p
µ⌫(k, i⌦m)i =

1

�

Z
dk0

(2⇡)d

X

!n

Tr[G(i!n,k
0)

@⌫HBdG(k
0 + k/2)⌧zG(i!n + i⌦m,k0 + k)

@µHBdG(k
0 + k/2)⌧z]. (21)

where ⌦m = 2⇡mkBT (m 2 Z) are the bosonic Mat-
subara frequencies, and ⌧z is the z-Pauli matrix. Combin-
ing Eqs. (13), (19), (20), and (21), after summing over the
fermionic Matsubara frequencies, in the limit i⌦m = 0,
k ! 0, we obtain [84]:

⇢
(s)
µ⌫ =

X

i,j

Z
dk

(2⇡)d
nF (Ei)� nF (Ej)

Ej � Ei

[h i|@µHBdG| jih j |@⌫HBdG| ii

�h i|@µHBdG⌧z| jih j |⌧z@⌫HBdG| ii] (22)

where nF (E) is the Fermi-Dirac function.

Equation (22) can be used to show the connection between
⇢
(s)
µ⌫ and the quantum metric of the Bloch states. The origin

of such connection can be understood by considering that in
general, for a generic Hamiltonian H , the expectation values
h i|@µH| ji of the velocity operator @µH have an anoma-
lous contribution proportional to h i|@µ ji, and that therefore
the terms h i|@µHBdG| jih j |@⌫HBdG| ii in Eq. (22) give
rise to terms of the form h@µ i|@⌫ ii that, as shown above,
Eq. (2), (4), enter the expression of the quantum metric. We
call the part of ⇢(s)µ⌫ arising from these terms the “geometric
part”, ⇢(s,geo)µ⌫ , of ⇢(s)µ⌫ .

We can explicitly separate the contribution to ⇢(s)µ⌫ arising
from the metric of the quantum states from the conventional
one, arising from terms proportional to the derivatives of the
eigenvalues with respect to k. Let {✏(T )

mT } ({✏(B)
mB}), {|mT i}

({|mBi}) be the eigenvalues and eigenstates, respectively, of
HT (HB). The Hilbert space for HBdG is given by the direct
sum of the Hilbert spaces HT of HT and HB of HB . Any
eigenstate | ii of HBdG can be written as (| T

i i, | 
B
i i) with

(| T
i i 2 HT , and (| B

i i 2 HB. Assuming �̂ to be indepen-
dent of k, following [84], we can rewrite Eq. (22) to identify
the contribution to ⇢(s)µ⌫ arising from the quantum metric of the
|mT i, |mBi states, i.e. the quantum metric of the bands in the
normal phase. To do this we start by rewriting the expectation
values h i|@µHBdG| ji in terms of the |mT i, |mBi states

h i|@µHBdG| ji =
X

mT ,mB
nT ,nB

[cTi,mT
J
T
µ,mT ,nT

c
T
nT ,j�

c
B
i,mB

J
B
µ,mB ,nB

c
B
nB ,j ] (23)

where

c
X
i,mX

= h 
X
i |mXi; (24)

J
X
µ,mX ,nX

= hmX |@µHBdG|nXi. (25)

and X = (T,B). To simplify the notation in Eqs. (23)-(25)
we do not show explicitly the dependence of the quantities
on the momentum k. Using Eqs. (23)-(25) we can rewrite
Eq. (22) in the form

⇢
(s)
µµ =� 4

X

mT ,nT
pB ,qB ,i,j

Z
dk0

(2⇡)d
Re


nF (Ei)� nF (Ej)

Ej � Ei

c
T
i,mT

(cTj,nT
)⇤cBj,pB

(cBi,qB )
⇤
J
T
µ,mT ,nT

J
B
µ,pB ,qB ] (26)

The current expectation values JX
µ,mX ,nX

can be written as

J
X
µ,mX ,nX

= @µ✏
(X)
mX

�mX ,nX + (✏(X)
nX

� ✏
(X)
mX

)hmX |@µnXi.

(27)
Equation (27) shows that JX

µ,mX ,nX
has a ”conventional” con-

tribution proportional to @µ✏
(X)
mX , and a contribution, the sec-

ond term in Eq. (27), related to the geometry of the quantum
states. Combining Eq. (26) and Eq. (27) we can then identify

4

is the creation (annihilation) operator for an electron with mo-
mentum k and spin �, and d is the dimensionality of the sys-
tem. H is the matrix Hamiltonian describing the system ex-
pressed in the basis used for the creation annihilation opera-
tors (spin-momentum basis).

A superconductor can be described in general by a Bo-
golyubov de Gennes Hamiltonian HBdG of the form:

HBdG = ( †

T B)HBdG

✓
 T

 
†

B

◆
, HBdG =

✓
HT �̂
�̂†

�HB

◆

(17)
where  †

T ,  †

B ( T ,  B) are the creation (annihilation) spinor
operators for the states, described in the normal phase by the
matrix Hamiltonians HT , HB , respectively, that pair to form
the condensate characterized by the pairing matrix �̂. Using
the expression of HBdG given in Eq. (17), for hTµ⌫i, in the
Matsubara formalism, we obtain:

hTµ⌫i =
1

�

Z
dk

(2⇡)d

X

!n

Tr[@µ@⌫HBdGG(i!n,k)] (18)

where !n = ⇡kBT (2n + 1), with n 2 Z, are the fermionic
Matsubara frequencies and

G(i!n,k) = [i!n �HBdG]
�1 =

X

j

| j(k)ih j(k)|

i!n � Ej(k)
(19)

is the retarded Green’s function. In Eq. (19) Ej and | j(k)i
are the eignenvalues and eigenvectors, respectively, of HBdG.
By performing the integration over k by parts, and considering
that, from the definition of G, @µG = �G

2
@µHBdG, we can

rewrite Eq. (18) in the form:

hTµ⌫i =
1

�

Z
dk

(2⇡)d

X

!n

Tr[@µHBdGG
2(i!n,k)@⌫HBdG].

(20)
Similarly for the contribution arising from the paramagnetic
currents we obtain:

h�
p
µ⌫(k, i⌦m)i =

1

�

Z
dk0

(2⇡)d

X

!n

Tr[G(i!n,k
0)

@⌫HBdG(k
0 + k/2)⌧zG(i!n + i⌦m,k0 + k)

@µHBdG(k
0 + k/2)⌧z]. (21)

where ⌦m = 2⇡mkBT (m 2 Z) are the bosonic Mat-
subara frequencies, and ⌧z is the z-Pauli matrix. Combin-
ing Eqs. (13), (19), (20), and (21), after summing over the
fermionic Matsubara frequencies, in the limit i⌦m = 0,
k ! 0, we obtain [84]:

⇢
(s)
µ⌫ =

X

i,j

Z
dk

(2⇡)d
nF (Ei)� nF (Ej)

Ej � Ei

[h i|@µHBdG| jih j |@⌫HBdG| ii

�h i|@µHBdG⌧z| jih j |⌧z@⌫HBdG| ii] (22)

where nF (E) is the Fermi-Dirac function.

Equation (22) can be used to show the connection between
⇢
(s)
µ⌫ and the quantum metric of the Bloch states. The origin

of such connection can be understood by considering that in
general, for a generic Hamiltonian H , the expectation values
h i|@µH| ji of the velocity operator @µH have an anoma-
lous contribution proportional to h i|@µ ji, and that therefore
the terms h i|@µHBdG| jih j |@⌫HBdG| ii in Eq. (22) give
rise to terms of the form h@µ i|@⌫ ii that, as shown above,
Eq. (2), (4), enter the expression of the quantum metric. We
call the part of ⇢(s)µ⌫ arising from these terms the “geometric
part”, ⇢(s,geo)µ⌫ , of ⇢(s)µ⌫ .

We can explicitly separate the contribution to ⇢(s)µ⌫ arising
from the metric of the quantum states from the conventional
one, arising from terms proportional to the derivatives of the
eigenvalues with respect to k. Let {✏(T )

mT } ({✏(B)
mB}), {|mT i}

({|mBi}) be the eigenvalues and eigenstates, respectively, of
HT (HB). The Hilbert space for HBdG is given by the direct
sum of the Hilbert spaces HT of HT and HB of HB . Any
eigenstate | ii of HBdG can be written as (| T

i i, | 
B
i i) with

(| T
i i 2 HT , and (| B

i i 2 HB. Assuming �̂ to be indepen-
dent of k, following [84], we can rewrite Eq. (22) to identify
the contribution to ⇢(s)µ⌫ arising from the quantum metric of the
|mT i, |mBi states, i.e. the quantum metric of the bands in the
normal phase. To do this we start by rewriting the expectation
values h i|@µHBdG| ji in terms of the |mT i, |mBi states

h i|@µHBdG| ji =
X

mT ,mB
nT ,nB

[cTi,mT
J
T
µ,mT ,nT

c
T
nT ,j�

c
B
i,mB

J
B
µ,mB ,nB

c
B
nB ,j ] (23)

where

c
X
i,mX

= h 
X
i |mXi; (24)

J
X
µ,mX ,nX

= hmX |@µHBdG|nXi. (25)

and X = (T,B). To simplify the notation in Eqs. (23)-(25)
we do not show explicitly the dependence of the quantities
on the momentum k. Using Eqs. (23)-(25) we can rewrite
Eq. (22) in the form

⇢
(s)
µµ =� 4
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J
T
µ,mT ,nT

J
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The current expectation values JX
µ,mX ,nX

can be written as

J
X
µ,mX ,nX

= @µ✏
(X)
mX

�mX ,nX + (✏(X)
nX
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)hmX |@µnXi.

(27)
Equation (27) shows that JX

µ,mX ,nX
has a ”conventional” con-

tribution proportional to @µ✏
(X)
mX , and a contribution, the sec-

ond term in Eq. (27), related to the geometry of the quantum
states. Combining Eq. (26) and Eq. (27) we can then identify

4

is the creation (annihilation) operator for an electron with mo-
mentum k and spin �, and d is the dimensionality of the sys-
tem. H is the matrix Hamiltonian describing the system ex-
pressed in the basis used for the creation annihilation opera-
tors (spin-momentum basis).

A superconductor can be described in general by a Bo-
golyubov de Gennes Hamiltonian HBdG of the form:

HBdG = ( †

T B)HBdG

✓
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B

◆
, HBdG =
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HT �̂
�̂†
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(17)
where  †

T ,  †

B ( T ,  B) are the creation (annihilation) spinor
operators for the states, described in the normal phase by the
matrix Hamiltonians HT , HB , respectively, that pair to form
the condensate characterized by the pairing matrix �̂. Using
the expression of HBdG given in Eq. (17), for hTµ⌫i, in the
Matsubara formalism, we obtain:

hTµ⌫i =
1

�

Z
dk

(2⇡)d

X

!n

Tr[@µ@⌫HBdGG(i!n,k)] (18)

where !n = ⇡kBT (2n + 1), with n 2 Z, are the fermionic
Matsubara frequencies and

G(i!n,k) = [i!n �HBdG]
�1 =

X

j

| j(k)ih j(k)|

i!n � Ej(k)
(19)

is the retarded Green’s function. In Eq. (19) Ej and | j(k)i
are the eignenvalues and eigenvectors, respectively, of HBdG.
By performing the integration over k by parts, and considering
that, from the definition of G, @µG = �G

2
@µHBdG, we can

rewrite Eq. (18) in the form:

hTµ⌫i =
1

�

Z
dk
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!n

Tr[@µHBdGG
2(i!n,k)@⌫HBdG].

(20)
Similarly for the contribution arising from the paramagnetic
currents we obtain:
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µ⌫(k, i⌦m)i =
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@µHBdG(k
0 + k/2)⌧z]. (21)

where ⌦m = 2⇡mkBT (m 2 Z) are the bosonic Mat-
subara frequencies, and ⌧z is the z-Pauli matrix. Combin-
ing Eqs. (13), (19), (20), and (21), after summing over the
fermionic Matsubara frequencies, in the limit i⌦m = 0,
k ! 0, we obtain [84]:
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where nF (E) is the Fermi-Dirac function.

Equation (22) can be used to show the connection between
⇢
(s)
µ⌫ and the quantum metric of the Bloch states. The origin

of such connection can be understood by considering that in
general, for a generic Hamiltonian H , the expectation values
h i|@µH| ji of the velocity operator @µH have an anoma-
lous contribution proportional to h i|@µ ji, and that therefore
the terms h i|@µHBdG| jih j |@⌫HBdG| ii in Eq. (22) give
rise to terms of the form h@µ i|@⌫ ii that, as shown above,
Eq. (2), (4), enter the expression of the quantum metric. We
call the part of ⇢(s)µ⌫ arising from these terms the “geometric
part”, ⇢(s,geo)µ⌫ , of ⇢(s)µ⌫ .

We can explicitly separate the contribution to ⇢(s)µ⌫ arising
from the metric of the quantum states from the conventional
one, arising from terms proportional to the derivatives of the
eigenvalues with respect to k. Let {✏(T )

mT } ({✏(B)
mB}), {|mT i}

({|mBi}) be the eigenvalues and eigenstates, respectively, of
HT (HB). The Hilbert space for HBdG is given by the direct
sum of the Hilbert spaces HT of HT and HB of HB . Any
eigenstate | ii of HBdG can be written as (| T

i i, | 
B
i i) with

(| T
i i 2 HT , and (| B

i i 2 HB. Assuming �̂ to be indepen-
dent of k, following [84], we can rewrite Eq. (22) to identify
the contribution to ⇢(s)µ⌫ arising from the quantum metric of the
|mT i, |mBi states, i.e. the quantum metric of the bands in the
normal phase. To do this we start by rewriting the expectation
values h i|@µHBdG| ji in terms of the |mT i, |mBi states

h i|@µHBdG| ji =
X

mT ,mB
nT ,nB

[cTi,mT
J
T
µ,mT ,nT

c
T
nT ,j�

c
B
i,mB

J
B
µ,mB ,nB

c
B
nB ,j ] (23)

where

c
X
i,mX

= h 
X
i |mXi; (24)

J
X
µ,mX ,nX

= hmX |@µHBdG|nXi. (25)

and X = (T,B). To simplify the notation in Eqs. (23)-(25)
we do not show explicitly the dependence of the quantities
on the momentum k. Using Eqs. (23)-(25) we can rewrite
Eq. (22) in the form

⇢
(s)
µµ =� 4

X

mT ,nT
pB ,qB ,i,j

Z
dk0

(2⇡)d
Re


nF (Ei)� nF (Ej)

Ej � Ei

c
T
i,mT

(cTj,nT
)⇤cBj,pB

(cBi,qB )
⇤
J
T
µ,mT ,nT

J
B
µ,pB ,qB ] (26)

The current expectation values JX
µ,mX ,nX

can be written as

J
X
µ,mX ,nX

= @µ✏
(X)
mX

�mX ,nX + (✏(X)
nX

� ✏
(X)
mX

)hmX |@µnXi.

(27)
Equation (27) shows that JX

µ,mX ,nX
has a ”conventional” con-

tribution proportional to @µ✏
(X)
mX , and a contribution, the sec-

ond term in Eq. (27), related to the geometry of the quantum
states. Combining Eq. (26) and Eq. (27) we can then identify

lim
!=0
kk=0,
k?!0

Kµ⌫(k,!) = �D
(s)
µ⌫

⇡
;

jµ = D
(s)
µ⌫ lim

k?!0
A⌫(kk = 0,! = 0)

D =
n

m⇤ ;

D
(s) =

n

m⇤ .

HBdG| ii = Ei| ii

D
(s)
µ⌫ =

x

x

x

x

x

2
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For the case of a well isolated band:
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three contributions to ⇢
(s)
µ⌫ =⇢(s,1)µ⌫ + ⇢

(s,2)
µ⌫ + ⇢

(s,3)
µ⌫ ,

⇢
(s,1)
µ⌫ =�4

X

mT ,nT
pB ,qB ,i,j

Z
dk

(2⇡)d
Re

h
C

pBqB
mTnT

@µ✏
(T )
mT

@⌫✏
(B)
qB �mTnT �pBqB

i

(28)

⇢
(s,2)
µ⌫ =�4

X

mT ,nT
pB ,qB ,i,j

Z
dk

(2⇡)d
Re

h
C

pBqB
mTnT

[@µ✏
(T )
mT

�mTnT

(✏(B)
qB � ✏

(B)
pB

)hpB |@µqBi

+ @⌫✏
(B)
pB

�pBqB (✏
(T )
nT

� ✏
(T )
mT

)hmT |@⌫nT i]
i

(29)

⇢
(s,3)
µ⌫ =�4

X

mT 6=nT
pB 6=qB ,i,j

Z
dk

(2⇡)d
Re

h
C

pBqB
mTnT

[(✏(B)
qB � ✏

(B)
pB

)(✏(T )
nT

� ✏
(T )
mT

)

hpB |@µqBihmT |@⌫nT i]] . (30)

where

C
pBqB
mTnT

⌘

X

ij

nF (Ei)� nF (Ej)

Ej � Ei
c
T
i,mT

(cTj,nT
)⇤cBj,pB

(cBi,qB )
⇤
.

(31)
⇢
(s,1)
µ⌫ is the conventional contribution to ⇢

(s)
µ⌫ . ⇢

(s,2)
µ⌫ is a

”mixed” contribution: it depends in part on the properties of
the band dispersion, as the conventional part, and in part on
the geometry of the quantum states. For systems with particle-
hole symmetry this term is negligible. ⇢

(s,3)
µ⌫ has only terms

proportional to hmT |@⌫nT i, i.e. terms that depend on the
metric properties of the quantum states; there are no terms
proportional to the gradient of the eigenvalues with respect to
k. For this reason, it is natural to identify ⇢

(s,3)
µ⌫ as the dom-

inant geometric term. ⇢
(s)
µ⌫ and ⇢

(s,1)
µ⌫ are gauge invariant and

therefore the combination ⇢
(s,2)
µ⌫ +⇢(s,3)µ⌫ is also gauge invari-

ant. For this reason it is useful at times to separate ⇢
(s)
µ⌫ in the

two terms: ⇢(s,1)µ⌫ that only depends on the bands’ dispersion,
and ⇢

(s,2)
µ⌫ +⇢(s,3)µ⌫ that is mostly given by the metric proper-

ties of the Bloch states. In the remainder, considering that we
mostly focus on superconducting systems for which ⇢

(s,2)
µ⌫ is

negligible, we identify ⇢
(s,3)
µ⌫ as the geometric part, ⇢(s,geo)µ⌫ , of

⇢
(s)
µ⌫ .
The expression of ⇢(s,geo)µ⌫ ⌘⇢

(s,3)
µ⌫ given by Eq. (30), as long

as the order parameter is independent of momentum, is quite
general and therefore shows the general nature of the con-
nection between quantum metric and superfluid density. It is
fairly straightforward to write a similar equations for the spin
stiffness of a XY ferromagnet or the pseudo-spin stiffness of
an XY orbital-ferromagnet, i.e., a state in which the degree of
freedom ordering is not the spin but an orbital degree of free-
dom, situation that appears to be very relevant for systems like
MATBLG [9; 93–95].

It is instructive to see how Eqs. (28), (30) simplify when
the chemical potential lies within a well isolated band, j. In
this case, neglecting terms of order 1/�ij , where {�ij} are
the gaps between band j and the other bands, and assuming

the pairing matrix to be proportional to the identity with am-
plitude �, we can obtain a direct relation between ⇢

(s,geo)
µ⌫ and

the quantum metric g
(j)
µ⌫ of band j when time-reversal sym-

metry is preserved and the superconducting order parameter,
in addition to being k-independent, only has intraband terms.
In this case we have [84]:

⇢
(s)
µ⌫ =

Z
dk

(2⇡)d


2
@nF (Ej)

@Ej
+

1� 2nF (Ej)

Ej

�
�2

E
2
j

@µ✏j@⌫✏j+

2�2

Z
dk

(2⇡)d
1� 2nF (Ej)

Ej
g
(j)
µ⌫ (32)

where k is the momentum. The last term in Eq (32) is the
geometric part of ⇢(s)µ⌫ that, in this simple case, is related in
a very direct way to the quantum metric g

(j)
µ⌫ of the isolated

band.
Using the expression above, and the inequality (6) for the

case of an isolated band we can provide a bound for the geo-
metric part of ⇢(s)µ⌫ [82; 84]:

⇢
(s,geo)µ⌫ � 2�2

Z
dk

(2⇡)d
1� 2nF (Ej)

Ej
|Bµ⌫ |

2
. (33)

This result shows that for bands with large Berry curvature the
geometric contribution to ⇢

(s)
µ⌫ is large. It is important to point

out that Eq. (33) only provides a lower bound given that it is
possible to have situations in which gµ⌫ 6= 0 even if the Berry
curvature is zero [75].

In 2D, for the case in which the isolated band, is flat, i.e.
having a bandwidth much smaller than the �ij gaps, and non

degenerate, ⇢(s)µ⌫ is only given by the geometric part and can
be written in the form [82]:

⇢
(s)
µ⌫ = 2�

p
⌫(1� ⌫)

Z
dk

(2⇡)2
gµ⌫(k). (34)

where ⌫ is the filling fraction of the flat band. In this case
we have that (1/2⇡)

R
dkBµ⌫ = "µ⌫C, where "µ⌫ is the

2⇥2 Levi-Civita tensor and C is the Chern number of the iso-
lated band. Using inequality (5) we obtain det(

R
dkgµ⌫) �

det(dk
R
|Bµ⌫ |

2 = C
2 and then, for an isotropic system [82]:

⇢
(s)

�
�

⇡

p
⌫(1� ⌫)|C|. (35)

In general, when the 2D flat band has degenerate points it
might not be possible to find a lower bound for ⇢(s)µ⌫ =⇢(s,geo)µ⌫ ,
however, this can be done for the case relevant to MATBLG
in which the two low-energy 2D flat band have degeneracy
points and C2zT symmetry, C2z being the twofold rotation
around the z-axis perpendicular to the 2D plane to which the
quantum states are confined, and T the time-reversal oper-
ator [96]. Given the degeneracy of the bands it is neces-
sary to consider the non-Abelian generalization of the expres-
sion of Qµ⌫ . It can be shown that the C2zT symmetry con-
strains the non-Abelian Berry curvature to the form [97; 98]
Bxy = �bxy(k)�2 with (1/2⇡)

R
dkbxy = e2, where e2 is

the Wilson loop winding number [97], or ”Euler’s class” [98],
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three contributions to ⇢
(s)
µ⌫ =⇢(s,1)µ⌫ + ⇢

(s,2)
µ⌫ + ⇢

(s,3)
µ⌫ ,

⇢
(s,1)
µ⌫ =�4

X

mT ,nT
pB ,qB ,i,j

Z
dk

(2⇡)d
Re

h
C

pBqB
mTnT

@µ✏
(T )
mT
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(B)
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(28)

⇢
(s,2)
µ⌫ =�4

X

mT ,nT
pB ,qB ,i,j

Z
dk

(2⇡)d
Re

h
C

pBqB
mTnT

[@µ✏
(T )
mT

�mTnT

(✏(B)
qB � ✏

(B)
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)hpB |@µqBi
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(29)

⇢
(s,3)
µ⌫ =�4

X

mT 6=nT
pB 6=qB ,i,j

Z
dk

(2⇡)d
Re

h
C

pBqB
mTnT

[(✏(B)
qB � ✏

(B)
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where

C
pBqB
mTnT

⌘

X

ij

nF (Ei)� nF (Ej)

Ej � Ei
c
T
i,mT

(cTj,nT
)⇤cBj,pB

(cBi,qB )
⇤
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(31)
⇢
(s,1)
µ⌫ is the conventional contribution to ⇢

(s)
µ⌫ . ⇢

(s,2)
µ⌫ is a

”mixed” contribution: it depends in part on the properties of
the band dispersion, as the conventional part, and in part on
the geometry of the quantum states. For systems with particle-
hole symmetry this term is negligible. ⇢

(s,3)
µ⌫ has only terms

proportional to hmT |@⌫nT i, i.e. terms that depend on the
metric properties of the quantum states; there are no terms
proportional to the gradient of the eigenvalues with respect to
k. For this reason, it is natural to identify ⇢

(s,3)
µ⌫ as the dom-

inant geometric term. ⇢
(s)
µ⌫ and ⇢

(s,1)
µ⌫ are gauge invariant and

therefore the combination ⇢
(s,2)
µ⌫ +⇢(s,3)µ⌫ is also gauge invari-

ant. For this reason it is useful at times to separate ⇢
(s)
µ⌫ in the

two terms: ⇢(s,1)µ⌫ that only depends on the bands’ dispersion,
and ⇢

(s,2)
µ⌫ +⇢(s,3)µ⌫ that is mostly given by the metric proper-

ties of the Bloch states. In the remainder, considering that we
mostly focus on superconducting systems for which ⇢

(s,2)
µ⌫ is

negligible, we identify ⇢
(s,3)
µ⌫ as the geometric part, ⇢(s,geo)µ⌫ , of

⇢
(s)
µ⌫ .
The expression of ⇢(s,geo)µ⌫ ⌘⇢

(s,3)
µ⌫ given by Eq. (30), as long

as the order parameter is independent of momentum, is quite
general and therefore shows the general nature of the con-
nection between quantum metric and superfluid density. It is
fairly straightforward to write a similar equations for the spin
stiffness of a XY ferromagnet or the pseudo-spin stiffness of
an XY orbital-ferromagnet, i.e., a state in which the degree of
freedom ordering is not the spin but an orbital degree of free-
dom, situation that appears to be very relevant for systems like
MATBLG [9; 93–95].

It is instructive to see how Eqs. (28), (30) simplify when
the chemical potential lies within a well isolated band, j. In
this case, neglecting terms of order 1/�ij , where {�ij} are
the gaps between band j and the other bands, and assuming

the pairing matrix to be proportional to the identity with am-
plitude �, we can obtain a direct relation between ⇢

(s,geo)
µ⌫ and

the quantum metric g
(j)
µ⌫ of band j when time-reversal sym-

metry is preserved and the superconducting order parameter,
in addition to being k-independent, only has intraband terms.
In this case we have [84]:

⇢
(s)
µ⌫ =

Z
dk

(2⇡)d


2
@nF (Ej)

@Ej
+

1� 2nF (Ej)

Ej

�
�2

E
2
j

@µ✏j@⌫✏j+

2�2

Z
dk

(2⇡)d
1� 2nF (Ej)

Ej
g
(j)
µ⌫ (32)

where k is the momentum. The last term in Eq (32) is the
geometric part of ⇢(s)µ⌫ that, in this simple case, is related in
a very direct way to the quantum metric g

(j)
µ⌫ of the isolated

band.
Using the expression above, and the inequality (6) for the

case of an isolated band we can provide a bound for the geo-
metric part of ⇢(s)µ⌫ [82; 84]:

⇢
(s,geo)µ⌫ � 2�2

Z
dk

(2⇡)d
1� 2nF (Ej)

Ej
|Bµ⌫ |

2
. (33)

This result shows that for bands with large Berry curvature the
geometric contribution to ⇢

(s)
µ⌫ is large. It is important to point

out that Eq. (33) only provides a lower bound given that it is
possible to have situations in which gµ⌫ 6= 0 even if the Berry
curvature is zero [75].

In 2D, for the case in which the isolated band, is flat, i.e.
having a bandwidth much smaller than the �ij gaps, and non

degenerate, ⇢(s)µ⌫ is only given by the geometric part and can
be written in the form [82]:

⇢
(s)
µ⌫ = 2�

p
⌫(1� ⌫)

Z
dk

(2⇡)2
gµ⌫(k). (34)

where ⌫ is the filling fraction of the flat band. In this case
we have that (1/2⇡)

R
dkBµ⌫ = "µ⌫C, where "µ⌫ is the

2⇥2 Levi-Civita tensor and C is the Chern number of the iso-
lated band. Using inequality (5) we obtain det(

R
dkgµ⌫) �

det(dk
R
|Bµ⌫ |

2 = C
2 and then, for an isotropic system [82]:

⇢
(s)

�
�

⇡

p
⌫(1� ⌫)|C|. (35)

In general, when the 2D flat band has degenerate points it
might not be possible to find a lower bound for ⇢(s)µ⌫ =⇢(s,geo)µ⌫ ,
however, this can be done for the case relevant to MATBLG
in which the two low-energy 2D flat band have degeneracy
points and C2zT symmetry, C2z being the twofold rotation
around the z-axis perpendicular to the 2D plane to which the
quantum states are confined, and T the time-reversal oper-
ator [96]. Given the degeneracy of the bands it is neces-
sary to consider the non-Abelian generalization of the expres-
sion of Qµ⌫ . It can be shown that the C2zT symmetry con-
strains the non-Abelian Berry curvature to the form [97; 98]
Bxy = �bxy(k)�2 with (1/2⇡)

R
dkbxy = e2, where e2 is

the Wilson loop winding number [97], or ”Euler’s class” [98],

lim
!=0
kk=0,
k?!0

Kµ⌫(k,!) = �D
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µ⌫

⇡
;

jµ = D
(s)
µ⌫ lim
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D =
n

m⇤ ;

D
(s) =

n

m⇤ .

HBdG| ii = Ei| ii
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(s)
µ⌫ =

x

x
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x

x

2

The flatter the bands the more relevant is the geometric contribution. For a 2D, flat, isolated band:
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where
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(31)
⇢
(s,1)
µ⌫ is the conventional contribution to ⇢

(s)
µ⌫ . ⇢

(s,2)
µ⌫ is a

”mixed” contribution: it depends in part on the properties of
the band dispersion, as the conventional part, and in part on
the geometry of the quantum states. For systems with particle-
hole symmetry this term is negligible. ⇢

(s,3)
µ⌫ has only terms

proportional to hmT |@⌫nT i, i.e. terms that depend on the
metric properties of the quantum states; there are no terms
proportional to the gradient of the eigenvalues with respect to
k. For this reason, it is natural to identify ⇢

(s,3)
µ⌫ as the dom-

inant geometric term. ⇢
(s)
µ⌫ and ⇢

(s,1)
µ⌫ are gauge invariant and

therefore the combination ⇢
(s,2)
µ⌫ +⇢(s,3)µ⌫ is also gauge invari-

ant. For this reason it is useful at times to separate ⇢
(s)
µ⌫ in the

two terms: ⇢(s,1)µ⌫ that only depends on the bands’ dispersion,
and ⇢

(s,2)
µ⌫ +⇢(s,3)µ⌫ that is mostly given by the metric proper-

ties of the Bloch states. In the remainder, considering that we
mostly focus on superconducting systems for which ⇢

(s,2)
µ⌫ is

negligible, we identify ⇢
(s,3)
µ⌫ as the geometric part, ⇢(s,geo)µ⌫ , of

⇢
(s)
µ⌫ .
The expression of ⇢(s,geo)µ⌫ ⌘⇢

(s,3)
µ⌫ given by Eq. (30), as long

as the order parameter is independent of momentum, is quite
general and therefore shows the general nature of the con-
nection between quantum metric and superfluid density. It is
fairly straightforward to write a similar equations for the spin
stiffness of a XY ferromagnet or the pseudo-spin stiffness of
an XY orbital-ferromagnet, i.e., a state in which the degree of
freedom ordering is not the spin but an orbital degree of free-
dom, situation that appears to be very relevant for systems like
MATBLG [9; 93–95].

It is instructive to see how Eqs. (28), (30) simplify when
the chemical potential lies within a well isolated band, j. In
this case, neglecting terms of order 1/�ij , where {�ij} are
the gaps between band j and the other bands, and assuming

the pairing matrix to be proportional to the identity with am-
plitude �, we can obtain a direct relation between ⇢

(s,geo)
µ⌫ and

the quantum metric g
(j)
µ⌫ of band j when time-reversal sym-

metry is preserved and the superconducting order parameter,
in addition to being k-independent, only has intraband terms.
In this case we have [84]:

⇢
(s)
µ⌫ =

Z
dk

(2⇡)d


2
@nF (Ej)

@Ej
+

1� 2nF (Ej)

Ej

�
�2

E
2
j

@µ✏j@⌫✏j+

2�2

Z
dk

(2⇡)d
1� 2nF (Ej)

Ej
g
(j)
µ⌫ (32)

where k is the momentum. The last term in Eq (32) is the
geometric part of ⇢(s)µ⌫ that, in this simple case, is related in
a very direct way to the quantum metric g

(j)
µ⌫ of the isolated

band.
Using the expression above, and the inequality (6) for the

case of an isolated band we can provide a bound for the geo-
metric part of ⇢(s)µ⌫ [82; 84]:

⇢
(s,geo)µ⌫ � 2�2

Z
dk

(2⇡)d
1� 2nF (Ej)

Ej
|Bµ⌫ |

2
. (33)

This result shows that for bands with large Berry curvature the
geometric contribution to ⇢

(s)
µ⌫ is large. It is important to point

out that Eq. (33) only provides a lower bound given that it is
possible to have situations in which gµ⌫ 6= 0 even if the Berry
curvature is zero [75].

In 2D, for the case in which the isolated band, is flat, i.e.
having a bandwidth much smaller than the �ij gaps, and non

degenerate, ⇢(s)µ⌫ is only given by the geometric part and can
be written in the form [82]:

⇢
(s)
µ⌫ = 2�

p
⌫(1� ⌫)

Z
dk

(2⇡)2
gµ⌫(k). (34)

where ⌫ is the filling fraction of the flat band. In this case
we have that (1/2⇡)

R
dkBµ⌫ = "µ⌫C, where "µ⌫ is the

2⇥2 Levi-Civita tensor and C is the Chern number of the iso-
lated band. Using inequality (5) we obtain det(

R
dkgµ⌫) �

det(dk
R
|Bµ⌫ |

2 = C
2 and then, for an isotropic system [82]:

⇢
(s)

�
�

⇡

p
⌫(1� ⌫)|C|. (35)

In general, when the 2D flat band has degenerate points it
might not be possible to find a lower bound for ⇢(s)µ⌫ =⇢(s,geo)µ⌫ ,
however, this can be done for the case relevant to MATBLG
in which the two low-energy 2D flat band have degeneracy
points and C2zT symmetry, C2z being the twofold rotation
around the z-axis perpendicular to the 2D plane to which the
quantum states are confined, and T the time-reversal oper-
ator [96]. Given the degeneracy of the bands it is neces-
sary to consider the non-Abelian generalization of the expres-
sion of Qµ⌫ . It can be shown that the C2zT symmetry con-
strains the non-Abelian Berry curvature to the form [97; 98]
Bxy = �bxy(k)�2 with (1/2⇡)

R
dkbxy = e2, where e2 is

the Wilson loop winding number [97], or ”Euler’s class” [98],

lim
!=0
kk=0,
k?!0

Kµ⌫(k,!) = �D
(s)
µ⌫

⇡
;

jµ = D
(s)
µ⌫ lim
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D
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D
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three contributions to ⇢
(s)
µ⌫ =⇢(s,1)µ⌫ + ⇢

(s,2)
µ⌫ + ⇢

(s,3)
µ⌫ ,

⇢
(s,1)
µ⌫ =�4

X

mT ,nT
pB ,qB ,i,j

Z
dk

(2⇡)d
Re

h
C

pBqB
mTnT

@µ✏
(T )
mT
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(B)
qB �mTnT �pBqB

i

(28)

⇢
(s,2)
µ⌫ =�4

X

mT ,nT
pB ,qB ,i,j

Z
dk

(2⇡)d
Re

h
C

pBqB
mTnT

[@µ✏
(T )
mT

�mTnT

(✏(B)
qB � ✏

(B)
pB

)hpB |@µqBi

+ @⌫✏
(B)
pB

�pBqB (✏
(T )
nT

� ✏
(T )
mT

)hmT |@⌫nT i]
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(29)

⇢
(s,3)
µ⌫ =�4

X

mT 6=nT
pB 6=qB ,i,j

Z
dk

(2⇡)d
Re

h
C

pBqB
mTnT

[(✏(B)
qB � ✏

(B)
pB

)(✏(T )
nT

� ✏
(T )
mT

)

hpB |@µqBihmT |@⌫nT i]] . (30)

where

C
pBqB
mTnT

⌘

X

ij

nF (Ei)� nF (Ej)

Ej � Ei
c
T
i,mT

(cTj,nT
)⇤cBj,pB

(cBi,qB )
⇤
.

(31)
⇢
(s,1)
µ⌫ is the conventional contribution to ⇢

(s)
µ⌫ . ⇢

(s,2)
µ⌫ is a

”mixed” contribution: it depends in part on the properties of
the band dispersion, as the conventional part, and in part on
the geometry of the quantum states. For systems with particle-
hole symmetry this term is negligible. ⇢

(s,3)
µ⌫ has only terms

proportional to hmT |@⌫nT i, i.e. terms that depend on the
metric properties of the quantum states; there are no terms
proportional to the gradient of the eigenvalues with respect to
k. For this reason, it is natural to identify ⇢

(s,3)
µ⌫ as the dom-

inant geometric term. ⇢
(s)
µ⌫ and ⇢

(s,1)
µ⌫ are gauge invariant and

therefore the combination ⇢
(s,2)
µ⌫ +⇢(s,3)µ⌫ is also gauge invari-

ant. For this reason it is useful at times to separate ⇢
(s)
µ⌫ in the

two terms: ⇢(s,1)µ⌫ that only depends on the bands’ dispersion,
and ⇢

(s,2)
µ⌫ +⇢(s,3)µ⌫ that is mostly given by the metric proper-

ties of the Bloch states. In the remainder, considering that we
mostly focus on superconducting systems for which ⇢

(s,2)
µ⌫ is

negligible, we identify ⇢
(s,3)
µ⌫ as the geometric part, ⇢(s,geo)µ⌫ , of

⇢
(s)
µ⌫ .
The expression of ⇢(s,geo)µ⌫ ⌘⇢

(s,3)
µ⌫ given by Eq. (30), as long

as the order parameter is independent of momentum, is quite
general and therefore shows the general nature of the con-
nection between quantum metric and superfluid density. It is
fairly straightforward to write a similar equations for the spin
stiffness of a XY ferromagnet or the pseudo-spin stiffness of
an XY orbital-ferromagnet, i.e., a state in which the degree of
freedom ordering is not the spin but an orbital degree of free-
dom, situation that appears to be very relevant for systems like
MATBLG [9; 93–95].

It is instructive to see how Eqs. (28), (30) simplify when
the chemical potential lies within a well isolated band, j. In
this case, neglecting terms of order 1/�ij , where {�ij} are
the gaps between band j and the other bands, and assuming

the pairing matrix to be proportional to the identity with am-
plitude �, we can obtain a direct relation between ⇢

(s,geo)
µ⌫ and

the quantum metric g
(j)
µ⌫ of band j when time-reversal sym-

metry is preserved and the superconducting order parameter,
in addition to being k-independent, only has intraband terms.
In this case we have [84]:

⇢
(s)
µ⌫ =

Z
dk

(2⇡)d


2
@nF (Ej)

@Ej
+

1� 2nF (Ej)

Ej

�
�2

E
2
j

@µ✏j@⌫✏j+

2�2

Z
dk

(2⇡)d
1� 2nF (Ej)

Ej
g
(j)
µ⌫ (32)

where k is the momentum. The last term in Eq (32) is the
geometric part of ⇢(s)µ⌫ that, in this simple case, is related in
a very direct way to the quantum metric g

(j)
µ⌫ of the isolated

band.
Using the expression above, and the inequality (6) for the

case of an isolated band we can provide a bound for the geo-
metric part of ⇢(s)µ⌫ [82; 84]:

⇢
(s,geo)µ⌫ � 2�2

Z
dk

(2⇡)d
1� 2nF (Ej)

Ej
|Bµ⌫ |

2
. (33)

This result shows that for bands with large Berry curvature the
geometric contribution to ⇢

(s)
µ⌫ is large. It is important to point

out that Eq. (33) only provides a lower bound given that it is
possible to have situations in which gµ⌫ 6= 0 even if the Berry
curvature is zero [75].

In 2D, for the case in which the isolated band, is flat, i.e.
having a bandwidth much smaller than the �ij gaps, and non

degenerate, ⇢(s)µ⌫ is only given by the geometric part and can
be written in the form [82]:

⇢
(s)
µ⌫ = 2�

p
⌫(1� ⌫)

Z
dk

(2⇡)2
gµ⌫(k). (34)

where ⌫ is the filling fraction of the flat band. In this case
we have that (1/2⇡)

R
dkBµ⌫ = "µ⌫C, where "µ⌫ is the

2⇥2 Levi-Civita tensor and C is the Chern number of the iso-
lated band. Using inequality (5) we obtain det(

R
dkgµ⌫) �

det(dk
R
|Bµ⌫ |

2 = C
2 and then, for an isotropic system [82]:

⇢
(s)

�
�

⇡

p
⌫(1� ⌫)|C|. (35)

In general, when the 2D flat band has degenerate points it
might not be possible to find a lower bound for ⇢(s)µ⌫ =⇢(s,geo)µ⌫ ,
however, this can be done for the case relevant to MATBLG
in which the two low-energy 2D flat band have degeneracy
points and C2zT symmetry, C2z being the twofold rotation
around the z-axis perpendicular to the 2D plane to which the
quantum states are confined, and T the time-reversal oper-
ator [96]. Given the degeneracy of the bands it is neces-
sary to consider the non-Abelian generalization of the expres-
sion of Qµ⌫ . It can be shown that the C2zT symmetry con-
strains the non-Abelian Berry curvature to the form [97; 98]
Bxy = �bxy(k)�2 with (1/2⇡)

R
dkbxy = e2, where e2 is

the Wilson loop winding number [97], or ”Euler’s class” [98],

2

CPn�1 formed by the lines through the origin of a complex
Euclidean space. The inner-product of H endows PH with the
structure of a Kähler manifold, i.e. a manifold with a a proper
metric tensor [43; 44]. PH can be parametrized by an element
� of a space V (that itself can be a manifold) like real space,
or momentum space. In the remainder we assume the space
V to be the momentum space with elements identified by the
momentum wave-vector k.

The inner product of H leads to the natural definition of
the distance ds

2 between two vectors | (k)i, | (k + dk)i
with infinitesimally close momenta, k, k + dk: ds

2 =
h@µ |@⌫ idk

µ
dk

⌫ , where @µ ⌘ @/@kµ. Given that quantum
states are represented by elements of PH, not H, the expres-
sion of ds2 is not the proper distance between two quantum
states with infinitesimally close momenta. This is also re-
flected by the fact that h@µ |@⌫ i, in general, is not gauge
invariant. The proper distance between quantum states can be
obtained by redefining ds

2 to remove the effects of a gauge
transformation [20–23]. This leads to the expression:

ds
2 = Qµ⌫dk

µ
dk

⌫ ; (1)
Qµ⌫ ⌘ h@µ |@⌫ i � h@µ | ih |@⌫ i (2)
Bµ⌫ ⌘ Im[Qµ⌫ ] (3)
gµ⌫ ⌘ Re[Qµ⌫ ] (4)

where we have introduced the quantum geometric tensor Qµ⌫ .
Qµ⌫ is gauge invariant. Its imaginary part is the Berry cur-
vature, Bµ⌫ , and is completely antisymmetric and therefore
does not contribute to ds

2. Its real part, gµ⌫ , is the Fubini-
Study quantum metric [45; 46]. It is interesting to point out
that the Fubini-Study metric is the unique Riemannian metric
on PH that is invariant under the action of unitary transforma-
tions (U(n)) on CP

n�1. The quantum geometric tensor Qµ⌫

is positive semidefinite [20]. This fact implies the following
two inequalities [47]:

det gµ⌫ � |Bµ⌫ |
2
, (5)

Trgµ⌫ � 2|Bµ⌫ | (6)

It is possible to generalize the definition of Qµ⌫ to the
non-Abelian case [48], in analogy to the non-Abelian gener-
alization of the Berry curvature [49]. In this generalization
one takes into account that at the degeneracy points quantum
states related by a rotation in the subspace spanned by the
degenerate eigenstates are equivalent. By properly project-
ing h@µ |@⌫ i one obtains the gauge invariant “non-Abelian”
quantum metric.

The impact of the study of the effects of the Berry curva-
ture Im[Qµ⌫ ] on the properties of quantum systems cannot
be overstated. Just in the context of condensed matter sys-
tems the Berry curvature, and associated Berry phase [24],
greatly impacted the understanding of the quantum Hall ef-
fect, the anomalous Hall effect, orbital magnetism [50] and
it lead to the discovery of topological materials [27; 51], and
Weyl semimetals [32]. By contrast the effect of Re[Qµ⌫ ] has
so far been much less studied. gµ⌫ has been shown to be con-
nected to the Hall viscosity [52–60], a quantity that is difficult
to measure [61–67]. For a perfect conductor the longitudi-
nal electric conductivity �xx(!) as a function of frequency !

has a delta function D�(!), where D is the Drude weight.
The Drude weight has also been shown to be connected to the
quantum metric gµ⌫ , [68–71]. Such connection, however, is
also difficult to ascertain experimentally given that at finite
temperature, or in the presence of any amount of disorder,
�xx(!) does not have a Dirac’s delta for ! = 0 and there-
fore D = 0.

The experimental challenges to verify the relation between
gµ⌫ , the Hall viscosity, and D are likely an important reason
for the fact that much less research activity has been focused
on the study of the effects of the quantum metric than on the
study of the effects of the Berry curvature. Recently, how-
ever, novel connections [47; 72–78] have been made between
the quantum metric and properties of electronic systems. In
Refs. [47; 72] the quantum metric of a fractional Chern insu-
lator [79] has been bee shown to be related to the stability of
the fractional quantum Hall (FQH) phase of these systems. In
particular it was shown that for a fractional Chern insulator
band j the trace Tr[g(j)µ⌫ � |Bµ⌫ |] is correlated to the gap of the
FQH-like phase [72]. It is also known that the magnetic sus-
ceptibility of a periodic multi orbital electron system depends
on the metric properties of the quantum states [73; 74; 80].
In Ref. [75] this connection has been made more explicit for
the case of two-band models. The metric tensor of a singular
2D flat band [81], i.e. a flat band with a crossing point with
a dispersive band, has also been shown to be connected to the
energy spread of the Landau levels arising from the singular
2D flat band in the presence of a magnetic field [76].

For systems in which the interactions induce a collective
ground state that breaks a U(1) symmetry it has become ap-
parent that the quantum metric is connected to the phase stiff-

ness, ⇢(s)µ⌫ , of the collective ground state. This can be seen
considering that in this case the effective Ginzburg-Landau ac-
tion describing the low energy physics of the collective ground
state has a term of the form

S = �
1

2

Z
dr⇢(s)|r |2 (7)

where  =  0e
i� is the complex order parameter describ-

ing the ground state,  0 being the amplitude and � the phase
parametrizing U(1), and � = 1/(kBT ), T being the temper-
ature and kB the Boltzmann constant. To simplify the nota-
tion in Eq. (7) we have assumed the stiffness to be diagonal
and isotropic ⇢(s)µ⌫ = ⇢

(s)
�µ⌫ . We can then introduce a gauge

field Ae↵ associated to the U(1) charge ẽ. In the presence of
Ae↵ the gradient in Eq. (7) must be replaced by the gauge co-
variant gradient r� iẽAe↵ from which we get mix terms of
the form �iẽAe↵r that describe the coupling of the system
to the field Ae↵ . From this we can see that that the current
operator j coupling to Ae↵ is ⇠ ẽrx, and that ⇢s must be
related to the strength of the current-current response (K) of
the system to the probing field Ae↵ . This is completely anal-
ogous to the case of a superconductor, discussed in the next
section, in which the connection between the metric of the
quantum states and ⇢(s)µ⌫ is shown explicitly. This connection
was first shown explicitly for simple cases in superconduc-
tors [82–84] and for flat ferromagnetic states in systems with
flat bands [85].



Superfluid Weight in TBLG
We assume simple s-wave pairing and fix  to agree with measured TcΔ

In this work we calculate the superfluid weight of
superconducting twisted bilayer graphene taking into
account both the conventional and the geometric parts.
We assume singlet pairing and use the experimentally
measured value of Tc to set the value of the coupling
constant that enters the mean field gap equation. We obtain
the dependence of the superconducting weight on the twist
angle and separate the conventional and geometric parts.
We find that at one of the magic angles, θ ¼ 1.05°, the
geometric contribution is approximately twice as large
as the conventional one. However, just off the magic angle
the conventional contribution is larger than the geometric
one. We also obtain the dependence of the Berezinski-
Kosterlitz-Thouless (BKT) TKT temperature on θ and show
that its scaling with the chemical potential is different at the
magic angle and away from it. Because our calculations
take into account the full band structure of TBLG and
include both intra- and interband contributions, they can be
used for quantitative predictions and they go beyond the
models and approximations previously used in deriving
bounds for the superfluid weight [40,41].
To model the TBLG we use the approach described in

Refs. [8,17]. The low-energy states of the isolated single
layers of graphene are located at the K and K0 ¼ −K
valleys of the BZ. Close to K the Hamiltonian for each
layer l ¼ "1 is

HK;lðkÞ ¼ e−ilðθ=4Þτz ½ℏvFðk − κlÞ · τ − μτ0&eilðθ=4Þτz ; ð1Þ

where vF ¼ 106 m=s is graphene’s Fermi velocity, μ is the
chemical potential, and τi (i ¼ 0, 1, 2, 3) are the 2 × 2 Pauli
matrices in sublattice space. Because of the rotation of each
layer by angle θ=2, the Dirac cone position in layer l is
shifted to κl. We choose moiré BZ in which κl are located at
the corners and refer to the center of this BZ as the γ point.
This leads to a Hamiltonian for TBLG around the K point,

HTBLG;K ¼
!HK;þ1 TðrÞ

T†ðrÞ HK;−1

"
; ð2Þ

with periodically varying interlayer tunneling terms
TðrÞ ¼ w½T0 þ e−ib2·rTþ1 þ e−iðb2−b1Þ·rT−1&, where Tj ¼
τ0 þ cosð2πj=3Þτx þ sinð2πj=3Þτy, b1 ¼ ð

ffiffiffi
3

p
Q; 0Þ and

b2 ¼ ð
ffiffiffi
3

p
Q=2; 3Q=2Þ are reciprocal basis vectors, Q ¼

ð8π=3a0Þ sinðθ=2Þ, a0 is the lattice constant of graphene,
and w ¼ 118 meV [17,42]. HK0 is obtained from HK via
time reversal.
We leave d-wave pairing [17] for future studies and

focus on s-wave pairing. In the presence of superconduc-
tivity the mean field theory in Nambu space is described by
the Bogoliubov–de Gennes Hamiltonian,

HBdG ¼

"
HTBLG;KðkÞ Δ̂s

Δ̂†
s −HT

TBLG;K0ð−kÞ

#

; ð3Þ

and Δ̂s ¼ Δτ0
P

b Δbeib·r, where Δ is the overall ampli-
tude of the superconducting gap, and Δb is the normalized
coefficient of the b ¼ m1b1 þm2b2 (mi ∈ Z) Fourier
component. In the remainder of the Letter, we assume
Δ ¼ 1.764kBTc and determine Tc and the coefficients Δb
by solving the linearized gap equation [17,43].
Using standard linear response theory we can obtain the

expression for the superconducting weight [38,39,43],

Ds
μν ¼

X

k;i;j

nðEjÞ − nðEiÞ
Ei − Ej

!
1

4L2
hψ ijv̂μjψ jihψ jjv̂νjψ ii

−
1

L2
hψ ijv̂cf;μjψ jihψ jjv̂cf;νjψ ii

"
; ð4Þ

where L × L is the size of the two-dimensional system,
nðEÞ is the Fermi distribution function, Ei, jψ iðkÞi are the
eigenvalues and eigenvectors of HBdG, and μ; ν ¼ x; y
represent the directions. In the remainder of the Letter,
we focus on the case ν ¼ μ. We have the velocity operators
v̂μðkÞ¼∂HBdG=∂kμ, v̂cf;μðkÞ ¼ ð1=2Þγz∂HBdG=∂kμ (γz is
the Pauli matrix acting in Nambu space).
Let Hþ and H− be the particle and hole Hamiltonians,

respectively, of HBdG, jψ"mi the eigenstates of H",
w"im ≡ hψ"mjψ ii, and vþμ ≡ ∂μHþ, v−μ ≡ −∂μH−. In terms
of these quantities, we have [39]

Ds
μμ ¼

1

L2

X

kijmnpq

nðEiÞ − nðEjÞ
Ei − Ej

w(
þimv

þ
μmnwþjnw(

−jpv
−
μpqw−iq; ð5Þ

where m, n and p, q index the particle and hole bands. The
matrix elements with m ≠ n and p ≠ q in Eq. (5) represent
pure interband contribution. By defining

Vd
"μij ≡

X

m

w(
"imv

"
μmmw"jm;

Vo
"μij ≡

X

m≠n
w(
"imv

"
μmnw"jn;

we can separate Eq. (5) into a conventional and a geometric
part:

Ds;conv
μμ ¼ 1

L2

X

kij

nðEiÞ − nðEjÞ
Ei − Ej

ðVd
þμijV

d
−μji þ Vd

þμijV
o
−μji þ Vo

þμijV
d
−μjiÞ;

Ds;geom
μμ ¼ 1

L2

X

kij

nðEiÞ − nðEjÞ
Ei − Ej

Vo
þμijV

o
−μji: ð6Þ

Below we show that both the conventional [44,45] and
the geometric contribution [38,39] are important for the
superfluid weight in TBLG.
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In this work we calculate the superfluid weight of
superconducting twisted bilayer graphene taking into
account both the conventional and the geometric parts.
We assume singlet pairing and use the experimentally
measured value of Tc to set the value of the coupling
constant that enters the mean field gap equation. We obtain
the dependence of the superconducting weight on the twist
angle and separate the conventional and geometric parts.
We find that at one of the magic angles, θ ¼ 1.05°, the
geometric contribution is approximately twice as large
as the conventional one. However, just off the magic angle
the conventional contribution is larger than the geometric
one. We also obtain the dependence of the Berezinski-
Kosterlitz-Thouless (BKT) TKT temperature on θ and show
that its scaling with the chemical potential is different at the
magic angle and away from it. Because our calculations
take into account the full band structure of TBLG and
include both intra- and interband contributions, they can be
used for quantitative predictions and they go beyond the
models and approximations previously used in deriving
bounds for the superfluid weight [40,41].
To model the TBLG we use the approach described in

Refs. [8,17]. The low-energy states of the isolated single
layers of graphene are located at the K and K0 ¼ −K
valleys of the BZ. Close to K the Hamiltonian for each
layer l ¼ "1 is

HK;lðkÞ ¼ e−ilðθ=4Þτz ½ℏvFðk − κlÞ · τ − μτ0&eilðθ=4Þτz ; ð1Þ

where vF ¼ 106 m=s is graphene’s Fermi velocity, μ is the
chemical potential, and τi (i ¼ 0, 1, 2, 3) are the 2 × 2 Pauli
matrices in sublattice space. Because of the rotation of each
layer by angle θ=2, the Dirac cone position in layer l is
shifted to κl. We choose moiré BZ in which κl are located at
the corners and refer to the center of this BZ as the γ point.
This leads to a Hamiltonian for TBLG around the K point,

HTBLG;K ¼
!HK;þ1 TðrÞ

T†ðrÞ HK;−1

"
; ð2Þ

with periodically varying interlayer tunneling terms
TðrÞ ¼ w½T0 þ e−ib2·rTþ1 þ e−iðb2−b1Þ·rT−1&, where Tj ¼
τ0 þ cosð2πj=3Þτx þ sinð2πj=3Þτy, b1 ¼ ð

ffiffiffi
3

p
Q; 0Þ and

b2 ¼ ð
ffiffiffi
3

p
Q=2; 3Q=2Þ are reciprocal basis vectors, Q ¼

ð8π=3a0Þ sinðθ=2Þ, a0 is the lattice constant of graphene,
and w ¼ 118 meV [17,42]. HK0 is obtained from HK via
time reversal.
We leave d-wave pairing [17] for future studies and

focus on s-wave pairing. In the presence of superconduc-
tivity the mean field theory in Nambu space is described by
the Bogoliubov–de Gennes Hamiltonian,

HBdG ¼

"
HTBLG;KðkÞ Δ̂s

Δ̂†
s −HT

TBLG;K0ð−kÞ

#

; ð3Þ

and Δ̂s ¼ Δτ0
P

b Δbeib·r, where Δ is the overall ampli-
tude of the superconducting gap, and Δb is the normalized
coefficient of the b ¼ m1b1 þm2b2 (mi ∈ Z) Fourier
component. In the remainder of the Letter, we assume
Δ ¼ 1.764kBTc and determine Tc and the coefficients Δb
by solving the linearized gap equation [17,43].
Using standard linear response theory we can obtain the

expression for the superconducting weight [38,39,43],

Ds
μν ¼

X

k;i;j

nðEjÞ − nðEiÞ
Ei − Ej

!
1

4L2
hψ ijv̂μjψ jihψ jjv̂νjψ ii

−
1

L2
hψ ijv̂cf;μjψ jihψ jjv̂cf;νjψ ii

"
; ð4Þ

where L × L is the size of the two-dimensional system,
nðEÞ is the Fermi distribution function, Ei, jψ iðkÞi are the
eigenvalues and eigenvectors of HBdG, and μ; ν ¼ x; y
represent the directions. In the remainder of the Letter,
we focus on the case ν ¼ μ. We have the velocity operators
v̂μðkÞ¼∂HBdG=∂kμ, v̂cf;μðkÞ ¼ ð1=2Þγz∂HBdG=∂kμ (γz is
the Pauli matrix acting in Nambu space).
Let Hþ and H− be the particle and hole Hamiltonians,

respectively, of HBdG, jψ"mi the eigenstates of H",
w"im ≡ hψ"mjψ ii, and vþμ ≡ ∂μHþ, v−μ ≡ −∂μH−. In terms
of these quantities, we have [39]

Ds
μμ ¼

1

L2

X

kijmnpq

nðEiÞ − nðEjÞ
Ei − Ej

w(
þimv

þ
μmnwþjnw(

−jpv
−
μpqw−iq; ð5Þ

where m, n and p, q index the particle and hole bands. The
matrix elements with m ≠ n and p ≠ q in Eq. (5) represent
pure interband contribution. By defining

Vd
"μij ≡

X

m

w(
"imv

"
μmmw"jm;

Vo
"μij ≡

X

m≠n
w(
"imv

"
μmnw"jn;

we can separate Eq. (5) into a conventional and a geometric
part:

Ds;conv
μμ ¼ 1

L2

X

kij

nðEiÞ − nðEjÞ
Ei − Ej

ðVd
þμijV

d
−μji þ Vd

þμijV
o
−μji þ Vo

þμijV
d
−μjiÞ;

Ds;geom
μμ ¼ 1

L2

X

kij

nðEiÞ − nðEjÞ
Ei − Ej

Vo
þμijV

o
−μji: ð6Þ

Below we show that both the conventional [44,45] and
the geometric contribution [38,39] are important for the
superfluid weight in TBLG.
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With some algebra we can separate the conventional and geometric contribution to D(s)  (see Xu et al. PRL (2019)

we find the coefficients  solving the linearized gap equation. Δb For our settings  θmagic = 1.05o
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discussion we expect Ds;conv
xx to increase with the electron

density and therefore with jμj. The scaling of Ds;geom
xx with

respect to μ depends on the details of the quantum metric of
the bands [39]. Figure 3 shows the evolution of Ds;conv

xx ,
Ds;geom

xx , and Ds
xx with μ for the cases of θ ¼ 1.05° and

θ ¼ 1.00°. To obtain these results the superconducting gap
is obtained for each value of μ. The results of Fig. 3 confirm
the expectation that Ds;conv

xx increases with jμj, for both the
magic angle and θ ¼ 1.00°. They also show that for both
angles the geometric contribution decreases with jμj.
Considering that Ds

xx controls the critical temperature
TKT for the Berezinskii-Kosterlitz-Thouless phase transi-
tion [48,49], the results of Fig. 3 show that in TBLG it
could be possible in principle to tune the nature of the
transition, BCS or BKT, by simply varying the doping.
An increase of Δ, keeping μ fixed, is expected to cause

an increase of Ds
xx. This is confirmed by the results

of Fig. 4. Again, we can see at θ ¼ 1.05° the geometric
contribution is significant while at θ ¼ 1.00° the conven-
tional contribution dominates.
In Figs. 5(b) and 5(d) we show the BKT transition

temperature as a function of μ obtained from the
equation kBTKT ¼ πDs½ΔðTKTÞ; TKT%, assuming ΔðTÞ ¼
1.764kBTc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
. The prefactor on the rhs of the

equation for TKT is twice π=2 due to the valley degeneracy.
In Figs. 5(a) and 5(c) the curves with solid circles show the
evolution ofDs½ΔðTÞ; T%with T for different values of μ for
θ ¼ 1.05° and θ ¼ 1.00°, respectively. The intersection of
these curves with the solid line kBT returns the values of
TKTðμÞ. We note that TKT is fairly close to Tc, well above
the lower bound set by previous studies [41].

We obtained the value of Ds
xx (Ds;conv

xx , Ds;geom
xx ) for

different twist angles using the corresponding values of
Tc. The results are shown in Fig. 6(a). We see that despite
the fact that Tc is lower for θ ¼ 1.10° than for θ ¼ 1.05°,
the superconducting weight is larger for θ ¼ 1.10°. This is
because for θ ¼ 1.10° the conventional contribution to
Ds

xx is much larger than at the magic angle. The results of
Figs. 6(a) clearly show that Ds

xx varies strongly with the
twist angle, and that, as a function of θ, the dominant
contribution to Ds

xx can either be the conventional
or the geometric one. It is somewhat surprising that even
for twist angles as small as 1.00°, corresponding to a
bandwidth of the lowest energy bands of just 5 meV,
the conventional contribution is larger than the geo-
metric one.
Figure 6(b) shows the dependence of Tc and TKT on the

twist angle. We see that both Tc and TKT are maximum at
the magic angle and decrease rapidly for θ larger than the
magic angle. The results of Fig. 6(b) suggest that it may be
possible to tune TKT by tuning the twist angle. Taking into
account finite size effects, this can change the nature of the
normal-superconductor phase transition.
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FIG. 3. Ds as a function of the chemical potential for
(a) θ ¼ 1.05° and (b) θ ¼ 1.00° at Δ ¼ ΔðμÞ.
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FIG. 4. Ds as a function of Δ for θ ¼ 1.05° (a) and θ ¼ 1.00°
(b). μ ¼ −0.3 meV.
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FIG. 5. (a) Ds versus T for θ ¼ 1.05° and different values of μ:
μ goes from 0 to −0.5 meV along the direction of the arrow.
(b) TKT=Tc as function of μ for θ ¼ 1.05°. (c) Same as (a) for
θ ¼ 1.00°. (d) TKT=Tc as function of μ for θ ¼ 1.00°.
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FIG. 6. (a) Ds and (b) Tc and TKT as functions of twist angle.
μ ¼ −0.3 meV.
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Away from magic angle, 1.000

discussion we expect Ds;conv
xx to increase with the electron

density and therefore with jμj. The scaling of Ds;geom
xx with

respect to μ depends on the details of the quantum metric of
the bands [39]. Figure 3 shows the evolution of Ds;conv

xx ,
Ds;geom

xx , and Ds
xx with μ for the cases of θ ¼ 1.05° and

θ ¼ 1.00°. To obtain these results the superconducting gap
is obtained for each value of μ. The results of Fig. 3 confirm
the expectation that Ds;conv

xx increases with jμj, for both the
magic angle and θ ¼ 1.00°. They also show that for both
angles the geometric contribution decreases with jμj.
Considering that Ds

xx controls the critical temperature
TKT for the Berezinskii-Kosterlitz-Thouless phase transi-
tion [48,49], the results of Fig. 3 show that in TBLG it
could be possible in principle to tune the nature of the
transition, BCS or BKT, by simply varying the doping.
An increase of Δ, keeping μ fixed, is expected to cause

an increase of Ds
xx. This is confirmed by the results

of Fig. 4. Again, we can see at θ ¼ 1.05° the geometric
contribution is significant while at θ ¼ 1.00° the conven-
tional contribution dominates.
In Figs. 5(b) and 5(d) we show the BKT transition

temperature as a function of μ obtained from the
equation kBTKT ¼ πDs½ΔðTKTÞ; TKT%, assuming ΔðTÞ ¼
1.764kBTc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
. The prefactor on the rhs of the

equation for TKT is twice π=2 due to the valley degeneracy.
In Figs. 5(a) and 5(c) the curves with solid circles show the
evolution ofDs½ΔðTÞ; T%with T for different values of μ for
θ ¼ 1.05° and θ ¼ 1.00°, respectively. The intersection of
these curves with the solid line kBT returns the values of
TKTðμÞ. We note that TKT is fairly close to Tc, well above
the lower bound set by previous studies [41].

We obtained the value of Ds
xx (Ds;conv

xx , Ds;geom
xx ) for

different twist angles using the corresponding values of
Tc. The results are shown in Fig. 6(a). We see that despite
the fact that Tc is lower for θ ¼ 1.10° than for θ ¼ 1.05°,
the superconducting weight is larger for θ ¼ 1.10°. This is
because for θ ¼ 1.10° the conventional contribution to
Ds

xx is much larger than at the magic angle. The results of
Figs. 6(a) clearly show that Ds

xx varies strongly with the
twist angle, and that, as a function of θ, the dominant
contribution to Ds

xx can either be the conventional
or the geometric one. It is somewhat surprising that even
for twist angles as small as 1.00°, corresponding to a
bandwidth of the lowest energy bands of just 5 meV,
the conventional contribution is larger than the geo-
metric one.
Figure 6(b) shows the dependence of Tc and TKT on the

twist angle. We see that both Tc and TKT are maximum at
the magic angle and decrease rapidly for θ larger than the
magic angle. The results of Fig. 6(b) suggest that it may be
possible to tune TKT by tuning the twist angle. Taking into
account finite size effects, this can change the nature of the
normal-superconductor phase transition.
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FIG. 3. Ds as a function of the chemical potential for
(a) θ ¼ 1.05° and (b) θ ¼ 1.00° at Δ ¼ ΔðμÞ.
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θ ¼ 1.00°. (d) TKT=Tc as function of μ for θ ¼ 1.00°.
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Dependence of  on number of bands includedD(s)

4

HTBL,K =
X

k

 
†(k)

0

BBBBBBBB@

HK,+1 T0

T
†
0 HK,�1 T

†
1 T

†
�1

T1 HK+b1,+1 T0

T
†
0 HK+b1,�1

T�1 HK+b2,+1 T0

T
†
0 HK+b2,�1

1

CCCCCCCCA

 (k), (20)

where +1 = (0, 0) and �1 = (0, Q), and the basis is

 (k) = (�K++1+k,�K+�1+k,�K++1+b1+k,�K+�1+b1+k,�K++1+b2+k,�K+�1+b2+k)
T
, (21)

with �k = (ckA, ckB). Here ckA,B is the electron annihilation
operator with momentum k at sublattice A,B. Similarly, We
can include more b in this Hamiltonian.

IV. DEPENDENCE OF THE SUPERFLUID WEIGHT ON
THE NUMBER OF BANDS

1 2 3 4 6 10 20 50 100 196
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FIG. 2: Dependence of superfluid weight on the number of
non-superconducting bands included in the calculation. Here
✓ = 1.05� and µ = �0.30meV.

It is interesting to study how the superfluid weight de-
pends on the number of bands that are included in the cal-
culation. Figure 2 shows the dependence of both the con-
ventional and geometric part of Ds on the number of bands.
We see that the conventional part depends only weakly on
the number of bands, nbands, but that the geometric part de-
pends very strongly on nbands. We see that keeping only the
two nearly flat bands is not enough to get accurate estimates
of the geometric contribution. However, we find that when
nbands = 10, the D

s
geom is already very close (less than 2%

away) to the value obtained keeping as many as 196 bands.
This seems consistent with recent results that suggest that a
minimal model for TBLG might require a minimum of 10
bands [4]
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Berezinskii-Kosterlitz-Thouless Transition
In 2D, for a system whose ground state spontaneously breaks a U(1) symmetry, the thermodynamic 
transition from “ordered” to disordered phase is Berezinskii-Kosterlitz-Thouless transition. At T=TBKT the 
thermal fluctuations are strong enough to unbind vortices -> the system stops being a superfluid. 

By calculating the temperature dependence of  we can obtain TBKT.  In 2D  is difficult to measure 
directly and so the measurement of TBKT is a way to probe the quantum metric properties of the system. 
Notice that for the conventional case 

D(s) ρ(s)

 grows with density/chemical potential  => TBKT also grows with density/chemical potentialD(s)

An opposite trend is a strong signature of the importance of the geometric contribution to .D(s)

discussion we expect Ds;conv
xx to increase with the electron

density and therefore with jμj. The scaling of Ds;geom
xx with

respect to μ depends on the details of the quantum metric of
the bands [39]. Figure 3 shows the evolution of Ds;conv

xx ,
Ds;geom

xx , and Ds
xx with μ for the cases of θ ¼ 1.05° and

θ ¼ 1.00°. To obtain these results the superconducting gap
is obtained for each value of μ. The results of Fig. 3 confirm
the expectation that Ds;conv

xx increases with jμj, for both the
magic angle and θ ¼ 1.00°. They also show that for both
angles the geometric contribution decreases with jμj.
Considering that Ds

xx controls the critical temperature
TKT for the Berezinskii-Kosterlitz-Thouless phase transi-
tion [48,49], the results of Fig. 3 show that in TBLG it
could be possible in principle to tune the nature of the
transition, BCS or BKT, by simply varying the doping.
An increase of Δ, keeping μ fixed, is expected to cause

an increase of Ds
xx. This is confirmed by the results

of Fig. 4. Again, we can see at θ ¼ 1.05° the geometric
contribution is significant while at θ ¼ 1.00° the conven-
tional contribution dominates.
In Figs. 5(b) and 5(d) we show the BKT transition

temperature as a function of μ obtained from the
equation kBTKT ¼ πDs½ΔðTKTÞ; TKT%, assuming ΔðTÞ ¼
1.764kBTc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
. The prefactor on the rhs of the

equation for TKT is twice π=2 due to the valley degeneracy.
In Figs. 5(a) and 5(c) the curves with solid circles show the
evolution ofDs½ΔðTÞ; T%with T for different values of μ for
θ ¼ 1.05° and θ ¼ 1.00°, respectively. The intersection of
these curves with the solid line kBT returns the values of
TKTðμÞ. We note that TKT is fairly close to Tc, well above
the lower bound set by previous studies [41].

We obtained the value of Ds
xx (Ds;conv

xx , Ds;geom
xx ) for

different twist angles using the corresponding values of
Tc. The results are shown in Fig. 6(a). We see that despite
the fact that Tc is lower for θ ¼ 1.10° than for θ ¼ 1.05°,
the superconducting weight is larger for θ ¼ 1.10°. This is
because for θ ¼ 1.10° the conventional contribution to
Ds

xx is much larger than at the magic angle. The results of
Figs. 6(a) clearly show that Ds

xx varies strongly with the
twist angle, and that, as a function of θ, the dominant
contribution to Ds

xx can either be the conventional
or the geometric one. It is somewhat surprising that even
for twist angles as small as 1.00°, corresponding to a
bandwidth of the lowest energy bands of just 5 meV,
the conventional contribution is larger than the geo-
metric one.
Figure 6(b) shows the dependence of Tc and TKT on the

twist angle. We see that both Tc and TKT are maximum at
the magic angle and decrease rapidly for θ larger than the
magic angle. The results of Fig. 6(b) suggest that it may be
possible to tune TKT by tuning the twist angle. Taking into
account finite size effects, this can change the nature of the
normal-superconductor phase transition.
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FIG. 3. Ds as a function of the chemical potential for
(a) θ ¼ 1.05° and (b) θ ¼ 1.00° at Δ ¼ ΔðμÞ.
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FIG. 4. Ds as a function of Δ for θ ¼ 1.05° (a) and θ ¼ 1.00°
(b). μ ¼ −0.3 meV.
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FIG. 5. (a) Ds versus T for θ ¼ 1.05° and different values of μ:
μ goes from 0 to −0.5 meV along the direction of the arrow.
(b) TKT=Tc as function of μ for θ ¼ 1.05°. (c) Same as (a) for
θ ¼ 1.00°. (d) TKT=Tc as function of μ for θ ¼ 1.00°.
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FIG. 6. (a) Ds and (b) Tc and TKT as functions of twist angle.
μ ¼ −0.3 meV.
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Berezinskii-Kosterlitz-Thouless Temperature

discussion we expect Ds;conv
xx to increase with the electron

density and therefore with jμj. The scaling of Ds;geom
xx with

respect to μ depends on the details of the quantum metric of
the bands [39]. Figure 3 shows the evolution of Ds;conv

xx ,
Ds;geom

xx , and Ds
xx with μ for the cases of θ ¼ 1.05° and

θ ¼ 1.00°. To obtain these results the superconducting gap
is obtained for each value of μ. The results of Fig. 3 confirm
the expectation that Ds;conv

xx increases with jμj, for both the
magic angle and θ ¼ 1.00°. They also show that for both
angles the geometric contribution decreases with jμj.
Considering that Ds

xx controls the critical temperature
TKT for the Berezinskii-Kosterlitz-Thouless phase transi-
tion [48,49], the results of Fig. 3 show that in TBLG it
could be possible in principle to tune the nature of the
transition, BCS or BKT, by simply varying the doping.
An increase of Δ, keeping μ fixed, is expected to cause

an increase of Ds
xx. This is confirmed by the results

of Fig. 4. Again, we can see at θ ¼ 1.05° the geometric
contribution is significant while at θ ¼ 1.00° the conven-
tional contribution dominates.
In Figs. 5(b) and 5(d) we show the BKT transition

temperature as a function of μ obtained from the
equation kBTKT ¼ πDs½ΔðTKTÞ; TKT%, assuming ΔðTÞ ¼
1.764kBTc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
. The prefactor on the rhs of the

equation for TKT is twice π=2 due to the valley degeneracy.
In Figs. 5(a) and 5(c) the curves with solid circles show the
evolution ofDs½ΔðTÞ; T%with T for different values of μ for
θ ¼ 1.05° and θ ¼ 1.00°, respectively. The intersection of
these curves with the solid line kBT returns the values of
TKTðμÞ. We note that TKT is fairly close to Tc, well above
the lower bound set by previous studies [41].

We obtained the value of Ds
xx (Ds;conv

xx , Ds;geom
xx ) for

different twist angles using the corresponding values of
Tc. The results are shown in Fig. 6(a). We see that despite
the fact that Tc is lower for θ ¼ 1.10° than for θ ¼ 1.05°,
the superconducting weight is larger for θ ¼ 1.10°. This is
because for θ ¼ 1.10° the conventional contribution to
Ds

xx is much larger than at the magic angle. The results of
Figs. 6(a) clearly show that Ds

xx varies strongly with the
twist angle, and that, as a function of θ, the dominant
contribution to Ds

xx can either be the conventional
or the geometric one. It is somewhat surprising that even
for twist angles as small as 1.00°, corresponding to a
bandwidth of the lowest energy bands of just 5 meV,
the conventional contribution is larger than the geo-
metric one.
Figure 6(b) shows the dependence of Tc and TKT on the

twist angle. We see that both Tc and TKT are maximum at
the magic angle and decrease rapidly for θ larger than the
magic angle. The results of Fig. 6(b) suggest that it may be
possible to tune TKT by tuning the twist angle. Taking into
account finite size effects, this can change the nature of the
normal-superconductor phase transition.
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FIG. 3. Ds as a function of the chemical potential for
(a) θ ¼ 1.05° and (b) θ ¼ 1.00° at Δ ¼ ΔðμÞ.
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FIG. 5. (a) Ds versus T for θ ¼ 1.05° and different values of μ:
μ goes from 0 to −0.5 meV along the direction of the arrow.
(b) TKT=Tc as function of μ for θ ¼ 1.05°. (c) Same as (a) for
θ ¼ 1.00°. (d) TKT=Tc as function of μ for θ ¼ 1.00°.
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discussion we expect Ds;conv
xx to increase with the electron

density and therefore with jμj. The scaling of Ds;geom
xx with

respect to μ depends on the details of the quantum metric of
the bands [39]. Figure 3 shows the evolution of Ds;conv

xx ,
Ds;geom

xx , and Ds
xx with μ for the cases of θ ¼ 1.05° and

θ ¼ 1.00°. To obtain these results the superconducting gap
is obtained for each value of μ. The results of Fig. 3 confirm
the expectation that Ds;conv

xx increases with jμj, for both the
magic angle and θ ¼ 1.00°. They also show that for both
angles the geometric contribution decreases with jμj.
Considering that Ds

xx controls the critical temperature
TKT for the Berezinskii-Kosterlitz-Thouless phase transi-
tion [48,49], the results of Fig. 3 show that in TBLG it
could be possible in principle to tune the nature of the
transition, BCS or BKT, by simply varying the doping.
An increase of Δ, keeping μ fixed, is expected to cause

an increase of Ds
xx. This is confirmed by the results

of Fig. 4. Again, we can see at θ ¼ 1.05° the geometric
contribution is significant while at θ ¼ 1.00° the conven-
tional contribution dominates.
In Figs. 5(b) and 5(d) we show the BKT transition

temperature as a function of μ obtained from the
equation kBTKT ¼ πDs½ΔðTKTÞ; TKT%, assuming ΔðTÞ ¼
1.764kBTc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
. The prefactor on the rhs of the

equation for TKT is twice π=2 due to the valley degeneracy.
In Figs. 5(a) and 5(c) the curves with solid circles show the
evolution ofDs½ΔðTÞ; T%with T for different values of μ for
θ ¼ 1.05° and θ ¼ 1.00°, respectively. The intersection of
these curves with the solid line kBT returns the values of
TKTðμÞ. We note that TKT is fairly close to Tc, well above
the lower bound set by previous studies [41].

We obtained the value of Ds
xx (Ds;conv

xx , Ds;geom
xx ) for

different twist angles using the corresponding values of
Tc. The results are shown in Fig. 6(a). We see that despite
the fact that Tc is lower for θ ¼ 1.10° than for θ ¼ 1.05°,
the superconducting weight is larger for θ ¼ 1.10°. This is
because for θ ¼ 1.10° the conventional contribution to
Ds

xx is much larger than at the magic angle. The results of
Figs. 6(a) clearly show that Ds

xx varies strongly with the
twist angle, and that, as a function of θ, the dominant
contribution to Ds

xx can either be the conventional
or the geometric one. It is somewhat surprising that even
for twist angles as small as 1.00°, corresponding to a
bandwidth of the lowest energy bands of just 5 meV,
the conventional contribution is larger than the geo-
metric one.
Figure 6(b) shows the dependence of Tc and TKT on the

twist angle. We see that both Tc and TKT are maximum at
the magic angle and decrease rapidly for θ larger than the
magic angle. The results of Fig. 6(b) suggest that it may be
possible to tune TKT by tuning the twist angle. Taking into
account finite size effects, this can change the nature of the
normal-superconductor phase transition.
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FIG. 3. Ds as a function of the chemical potential for
(a) θ ¼ 1.05° and (b) θ ¼ 1.00° at Δ ¼ ΔðμÞ.
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Away from magic angle, 1.000

discussion we expect Ds;conv
xx to increase with the electron

density and therefore with jμj. The scaling of Ds;geom
xx with

respect to μ depends on the details of the quantum metric of
the bands [39]. Figure 3 shows the evolution of Ds;conv

xx ,
Ds;geom

xx , and Ds
xx with μ for the cases of θ ¼ 1.05° and

θ ¼ 1.00°. To obtain these results the superconducting gap
is obtained for each value of μ. The results of Fig. 3 confirm
the expectation that Ds;conv

xx increases with jμj, for both the
magic angle and θ ¼ 1.00°. They also show that for both
angles the geometric contribution decreases with jμj.
Considering that Ds

xx controls the critical temperature
TKT for the Berezinskii-Kosterlitz-Thouless phase transi-
tion [48,49], the results of Fig. 3 show that in TBLG it
could be possible in principle to tune the nature of the
transition, BCS or BKT, by simply varying the doping.
An increase of Δ, keeping μ fixed, is expected to cause

an increase of Ds
xx. This is confirmed by the results

of Fig. 4. Again, we can see at θ ¼ 1.05° the geometric
contribution is significant while at θ ¼ 1.00° the conven-
tional contribution dominates.
In Figs. 5(b) and 5(d) we show the BKT transition

temperature as a function of μ obtained from the
equation kBTKT ¼ πDs½ΔðTKTÞ; TKT%, assuming ΔðTÞ ¼
1.764kBTc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
. The prefactor on the rhs of the

equation for TKT is twice π=2 due to the valley degeneracy.
In Figs. 5(a) and 5(c) the curves with solid circles show the
evolution ofDs½ΔðTÞ; T%with T for different values of μ for
θ ¼ 1.05° and θ ¼ 1.00°, respectively. The intersection of
these curves with the solid line kBT returns the values of
TKTðμÞ. We note that TKT is fairly close to Tc, well above
the lower bound set by previous studies [41].

We obtained the value of Ds
xx (Ds;conv

xx , Ds;geom
xx ) for

different twist angles using the corresponding values of
Tc. The results are shown in Fig. 6(a). We see that despite
the fact that Tc is lower for θ ¼ 1.10° than for θ ¼ 1.05°,
the superconducting weight is larger for θ ¼ 1.10°. This is
because for θ ¼ 1.10° the conventional contribution to
Ds

xx is much larger than at the magic angle. The results of
Figs. 6(a) clearly show that Ds

xx varies strongly with the
twist angle, and that, as a function of θ, the dominant
contribution to Ds

xx can either be the conventional
or the geometric one. It is somewhat surprising that even
for twist angles as small as 1.00°, corresponding to a
bandwidth of the lowest energy bands of just 5 meV,
the conventional contribution is larger than the geo-
metric one.
Figure 6(b) shows the dependence of Tc and TKT on the

twist angle. We see that both Tc and TKT are maximum at
the magic angle and decrease rapidly for θ larger than the
magic angle. The results of Fig. 6(b) suggest that it may be
possible to tune TKT by tuning the twist angle. Taking into
account finite size effects, this can change the nature of the
normal-superconductor phase transition.
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FIG. 3. Ds as a function of the chemical potential for
(a) θ ¼ 1.05° and (b) θ ¼ 1.00° at Δ ¼ ΔðμÞ.

0 0.1 0.2 0.3
(meV)

0

0.1

0.2

D
s(m

eV
)

Conv
Geom
Total

0 0.1 0.2
(meV)

0

0.2

0.4

D
s(m

eV
)

(a) (b)

FIG. 4. Ds as a function of Δ for θ ¼ 1.05° (a) and θ ¼ 1.00°
(b). μ ¼ −0.3 meV.

T(K)

0

5

10

0 0.5 1 1.5 0 0.2 0.4 0.6

- (meV)

0.76

0.78

0.8

0.82

T
K

T
/T

c

(a)

T(K)

0

5

10

15(c)

0 0.5 1 0 0.2 0.4 0.6

- (meV)

0.88

0.89

0.9

T
K

T
/T

c

(d)

(b)

FIG. 5. (a) Ds versus T for θ ¼ 1.05° and different values of μ:
μ goes from 0 to −0.5 meV along the direction of the arrow.
(b) TKT=Tc as function of μ for θ ¼ 1.05°. (c) Same as (a) for
θ ¼ 1.00°. (d) TKT=Tc as function of μ for θ ¼ 1.00°.

1 1.05 1.1 1.15

( )

0

0.2

0.4

D
s(m

eV
)

Conv
Geom
Total

1 1.05 1.1 1.15

( )

0

1

2

T
c,T

K
T
(K

) T
c

T
KT

(a) (b)

FIG. 6. (a) Ds and (b) Tc and TKT as functions of twist angle.
μ ¼ −0.3 meV.

PHYSICAL REVIEW LETTERS 123, 237002 (2019)

237002-4

At magic angle, 1.050
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Exciton Condensate Superfluid
The connection between “stiffness” and quantum metric is general and can be applied to other ground states 
that break continuous symmetries, like ferromagnetic states, “orbital ferromagnetic” states whose signatures 
have  been observed in TBLG. 

A particularly interesting state is the exciton 
condensate in bilayers.

TBLG having almost flat bands seems a good candidate 
to realize an exciton condensate

2

FIG. 1. (a) Proposed experimental setup. (b) Phase diagram of a
double layer system with ideal flat bands, see SM [41]. Ṽ0: effective
interaction strength for the correlated insulator states.

Ĥ = Ĥ
U + Ĥ

L + Ĥint where Ĥ
U/L is the Hamiltonian

describing the upper/lower TBLG and Hint describes the in-
teraction between electrons in the upper (U ) and lower (L)
TBLG. We assume ✓ to be the same for the two TBLGs.
For small ✓ the low energy states of a TBLG are well de-
scribed [33, 41] by an effective tight-binding (TB) Hamilto-
nian in momentum space for a triangular lattice. The lat-
tice sites are identified by the reciprocal lattice wave vec-
tors {b = m1b1 + m2b2} of the moiré lattice formed by
the twisted graphene sheets, where b1 = (

p
3Q, 0),b2 =

(
p
3Q/2, 3Q/2), Q = (8⇡/3a0) sin(✓/2) and a0 is the lat-

tice constant of graphene. The onsite block at each momen-
tum space lattice site b, corresponding to the K valley of the
graphene sheets, is described by the Hamiltonian

H
(t/b)
Kb (k) = e

⌥i ✓
4�z [~vF (k� b±) · � � µ�0]e

±i ✓
4�z , (1)

where the first (second) sign is associated to the bottom (top),
b, (t), graphene sheet, �i are Pauli matrices in sublattice A/B

space, vF = 106 m/s is the Fermi velocity in graphene, k is
the electron wave vector (measured from K), b± = b+�±,
�± = {(0, 0), (0, Q)}, and µ is the chemical potential. The
matrices Tj = w[⌧0+cos(2⇡j/3)⌧x+sin(2⇡j/3)⌧y] with j =
�1, 0, 1 describe the hopping between b and t sheets [33, 41].
HK0 is obtained from HK via time reversal operation. Here
w = 118 meV [42, 43].

In double TBLG the interactions have an intralayer and an
interlayer component. Let µU/L be the chemical potential in
the upper/lower TBLG. When µU ⇠ µL the intralayer compo-
nent of the interaction dominates and at low temperature cor-
related ground states are realized in each TBLG [34–37], see
Fig. 1(b). Close to half-filling µL, µU ! 0 correlated insulat-
ing (M) phases are favored. Away from half-filling supercon-
ducting (SC) phases are favored [41]. When µU ⇠ �µL the
excess density of electrons in one of the layers approximately
equals the excess density of holes in the other layer and the EC
state is expected to be favored [Fig. 1(b)]. Therefore, in the
remainder we set µL = �µU ⌘ µ and neglect the effect of in-
tralayer interactions which only renormalize the parameters of
the model. For simplicity we assume the interlayer interaction

to be local Ĥint = V0
P

l�l0�0

R
d
2rc†rl�Ucrl�Uc

†
rl0�0Lcrl0�0L

with effective interaction strength V0 that can be obtained by
integrating out the long-range Coulomb interaction, and c

†
rl�T

(crl�T ) the creation (annihilation) operator for an electron in
the T = U/L TBLG, at position r, in graphene sheet l = t/b,
and sublattice � = A/B. We consider a spinless problem be-
cause we look for a solution obeying the spin-rotation symme-
try. However, we point out that each layer has an independent
spin-rotation symmetry, and therefore there exists a ground
state degeneracy with respect to order parameters obtained
via two independent spin rotations applied in the upper and
lower TBLG, respectively. There exists also an approximate
symmetry with respect to the rotations in the valley degree of
freedom.

Focusing on the exchange part of Hint, we decouple it via a
mean field that we assume to obey the periodicity of the moiré
superlattice. The exciton order parameter can the be described
via a matrix �bl�l0�0 describing the hybridization of states in
the U and L TBLG. Close to the mean-field critical temper-
ature (Tc) �b1l�l0�0 =

P
b2l2�2l02�

0
2
�
b2l2�2l

0
2�

0
2

b1l�l0�0 �b2l2�2l02�
0
2
,

with bare susceptibility

�
b2l2�2l

0
2�

0
2

b1l�l0�0 =
V0

A

X

bb0kmn

U
l�
m,b1+b(k)[U

l0�0

n,b1
(k)]⇤

[U l2�2
m,b2+b0(k)]⇤U

l02�
0
2

n,b2
(k)]

nF [⇠Ln (k)])� nF [⇠Um(k)]

⇠Um(k)� ⇠Ln (k)
, (2)

where A is the area of the sample, ⇠U(L)
n (k) and U

l�
n,b(k) are

the eigenvalues and eigenstates of Ĥ
U(L), respectively. Tc

is obtained by finding the highest temperature (T ) for which
an eigenvalue of the bare susceptibility is equal to one. It is
challenging to estimate the interaction strength V0 because
of the the interplay of screening effects and collective insta-
bilities, but since the focus of our work is the stability of
the EC arising from the quantum metric, we adopt the prag-
matic approach and fix it so that around the magic angle
Tc ⇠ 4 K, comparable to the Tc measured experimentally
for the correlated states of isolated TBLGs [34–37]. We use
V0 = 100 meV· nm2 which satisfies this requirement along
with putting the system into the strong-coupling regime. For
T < Tc we assume �0 ⌘ k

P
b,l,l0,�,�0 �b1(l�l

0
�
0)k =

1.764kBTc(1� T/Tc)1/2, where kB is the Boltzmann’s con-
stant.

Figure 2 (a) shows how Tc scales with µ = µL = �µU for
different values of ✓ close to ✓M = 1.05�. Figure 2 (b) shows
the evolution of Tc with ✓ for different values of µ around
half-filling. For all the values of µ considered Tc is always
largest at the magic angle, a consequence of the fact that the
bands are flattest, and therefore the density of states larger, at
this angle. The results of Fig. 2 also show that Tc decreases
reasonably quickly when tuning ✓ away from ✓M .

The solution of the linearized gap equation reveals that
�bl�l0�0 has several non-zero components. This suggests
that �bl�l0�0 is a multi-component order parameter. To ver-
ify it, we performed the singular value decomposition (SVD),
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Double TBLG: phase diagram

• For μL = -μU exciton condensate is favored

• It’s a truly multicomponent order parameter

• Tc is maximum at the magic angle as we 

would expect

3

FIG. 2. (a) Tc as a function of µ = µL = �µU and different values
of twist angle ✓. (b) Tc as a function of ✓ and different values of µ.

(a)
(b)

(c)

FIG. 3. (a) The first twenty singular values of the SVD decomposi-
tion �bl�l0�0 = USV †. (b) Amplitudes of the order parameter com-
ponents �0mij . (c) Scaling with |b| of �0m03. Here ✓ = 1.05�

and µ = 0.30meV.

�bl�l0�0 = USV
†, where S is a diagonal matrix whose di-

agonal elements are the singular values, of �bl�l0�0 . Fig-
ure 3 (a) shows that the largest 20 singular values (in to-
tal we have 484 singular values, see SM). We see that all
these values are of comparable size and so confirm that the
ground state, within the mean field approximation, is a multi-
component order parameter. To better understand the or-
bital structure of �bl�l0�0 we also calculate its projections
a
(b)
ij = (1/4)Tr[�bl�l0�0i⌦�j], on the 4⇥4 matrices i⌦�j ,

where i are the Pauli matrices in the layer index t, b. Know-
ing, the set of projection a

(b)
ij we can then obtain the ampli-

tudes mij = [
P

b ka(b)ij k2]1/2. The values of mij are shown
in Fig. 3 (b). We see that m03 is the largest projection, how-
ever it is not dominant: several other projections have similar
amplitude, in particular m20, m31 and m32 are comparable to
m03. The fairly even distribution of the EC’s order param-
eter over different orbital channels is paralleled by its fairly
slow decay with the magnitude of b [Fig. 3 (c)]. These results
are consistent with the SVD’s result that �bl�l0�0 describes
a multi-component order parameter. This is in contrast with
the results for the case of superconducting pairing in isolated
TBLG where the pairing is dominated by a single channel and
the magnitude of the order parameter decreases quickly as a
function of increasing |b| [44, 45].

Figure 4 shows the low energy bands along the ��+�⌫�

FIG. 4. Band structure in the EC phase at T = 0 for ✓ = 1.05�,
(a), and ✓ = 1.00�, (b). µ = 0.30meV. The colorbar indicates how
much the eigenstate is localized in the U , L, TBLG. The inset in (a)
shows the moiré Brillouin zone.

��⌫̄ path in the moiré Brillouin zone (BZ) [41] for ✓ = 1.05�,
and ✓ = 1.00� in the presence of the EC condensate. For
✓ = 1.05� the very large Fermi velocity of the low energy
bands at the � point prevents the EC from opening a gap at
this point. As ✓ is tuned away from ✓M the singularity at the
� point, Fig. 4 (a), morphs into two very small e-h pockets,
Fig. 4 (b). The results of Fig. 4(a,b) show that in double layer
TBLG the EC is expected to be, strictly speaking, gapless.
However, given that the gapless nature is due to a very small
number of states close to a single point of the BZ, the density
of states is very negligible within the EC’s gap (see SM), and
so we expect that the transition to EC state could be clearly
observed in transport and spectroscopy measurements.

We now consider the stability of the EC with respect to
fluctuations. The dominant fluctuations are the ones of the
phase, '(r), of the order parameter: � ! �e

i'(r). Ex-
panding the action in the long-wavelength limit around the
saddle point identified by the mean-field solution we have
S = Ŝ0 +

R
d⌧

R
dr 1

2⇢
s
↵�@r↵'@r�', where S0 is the ac-

tion at the saddle point, and ⇢s↵� is the ↵� component of the
EC’s stiffness. The EC is stable when ⇢s↵� is positive-definite.
For a multiband system ⇢

s
↵� is given by the general expres-

sion [46, 47]:

⇢
s
↵� =

X

k,i,j

nF (Ej)� nF (Ei)

Ei � Ej

✓
1

4A
h i|v̂↵| jih j |v̂� | ii

� 1

A
h i|v̂cf,↵| jih j |v̂cf,� | ii

◆
, (3)

where Ei, | ii, are the eigenvalues, eigenstates, of the mean-
field Hamiltonian, HMF, v̂↵(k) = @HMF/@k↵, v̂cf,↵(k) =
(1/2)�z@HMF/@k↵, are the ↵ components of the regular and
counterflow velocity operators, respectively (�z is the Pauli
matrix acting in the U/L subspace). In our case k = (kx, ky),
⇢
s
xy = ⇢

s
yx = 0, and ⇢sxx = ⇢

s
yy ⌘ ⇢s. From Eq. (3) we

have that for a multi-band system both intraband and inter-
band terms contribute to ⇢s. We can therefore separate these
contributions ⇢s = ⇢

s,conv+⇢s,geom where ⇢s,conv is the con-
ventional contribution arising almost exclusively from intra-
band terms, and ⇢s,geom is the contribution arising only from
interband terms. ⇢

s,geom is closely connected to the quan-
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FIG. 1. (a) Proposed experimental setup. (b) Phase diagram of
double-TBLG as a function of µU and µL for θ = 1.00◦. (c,d) Phase
transitions as a function of dopings along the arrows shown in (b).
(e) Phase transition as a function of VEC at νU = νL = 0. The legend
SC(OM)U(L) represents the SC (OM) phase in the upper (lower)
TBLG.

Thouless (BKT) temperature TBKT [39,40] as a function of
θ . Considering that most systems with almost flat bands are
multiband systems, our results have universal relevance for
the understanding of the conditions necessary to realize ECs:
they show that to realize an EC in 2D bilayers the flatness of
the bands of the layers must be accompanied by a significant
quantum metric contribution to the EC’s stiffness. Our results
also allow to understand in a new light the conditions that
make possible the realization and observation of ECs in QH
bilayers [41,42].

The double TBLG system is described by the Hamilto-
nian Ĥ = ĤU + ĤL + Ĥint where ĤU/L is the single-particle
Hamiltonian for the U/L TBLG and Hint describes the e-e
interactions. We assume θ to be the same for the two
TBLGs. For small θ the low-energy states of a TBLG are
well described by an effective tight-binding Hamiltonian in
momentum space with the lattice sites {b = m1b1 + m2b2}
corresponding to the reciprocal lattice vectors of the moiré
lattice. The on-site Hamiltonians describe the Dirac points of
graphene with Fermi velocity vF = 106 m/s and the nearest-
neighbor hopping matrices Ti describe the coupling between
the layers with tunneling strength w = 118 meV [33,43–
45]. Here b1 = (

√
3Q, 0), b2 = (

√
3Q/2, 3Q/2), m1, m2 ∈

Z, Q = (8π/3a0) sin(θ/2) and a0 is the lattice constant of
graphene. Recent experimental and theoretical results sug-
gest that, for a single TBLG, the strongest instabilities are
orbital-magnetism (OM) characterized by a finite polarization
in sublattice space and superconductivity (SC) [46–48]. We
therefore decouple the interactions within the same TBLG
via the mean fields $OM,SC

blσ l ′σ ′ (l = l ′, σ = σ ′), where the indices
l, l ′ (σ, σ ′) correspond to the layer (sublattice) degrees of

freedom freedom within the U or L TBLG [43]. The inter-
action between electrons in different TBLGs is decoupled via
the EC mean field $EC

blσ l ′σ ′ . We assume the EC, SM, and OM
phases obey the spin-rotation symmetry. Given the flatness of
TBLG’s low-energy bands, in the mean-field approximation
all the interactions can be replaced by effective local inter-
actions [43]. We denote the strengths of the effective local
interaction in the OM, SC, and EC channels as VOM, VSC,
and VEC, respectively. We expect VOM > VSC ∼ VEC, but it is
challenging to estimate the precise values of the interaction
strengths because of the interplay of screening effects and col-
lective instabilities. Thus, we adopt a pragmatic approach: we
set VOM = 130 meV · nm2, and VSC = 75 meV · nm2 so that
the corresponding critical temperatures T OM

c and T SC
c are in

good agreement with the experimental observations [34,37],
and consider different range of values for VEC, 60–100 meV ·
nm2, for which T EC

c ∼ 1–4 K, and the system is in a strong
coupling regime where the screening does not prevent the
formation of the EC.

The gap equations for each order parameter (OP) $OP
ᾱ ,

where OP = {OM, SC, EC}, and ᾱ is a collective index, can
be linearized close to the critical temperature T OP

c : $OP
ᾱ =∑

β̄ χOP
ᾱβ̄

$OP
β̄

, where χOP
ᾱβ̄

is the bare susceptibility, indepen-
dent of $OP

ᾱ . T OP
c is obtained as the temperature T for which

the largest eigenvalue of χOP
ᾱβ̄

is equal to 1. The expressions
of χOP

ᾱβ̄
for each phase are given in [43]. In Fig. 1(b) we

show the phase diagram, as function of doping in each TBLG,
for VEC = 60 meV · nm2, obtained by identifying the highest
T OP

c . We verified for several (µU , µL ) value pairs that the
results obtained from the linearized and nonlinearized gap
equations are consistent. Close to νU = νL = 0 the correlated
insulating phase OM is favored, whereas introducing equal
electron densities in the two TBLGs µL ∼ µU favors the
SC phase [49]. When the excess density of electrons in one
TBLG equals the excess density of holes in the other TBLG,
µU ∼ −µL, the EC becomes dominant. In our system the EC
is formed by states in physically different TBLGs, no pairing
between states in bands with opposite Chern number is as-
sumed, and so the topology of the low-energy bands does not
penalize the formation of a uniform inter-TBLG EC state [50].

To investigate the possible coexistence of ordered phases
[51] we solved across several phase boundaries the full non-
linear gap equations in which all the order parameters are
allowed to be nonzero. We used large numbers of random
initial conditions and identified the solution with the small-
est total energy as the ground state. Figures 1(c) and 1(d)
show the evolution of the order parameters across the OM/EC
and SC/EC phase boundaries, respectively. In both cases the
results suggest that the system undergoes a first-order quan-
tum phase transition as the dopings are varied in Fig. 1(b).
Figure 1(e) shows the evolution of the order parameters as
a function of VEC at the neutrality point. Also in this case
the transition appears to be first order. Figure 1(e) suggests
that for VEC > 60 mev · nm2 the EC is favored in a significant
region of the (µU , µL ) plane. In the reminder we focus on
the µL = −µU ≡ µ regime, with µ sufficiently large, and set
VEC = 100 meV · nm2 so that, at the mean-field level, the EC
phase is dominant. To simplify the notation in the sections be-
low the EC label is implied.

L140506-2

V0M=130 meV, VSC=75 meV, VEC=60 mev

X.Hu et al. PRB(L) (2022)

3

0.2 0.3 0.4 0.5 0.6
(meV)

1

2

3

4

T c
(K
)

0.95
0.97
1.00
1.05
1.10

0.95 1.00 1.05 1.10
1

2

3

4

T c
(K
)

0.20
0.30
0.40
0.50
0.60

(meV)

0.2 0.3 0.4 0.5 0.6
(meV)

1

2

3

4

T c
(K
)

0.95
0.97
1.00
1.05
1.10

0.95 1.00 1.05 1.10
1

2

3

4

T c
(K
)

0.20
0.30
0.40
0.50
0.60

(meV)(b)(a)

FIG. 2. (a) Tc as a function of µ = µL = �µU and different values
of twist angle ✓. (b) Tc as a function of ✓ and different values of µ.

FIG. 3. (a) The first twenty singular values of the SVD decomposi-
tion �bl�l0�0 = USV †. (b) Amplitudes of the order parameter com-
ponents �0mij . (c) Scaling with |b| of �0m03. Here ✓ = 1.05�

and µ = 0.30meV.

�bl�l0�0 = USV
†, where S is a diagonal matrix whose di-

agonal elements are the singular values, of �bl�l0�0 . Fig-
ure 3 (a) shows that the largest 20 singular values (in to-
tal we have 484 singular values, see SM). We see that all
these values are of comparable size and so confirm that the
ground state, within the mean field approximation, is a multi-
component order parameter. To better understand the or-
bital structure of �bl�l0�0 we also calculate its projections
a
(b)
ij = (1/4)Tr[�bl�l0�0i⌦�j], on the 4⇥4 matrices i⌦�j ,

where i are the Pauli matrices in the layer index t, b. Know-
ing, the set of projection a

(b)
ij we can then obtain the ampli-

tudes mij = [
P

b ka(b)ij k2]1/2. The values of mij are shown
in Fig. 3 (b). We see that m03 is the largest projection, how-
ever it is not dominant: several other projections have similar
amplitude, in particular m20, m31 and m32 are comparable to
m03. The fairly even distribution of the EC’s order param-
eter over different orbital channels is paralleled by its fairly
slow decay with the magnitude of b [Fig. 3 (c)]. These results
are consistent with the SVD’s result that �bl�l0�0 describes
a multi-component order parameter. This is in contrast with
the results for the case of superconducting pairing in isolated
TBLG where the pairing is dominated by a single channel and
the magnitude of the order parameter decreases quickly as a
function of increasing |b| [44, 45].

Figure 4 shows the low energy bands along the ��+�⌫�

FIG. 4. Band structure in the EC phase at T = 0 for ✓ = 1.05�,
(a), and ✓ = 1.00�, (b). µ = 0.30meV. The colorbar indicates how
much the eigenstate is localized in the U , L, TBLG. The inset in (a)
shows the moiré Brillouin zone.

��⌫̄ path in the moiré Brillouin zone (BZ) [41] for ✓ = 1.05�,
and ✓ = 1.00� in the presence of the EC condensate. For
✓ = 1.05� the very large Fermi velocity of the low energy
bands at the � point prevents the EC from opening a gap at
this point. As ✓ is tuned away from ✓M the singularity at the
� point, Fig. 4 (a), morphs into two very small e-h pockets,
Fig. 4 (b). The results of Fig. 4(a,b) show that in double layer
TBLG the EC is expected to be, strictly speaking, gapless.
However, given that the gapless nature is due to a very small
number of states close to a single point of the BZ, the density
of states is very negligible within the EC’s gap (see SM), and
so we expect that the transition to EC state could be clearly
observed in transport and spectroscopy measurements.

We now consider the stability of the EC with respect to
fluctuations. The dominant fluctuations are the ones of the
phase, '(r), of the order parameter: � ! �e

i'(r). Ex-
panding the action in the long-wavelength limit around the
saddle point identified by the mean-field solution we have
S = Ŝ0 +

R
d⌧

R
dr 1

2⇢
s
↵�@r↵'@r�', where S0 is the ac-

tion at the saddle point, and ⇢s↵� is the ↵� component of the
EC’s stiffness. The EC is stable when ⇢s↵� is positive-definite.
For a multiband system ⇢

s
↵� is given by the general expres-

sion [46, 47]:

⇢
s
↵� =

X

k,i,j

nF (Ej)� nF (Ei)

Ei � Ej

✓
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h i|v̂↵| jih j |v̂� | ii

� 1
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◆
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where Ei, | ii, are the eigenvalues, eigenstates, of the mean-
field Hamiltonian, HMF, v̂↵(k) = @HMF/@k↵, v̂cf,↵(k) =
(1/2)�z@HMF/@k↵, are the ↵ components of the regular and
counterflow velocity operators, respectively (�z is the Pauli
matrix acting in the U/L subspace). In our case k = (kx, ky),
⇢
s
xy = ⇢

s
yx = 0, and ⇢sxx = ⇢

s
yy ⌘ ⇢s. From Eq. (3) we

have that for a multi-band system both intraband and inter-
band terms contribute to ⇢s. We can therefore separate these
contributions ⇢s = ⇢

s,conv+⇢s,geom where ⇢s,conv is the con-
ventional contribution arising almost exclusively from intra-
band terms, and ⇢s,geom is the contribution arising only from
interband terms. ⇢

s,geom is closely connected to the quan-

μL = − μU ≡ μ
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of twist angle ✓. (b) Tc as a function of ✓ and different values of µ.

FIG. 3. (a) The first twenty singular values of the SVD decomposi-
tion �bl�l0�0 = USV †. (b) Amplitudes of the order parameter com-
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�bl�l0�0 = USV
†, where S is a diagonal matrix whose di-

agonal elements are the singular values, of �bl�l0�0 . Fig-
ure 3 (a) shows that the largest 20 singular values (in to-
tal we have 484 singular values, see SM). We see that all
these values are of comparable size and so confirm that the
ground state, within the mean field approximation, is a multi-
component order parameter. To better understand the or-
bital structure of �bl�l0�0 we also calculate its projections
a
(b)
ij = (1/4)Tr[�bl�l0�0i⌦�j], on the 4⇥4 matrices i⌦�j ,

where i are the Pauli matrices in the layer index t, b. Know-
ing, the set of projection a

(b)
ij we can then obtain the ampli-

tudes mij = [
P

b ka(b)ij k2]1/2. The values of mij are shown
in Fig. 3 (b). We see that m03 is the largest projection, how-
ever it is not dominant: several other projections have similar
amplitude, in particular m20, m31 and m32 are comparable to
m03. The fairly even distribution of the EC’s order param-
eter over different orbital channels is paralleled by its fairly
slow decay with the magnitude of b [Fig. 3 (c)]. These results
are consistent with the SVD’s result that �bl�l0�0 describes
a multi-component order parameter. This is in contrast with
the results for the case of superconducting pairing in isolated
TBLG where the pairing is dominated by a single channel and
the magnitude of the order parameter decreases quickly as a
function of increasing |b| [44, 45].

Figure 4 shows the low energy bands along the ��+�⌫�
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FIG. 4. Band structure in the EC phase at T = 0 for ✓ = 1.05�,
(a), and ✓ = 1.00�, (b). µ = 0.30meV. The colorbar indicates how
much the eigenstate is localized in the U , L, TBLG. The inset in (a)
shows the moiré Brillouin zone.

��⌫̄ path in the moiré Brillouin zone (BZ) [41] for ✓ = 1.05�,
and ✓ = 1.00� in the presence of the EC condensate. For
✓ = 1.05� the very large Fermi velocity of the low energy
bands at the � point prevents the EC from opening a gap at
this point. As ✓ is tuned away from ✓M the singularity at the
� point, Fig. 4 (a), morphs into two very small e-h pockets,
Fig. 4 (b). The results of Fig. 4(a,b) show that in double layer
TBLG the EC is expected to be, strictly speaking, gapless.
However, given that the gapless nature is due to a very small
number of states close to a single point of the BZ, the density
of states is very negligible within the EC’s gap (see SM), and
so we expect that the transition to EC state could be clearly
observed in transport and spectroscopy measurements.

We now consider the stability of the EC with respect to
fluctuations. The dominant fluctuations are the ones of the
phase, '(r), of the order parameter: � ! �e

i'(r). Ex-
panding the action in the long-wavelength limit around the
saddle point identified by the mean-field solution we have
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tion at the saddle point, and ⇢s↵� is the ↵� component of the
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For a multiband system ⇢
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where Ei, | ii, are the eigenvalues, eigenstates, of the mean-
field Hamiltonian, HMF, v̂↵(k) = @HMF/@k↵, v̂cf,↵(k) =
(1/2)�z@HMF/@k↵, are the ↵ components of the regular and
counterflow velocity operators, respectively (�z is the Pauli
matrix acting in the U/L subspace). In our case k = (kx, ky),
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yx = 0, and ⇢sxx = ⇢
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have that for a multi-band system both intraband and inter-
band terms contribute to ⇢s. We can therefore separate these
contributions ⇢s = ⇢

s,conv+⇢s,geom where ⇢s,conv is the con-
ventional contribution arising almost exclusively from intra-
band terms, and ⇢s,geom is the contribution arising only from
interband terms. ⇢
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FIG. 5. Conventional ⇢s,conv (a), geometric ⇢s,geom (b), and total
stiffness ⇢s (c), as a function of µ for different values of ✓. (d) ⇢s vs.
✓ for different values of µ.

tum metric of the Hilbert space spanned by the eigenstates of
HMF [45–50], hence the name.

Figure 5 (a), (b), (c) show how ⇢
s,conv, ⇢s,geom and ⇢

s, re-
spectively, vary with µ for different values of ✓. Figure 5 (d)
shows the evolution of ⇢s with ✓ for different values of µ. All
the results where obtained for T = 20 mK ⌧ Tc. We no-
tice that ⇢s does not grow with µ contrary to the conventional
result ⇢s / µ. For ✓ = 1.05�, and ✓ = 1.10�, ⇢s,conv and
⇢
s,geom are comparable and the relative weight changes with

µ [51]. For all the other twist angles considered ⇢
s,geom is

larger than ⇢
s,conv, regardless of µ.

The results of Fig. 2 (a) show that for ✓ = 1.00� the mean
field Tc was slightly smaller than the value of Tc at the magic
angle, making double-layer TBLG with ✓ = 1.00� one of the
best candidates for the realization of an EC. Strikingly, for
✓ = 1.00�, we find that ⇢s,conv is negative, for all the val-
ues of µ, Fig. 5 (a). This can happen because of the lack of
particle-hole symmetry between the electron and hole bands.
This result would lead us to conclude that for ✓ = 1.00� the
EC is fragile against fluctuations and therefore not a stable
ground state, despite the relatively large value of Tc. This
conclusion is reversed if one takes into account the geomet-
ric contribution to ⇢s, Fig. 5 (b): for ✓ = 1.00� the ⇢

s,geom

is positive and much larger, in absolute value, than ⇢
s,conv,

guaranteeing the robust stability of the EC. Figures 5 (c), (d)
allow us to identify for which value of ✓ and µ the EC is most
stable. We see that for all the values of µ the EC is most stable
for ✓ = 1.00�, not for ✓ equal to the magic angle, as suggested
by the mean-field results.

The results of Fig. 5 (c), (d), can be used to obtain the criti-
cal temperature, TBKT, for the BKT phase transition [52, 53]
via the equation kBTBKT = 2⇡⇢s[�[TBKT], TBKT], where
we have taken into account the valley and spin degeneracies.
The results are shown in Fig. 6. From Fig. 6 (a), (b) we see

FIG. 6. (a) TBKT as a function of µ for different values of ✓. (b)
TBKT as a function of ✓ for different values of µ. (c), (d) TBKT/Tc

as a function of µ, ✓, respectively.

that, contrary to the mean-field results, the twist angle for
which the critical temperature TBKT is largest is not ✓M , but
✓ = 1.00�, for all the values of µ. Indeed TBKT at ✓ = 1.00�

is up to 50% larger than at ✓M . This is a somewhat surpris-
ing results that is entirely due to the geometric contribution
to ⇢s. It is interesting to notice that, contrary to the conven-
tional wisdom, for some twist angles TBKT decreases, rather
than increasing, with µ. Such behavior is particularly marked
for ✓ = 1.00� and ✓ = ✓M [Fig. 6 (a)] due to the significant
decrease of the geometric contribution to stiffness as seen in
Fig. 5. Figures 6 (c), (d) show how the ratio TBKT/Tc scales
with µ and ✓, respectively. It is particularly interesting to see
that, for all values of µ, TBKT/Tc is minimum at ✓M .

In summary, we have shown that in flat-band double layers,
such as double TBLG systems, the quantum metric plays a
critical role for the realization of an interlayer-phase-coherent
exciton condensate. We have shown that, as expected, the
flatness of the bands enhances the mean-field critical tem-
perature Tc. However, the flatness of the bands, in general,
also strongly suppresses the conventional part ⇢s,conv of the
EC’s stiffness. We found that indeed for double TBLG sys-
tems ⇢s,conv is very small and can even be negative due to the
lack of particle-hole symmetry for configurations with high
Tc. As a consequence, the “conventional” study of the EC’s
stability that does not include interbands terms would lead to
the conclusion that in flat-band double layers ECs can be un-
stable. However, we found that this conclusion is reversed if
the interband terms responsible for the quantum metric of the
flat-bands are taken into account: the quantum metric contri-
bution to ⇢

s can dominate over the conventional part and for
the situations considered always guarantees the stability of the
EC. We then obtained TBKT for the ECs in double TBLG sys-
tems and found that the largest TBKT is realized not at the
magic angle, ✓ = 1.05�, but at ✓ = 1.00�. In a more general
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• Based on Tc TBLG is a great system to realize an 
exciton condensate


• Conventional treatment of ⍴s lead to conclusion that in 
TBLG the exciton condensate is not robust or very 
unstable


• The geometric contribution to ⍴s is essential for stability 
of condensate.
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In this work, we compute the full superfluid weight using the general formula in Eq. (S42) and the conventional
contribution to the superfluid weight based on Eq. (S49). We then compute the geometric part as the di↵erence of
the two.

III. EXTENDED KANE-MELE MODELS

The Kane-Mele model [42] is prototypical for the realization of a quantum spin Hall insulator on a lattice. It is a

FIG. S1. Illustration of the extended Kane-Mele model on the honeycomb lattice with nearest-neighbor hopping t, i-th
neighbor hopping amplitudes ti, and staggered on-site potential M . Hopping processes between second neighbors acquire a
phase e±i�' depending on the spin � = ±1 ⌘ ", # of the involved particles, on the hopping direction, and on the sublattice A,
B. Red arrows indicate a selection of hopping processes. Other hopping processes can be inferred by symmetry.

tight-binding model on the 2D honeycomb lattice, which is defined as

H0 =
X

i,�

h
(�1)iM � µ

i
c
†
i�ci� + t

X

�

X

hi,ji1

c
†
j�ci� + t2

X

hi,ji2

⇣
e
i'ij c

†
j"ci" + e

�i'ij c
†
j#ci#

⌘
, (S50)

where the operators c
†
i� (ci�) create (annihilate) an electron with spin � =", # at site i, hi, jin denotes pairs of n-th

neighbors, M is a staggered on-site potential also known as mass term, µ is the chemical potential, and 'ij = ±' is
a next-nearest-neighbor (NNN) hopping phase whose sign depends on the hopping direction, on the spin, and on the
sublattice as shown in Fig. S1. Note that the phase is ' = ⇡/2 in the original Kane-Mele model.

We have used the lattice vectors a1 = (3a/2,�a
p
3/2) and a2 = (0, a

p
3). The coordinates of the two basis atoms

A and B are rA = (0, 0) and rA = (a/2, a
p
3/2), respectively, where a is the distance between the two atoms. The

corresponding reciprocal lattice vectors are b1 = (4⇡/3a, 0) and b2 = (2⇡/3a, 2⇡/
p
3a).

The model is time-reversal symmetric and block-diagonal in spin space. In particular, the two spin blocks are
mapped onto each other under time reversal. Furthermore, each spin block realizes a Haldane model [43], which
is a model prototypical for the realization of a Chern insulator on a lattice. The spin blocks have opposite Chern
numbers C" = �C# = C, which are related to the Z2 topological invariant ⌫ of the corresponding Kane-Mele model as
⌫ = Cmod2. For a system with spin-rotation symmetry, the latter (without mod 2) is also known as the spin Chern
number. In the main text and in the following, we therefore use the Chern number C of the spin-up block to specify
the topology of the system.

Due to its sublattice structure and spin symmetry, the model has two spin-degenerate energy bands. At half-filling,
it realizes a topological insulator with C = ±1 in certain regimes of the parameter space spanned by (t, t2,M,�). In
particular, if M = 0 and t, t2 > 0 we have C = +1 for �⇡ < ' < 0 and C = �1 for 0 < ' < ⇡. On the other hand,
tuning M generally leads to a phase transition to a trivial insulator with C = 0.

By optimizing the parameters of the model, it is possible to make one of the bands quasi-flat, even in the topological
phase. As a measure of the band flatness, we use the ratio of bandwidth to energy gap,

r =
�Ebandwidth

�Egap
. (S51)

For the Kane-Mele model defined above, at M = 0 the flatness r of the lower band is minimal for cos' = t/4t2 =
3
p

3/43. Its minimum value is about rmin = 0.29.

By adding the additional hoppings t3, t4 we 
can make the lowest energy band 

extremely flat by tuning t2, t3 t4, and  φ
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381

on a lattice. It is a tight-binding model on the 2D honeycomb lattice, which is defined as382

H0 =
X

i,�

î
(�1)i M �µ
ó
c†

i�ci� + t
X

�

X

hi, ji1
c†

j�ci� + t2

X

hi, ji2

Ä
ei'i j c†

j"ci" + e�i'i j c†
j#ci#
ä

, (56)

where the operators c†
i� (ci�) create (annihilate) an electron with spin � =",# at site i, hi, jin383

denotes pairs of n-th neighbors, M is a staggered on-site potential also known as mass term,384

µ is the chemical potential, and 'i j = ±' is a next-nearest-neighbor (NNN) hopping phase385

whose sign depends on the hopping direction, on the spin, and on the sublattice as shown in386

Fig. 4. Note that the phase is ' = ⇡/2 in the original Kane-Mele model.387

We have used the lattice vectors a1 = (3a/2,�a
p

3/2) and a2 = (0, a
p

3). The coordinates388

of the two basis atoms A and B are rA = (0,0) and rA = (a/2, a
p

3/2), respectively, where389

a is the distance between the two atoms. The corresponding reciprocal lattice vectors are390

b1 = (4⇡/3a, 0) and b2 = (2⇡/3a, 2⇡/
p

3a).391

The model is time-reversal symmetric and block-diagonal in spin space. In particular, the392

two spin blocks are mapped onto each other under time reversal. Furthermore, each spin393

block realizes a Haldane model [42], which is a model prototypical for the realization of a394

Chern insulator on a lattice. The spin blocks have opposite Chern numbers C" = �C# = C ,395

which are related to the Z2 topological invariant ⌫ of the corresponding Kane-Mele model as396

⌫ = C mod2. For a system with spin-rotation symmetry, the latter (without mod2) is also397

known as the spin Chern number. In the main text and in the following, we therefore use the398

Chern number C of the spin-up block to specify the topology of the system.399

Due to its sublattice structure and spin symmetry, the model has two spin-degenerate en-400

ergy bands. At half-filling, it realizes a topological insulator with C = ±1 in certain regimes401

of the parameter space spanned by (t, t2, M ,�). In particular, if M = 0 and t, t2 > 0 we have402

C = +1 for �⇡ < ' < 0 and C = �1 for 0 < ' < ⇡. On the other hand, tuning M generally403

leads to a phase transition to a trivial insulator with C = 0.404

By optimizing the parameters of the model, it is possible to make one of the bands quasi-405

flat, even in the topological phase. As a measure of the band flatness, we use the ratio of406

bandwidth to energy gap,407

r =
�Ebandwidth

�Egap
. (57)

For the Kane-Mele model defined above, at M = 0 the flatness r of the lower band is minimal408

for cos' = t/4t2 = 3
p

3/43. Its minimum value is about rmin = 0.29.409

C.1 Kane-Mele model with optimized flatness410

We can make the flatness of the lower band arbitrarily small by adding further-neighbor hop-411

ping to the Kane-Mele model. Here, we go up to fourth-neighbor hopping and optimize the412

model parameters to minimize the flatness r. Our extended Kane-Mele model reads,413

H = H0 + t3

X

�

X

hi, ji3
c†

j,�ci,� + t4

X

�

X

hi, ji4
c†

j,�ci,� . (58)

For M = 0, the flatness of its lower band is minimal for the parameters t2 = 0.349t,414

t3 = �0.264t, t4 = 0.026t, and ' = 1.377. The minimum flatness is approximately415

rmin = 0.006, which is about two orders of magnitude smaller than the minimum flatness416

of the 2nd-neigbor Kane-Mele model discussed above. In the following, we will refer to this417

version of the model as the “flat” Kane-Mele model.418
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Figure 3: Disorder-induced suppression of hDsi in a single-band model. (a) Energy
band dispersion of the clean system along high-symmetry lines of the Brillouin zone.
The dotted line indicates the Fermi level at ⌫̄ = 1/5. (b) hDsi, hDs,convi and hDs,geomi
as a function of W at ⌫̄= 1/5.

same way in all models. This finding is independent of the concrete decomposition of the195

superfluid weight into conventional and geometric contributions. In particular, it would still196

hold even if there existed a different decomposition for disordered systems. Thus, our results197

imply that the microscopic mechanism underlying the superfluid weight becomes unimportant198

in dirty superconductors.199

5 Conclusion200

To summarize, we have demonstrated that the disorder-induced suppression of the superfluid201

weight is universal across a variety of theoretical models independently of the quantum ge-202

ometry and the flatness of the dispersion. Thus, flat-band superconductors are as resilient to203

disorder as conventional superconductors. We have mainly concentrated on the disorder-204

induced suppression of the ensemble averages of the pairing potential and the superfluid205

weight. However, the universality across the models remains true also for the statistical fluc-206

tuations. Namely, we find that apart from the transition regime W ⇡ W0, also the standard207

deviations �(�̄)/�0 and �(Ds)/Ds,0 as a function of W/W0 behave the same way in all models208

(see Appendix D). In our calculation there is no critical value of W above which Ds vanishes.209

This is due to the fact that in our approach relative phase fluctuations of � between different210

superconducting regions (islands) of the inhomogenous landscape induced by the disorder are211

not taken into account [37–39]. The interplay of such fluctuations and the quantum metric is212

an interesting direction for future research.213

Graphene-based heterostructures are an ideal platform to experimentally study the uni-214

versality of the disorder-induced suppression of the superfluid weight. These systems are in-215

trinsically very clean, disorder can be introduced in a controlled way, and it is possible to tune216

the dispersion and the different contributions of the superfluid weight through the twist an-217

gle, pressure, and electric field [5,6,10,11,28,30]. Recent experiments indicate that in some218

graphene-based systems it might be possible to realize unconventional superconducting order219

parameters [12–14]. Therefore, it is an interesting direction for future research to find out if220

the disorder-induced suppression of superfluid weight remains independent of the quantum221

geometry beyond the time-reversal invariant s-wave superconductors considered in this work.222
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the solutions with the lowest free energy. We find that the obtained solutions are sensitive590

to the initial conditions used for the solver, which indicates a highly complex structure of591

the corresponding free-energy landscape with many local minimums. Therefore, finding a592

global minimum based on the full mean-field equations is computationally very expensive.593

Due to their significantly smaller parameter space, the reduced mean-field equations provide594

a computationally more efficient and more robust approach to finding suitable solutions. The595

analysis in this section, as well as additional calculations with different initial conditions, leads596

us to the expectation that this does not affect the results qualitatively. Therefore, we have used597

the reduced mean-field equations in the rest of the text.598

G Trivial single-band models599

In the main text we compare our results obtained for the extended Kane-Mele model to a trivial600

single-band model defined on a 2D square lattice. The model has one orbital per site and is601

described by the Hamiltonian602

H = �t
X

�

X

<i, j>

c†
j�ci� �µ
X

�,i

c†
i�ci� . (61)

It has a single spin-degenerate energy band with dispersion E = �2t(cos kx + cos ky). Each603

spin band is entirely trivial, i.e., all components of the quantum geometric tensor are zero in604

the whole Brillouin zone. Hence, their quantum metric, Berry curvature, and Chern number605

are zero as well.606

To make this single-band model comparable to the flat Kane-Mele model, we use the full607

superfluid weight of the latter in the clean limit, Ds,0 = 0.2245 tKM where tKM is the nearest-608

neighbor hopping amplitude of the flat Kane-Mele model, as a common energy scale. We then609

generate a set of models with different hopping parameters t, interaction strengths U , and610

fillings ⌫̄, such that, in the clean limit, they all have the same superfluid weight Ds,0.611

For the trivial single-band models in Fig. 1 of the main text, we have used clusters of size612

11 ⇥ 11, which is equal to 121 sites per disordered cluster. Moreover, the presented models613

have the following parameters:614

(vi) U = 13.4 Ds,0, ⌫̄= 1, and t = 2.0 Ds,0 ,615

(vii) U = 8.9 Ds,0, ⌫̄= 1, and t = 1.7 Ds,0 ,616

(viii) U = 13.4 Ds,0, ⌫̄= 1/5, and t = 3.3 Ds,0 .617

For the decomposition of the superfluid weight into conventional and geometric contribu-618

tions as shown in Fig. 3 of the main text, we have used smaller clusters of size 7 ⇥ 7 corre-619

sponding to 49 sites within each disordered cluster.620

To generate the tight-binding Hamiltonians with disorder we have used the software pack-621

age Kwant [44].622

H Superfluid weight for clean systems623

For a conventional superconductor originating from a metallic state given by a partially-filled,624

isolated, and approximately parabolic band, the superfluid weight is purely conventional and625

can be expressed as626

Ds = e2 n
m⇤

, (62)

24
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FIG. 2. Disorder-induced suppression of the superfluid weight
in the extended Kane-Mele model [40]. (a) Evolution of the
energy gap and the bandwidth of the lower band as a function
of M . C is the Chern number of the lower spin-up band. (b)
Ds as a function of M for di↵erent values of W/W0 and ⌫ =
1/2. The vertical dotted black line indicates the topological
transition in the clean system. (c), (d) Energy bands of the
clean systems along high-symmetry lines of the Brillouin zone
for M values corresponding to topologically distinct cases.
The dotted black lines indicate the Fermi level corresponding
to ⌫ = 1/2. (e), (f) hDsi as a function of W/W0 for ⌫ = 1/2.

of a trivial parabolic band and an ideal flat band with-
out disorder, this decomposition reproduces the conven-
tional result Ds = e

2
n/m

⇤, and Eq. (1), respectively.
The considered disorder preserves the symmetries of the
respective clean systems on average. In particular, on
average it preserves the C3 symmetry of the Kane-Mele
models and the C4 symmetry of the single-band models
(see SM [41]). Consequently, the disorder-averaged su-
perfluid weight tensors of our models are proportional to
the identity matrix and we have D

xx
s = D

yy
s ⌘ Ds.

We first consider an extended Kane-Mele model on a
honeycomb lattice given by a Haldane model [43] for each
spin channel and additional hoppings between 3rd- (t3)

and 4th-nearest neighbors (t4):

H = t

X
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†
j�ci� + t2
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X
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h
(�1)iM � µ

i
c
†
i�ci�, (5)

Here, hi, jin denotes pairs of n-th neighbors, � = ±1 ⌘

", # is the spin index of the particles, M is a staggered on-
site potential, µ is the chemical potential, and 'ij = ±'

is a next-nearest-neighbor (NNN) hopping phase whose
sign depends on the hopping direction and on the spin
(see SM [41]). The spin-dependence of the NNN hop-
ping phase is chosen in such a way that the full non-
interacting Hamiltonian is time-reversal symmetric. We
call the model in Eq. (5) the extended Kane-Mele model
because in the limit t3 = t4 = 0 and ' = ⇡/2 it reduces
to the model introduced by Kane and Mele in Ref. 42.
Importantly, our model is well-suited for the study

of topological flat bands: By taking t2 = 0.349t, t3 =
�0.264t, t4 = 0.026t, ' = 1.377, and M = 0 [model (i)
in Fig. 1], the lowest spin-degenerate bands are almost
flat and have Chern numbers C = ±1 [see Fig. 2(a), (c)].
Therefore the superfluid weight is almost entirely geo-
metric in the clean limit, i.e., Ds ' Ds,geom satisfying
Eq. (1) with � ⇡ U

p
⌫(1� ⌫)/2. Fig. 2(e) shows the

disorder-averaged superfluid weight hDsi for ⌫ = 1/2,
U = 3t and T = 0 [44] displaying the behavior already
presented in Fig. 1(b), but here we have decomposed it
into geometric and conventional contributions [45]. The
superfluid weight associated with a flat band is almost
entirely geometric for all values of the disorder strength.
By increasing M the previously flat band becomes

more dispersive and the bulk energy gap closes around
M = 1.75t, so that after the reopening of the bulk gap
both energy bands are trivial (C = 0) [Fig. 2(a)]. Thus,
as we increase the parameterM , the superfluid weight ac-
quires a finite conventional contribution due to the grow-
ing dispersion of the lower band. The fraction of the
geometric contribution decreases, so that deep inside the
trivial phase the geometric contribution practically van-
ishes and the superfluid weight becomes almost entirely
conventional in the absence of disorder. This picture
changes with increasing disorder, as we show in Fig. 2(f).
First, we observe that the conventional contribution is
linearly suppressed in the low-disorder regime, whereas
the suppression is quadratic for the full superfluid weight.
In contrast, the geometric contribution is enhanced for
small disorder until it reaches a turning point. At this
point the conventional contribution is nearly zero and
the superfluid weight becomes entirely geometric, even
though the underlying bands are topologically trivial.
Importantly, although the geometric and conventional

contributions are remarkably di↵erent depending on M ,
surprisingly the disorder induced suppression of the
scaled superfluid weight hDsi/D0 as a function of the
scaled disorder strength W/W0 is completely indepen-
dent of the value of M [see Fig. 2(b)]. We find essentially
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in the extended Kane-Mele model [40]. (a) Evolution of the
energy gap and the bandwidth of the lower band as a function
of M . C is the Chern number of the lower spin-up band. (b)
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The dotted black lines indicate the Fermi level corresponding
to ⌫ = 1/2. (e), (f) hDsi as a function of W/W0 for ⌫ = 1/2.
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Importantly, although the geometric and conventional
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FIG. 2. Disorder-induced suppression of the superfluid weight
in the extended Kane-Mele model [40]. (a) Evolution of the
energy gap and the bandwidth of the lower band as a function
of M . C is the Chern number of the lower spin-up band. (b)
Ds as a function of M for di↵erent values of W/W0 and ⌫ =
1/2. The vertical dotted black line indicates the topological
transition in the clean system. (c), (d) Energy bands of the
clean systems along high-symmetry lines of the Brillouin zone
for M values corresponding to topologically distinct cases.
The dotted black lines indicate the Fermi level corresponding
to ⌫ = 1/2. (e), (f) hDsi as a function of W/W0 for ⌫ = 1/2.

of a trivial parabolic band and an ideal flat band with-
out disorder, this decomposition reproduces the conven-
tional result Ds = e
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n/m

⇤, and Eq. (1), respectively.
The considered disorder preserves the symmetries of the
respective clean systems on average. In particular, on
average it preserves the C3 symmetry of the Kane-Mele
models and the C4 symmetry of the single-band models
(see SM [41]). Consequently, the disorder-averaged su-
perfluid weight tensors of our models are proportional to
the identity matrix and we have D
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We first consider an extended Kane-Mele model on a
honeycomb lattice given by a Haldane model [43] for each
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Here, hi, jin denotes pairs of n-th neighbors, � = ±1 ⌘

", # is the spin index of the particles, M is a staggered on-
site potential, µ is the chemical potential, and 'ij = ±'

is a next-nearest-neighbor (NNN) hopping phase whose
sign depends on the hopping direction and on the spin
(see SM [41]). The spin-dependence of the NNN hop-
ping phase is chosen in such a way that the full non-
interacting Hamiltonian is time-reversal symmetric. We
call the model in Eq. (5) the extended Kane-Mele model
because in the limit t3 = t4 = 0 and ' = ⇡/2 it reduces
to the model introduced by Kane and Mele in Ref. 42.
Importantly, our model is well-suited for the study

of topological flat bands: By taking t2 = 0.349t, t3 =
�0.264t, t4 = 0.026t, ' = 1.377, and M = 0 [model (i)
in Fig. 1], the lowest spin-degenerate bands are almost
flat and have Chern numbers C = ±1 [see Fig. 2(a), (c)].
Therefore the superfluid weight is almost entirely geo-
metric in the clean limit, i.e., Ds ' Ds,geom satisfying
Eq. (1) with � ⇡ U

p
⌫(1� ⌫)/2. Fig. 2(e) shows the

disorder-averaged superfluid weight hDsi for ⌫ = 1/2,
U = 3t and T = 0 [44] displaying the behavior already
presented in Fig. 1(b), but here we have decomposed it
into geometric and conventional contributions [45]. The
superfluid weight associated with a flat band is almost
entirely geometric for all values of the disorder strength.
By increasing M the previously flat band becomes

more dispersive and the bulk energy gap closes around
M = 1.75t, so that after the reopening of the bulk gap
both energy bands are trivial (C = 0) [Fig. 2(a)]. Thus,
as we increase the parameterM , the superfluid weight ac-
quires a finite conventional contribution due to the grow-
ing dispersion of the lower band. The fraction of the
geometric contribution decreases, so that deep inside the
trivial phase the geometric contribution practically van-
ishes and the superfluid weight becomes almost entirely
conventional in the absence of disorder. This picture
changes with increasing disorder, as we show in Fig. 2(f).
First, we observe that the conventional contribution is
linearly suppressed in the low-disorder regime, whereas
the suppression is quadratic for the full superfluid weight.
In contrast, the geometric contribution is enhanced for
small disorder until it reaches a turning point. At this
point the conventional contribution is nearly zero and
the superfluid weight becomes entirely geometric, even
though the underlying bands are topologically trivial.
Importantly, although the geometric and conventional

contributions are remarkably di↵erent depending on M ,
surprisingly the disorder induced suppression of the
scaled superfluid weight hDsi/D0 as a function of the
scaled disorder strength W/W0 is completely indepen-
dent of the value of M [see Fig. 2(b)]. We find essentially



19

Disorder Suppression of Superfluid Stiffness. II

3

FIG. 2. Disorder-induced suppression of the superfluid weight
in the extended Kane-Mele model [40]. (a) Evolution of the
energy gap and the bandwidth of the lower band as a function
of M . C is the Chern number of the lower spin-up band. (b)
Ds as a function of M for di↵erent values of W/W0 and ⌫ =
1/2. The vertical dotted black line indicates the topological
transition in the clean system. (c), (d) Energy bands of the
clean systems along high-symmetry lines of the Brillouin zone
for M values corresponding to topologically distinct cases.
The dotted black lines indicate the Fermi level corresponding
to ⌫ = 1/2. (e), (f) hDsi as a function of W/W0 for ⌫ = 1/2.
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(see SM [41]). The spin-dependence of the NNN hop-
ping phase is chosen in such a way that the full non-
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because in the limit t3 = t4 = 0 and ' = ⇡/2 it reduces
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into geometric and conventional contributions [45]. The
superfluid weight associated with a flat band is almost
entirely geometric for all values of the disorder strength.
By increasing M the previously flat band becomes

more dispersive and the bulk energy gap closes around
M = 1.75t, so that after the reopening of the bulk gap
both energy bands are trivial (C = 0) [Fig. 2(a)]. Thus,
as we increase the parameterM , the superfluid weight ac-
quires a finite conventional contribution due to the grow-
ing dispersion of the lower band. The fraction of the
geometric contribution decreases, so that deep inside the
trivial phase the geometric contribution practically van-
ishes and the superfluid weight becomes almost entirely
conventional in the absence of disorder. This picture
changes with increasing disorder, as we show in Fig. 2(f).
First, we observe that the conventional contribution is
linearly suppressed in the low-disorder regime, whereas
the suppression is quadratic for the full superfluid weight.
In contrast, the geometric contribution is enhanced for
small disorder until it reaches a turning point. At this
point the conventional contribution is nearly zero and
the superfluid weight becomes entirely geometric, even
though the underlying bands are topologically trivial.
Importantly, although the geometric and conventional

contributions are remarkably di↵erent depending on M ,
surprisingly the disorder induced suppression of the
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in the extended Kane-Mele model [40]. (a) Evolution of the
energy gap and the bandwidth of the lower band as a function
of M . C is the Chern number of the lower spin-up band. (b)
Ds as a function of M for di↵erent values of W/W0 and ⌫ =
1/2. The vertical dotted black line indicates the topological
transition in the clean system. (c), (d) Energy bands of the
clean systems along high-symmetry lines of the Brillouin zone
for M values corresponding to topologically distinct cases.
The dotted black lines indicate the Fermi level corresponding
to ⌫ = 1/2. (e), (f) hDsi as a function of W/W0 for ⌫ = 1/2.
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(see SM [41]). The spin-dependence of the NNN hop-
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more dispersive and the bulk energy gap closes around
M = 1.75t, so that after the reopening of the bulk gap
both energy bands are trivial (C = 0) [Fig. 2(a)]. Thus,
as we increase the parameterM , the superfluid weight ac-
quires a finite conventional contribution due to the grow-
ing dispersion of the lower band. The fraction of the
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trivial phase the geometric contribution practically van-
ishes and the superfluid weight becomes almost entirely
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First, we observe that the conventional contribution is
linearly suppressed in the low-disorder regime, whereas
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the superfluid weight becomes entirely geometric, even
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FIG. 3. Disorder-induced suppression of hDsi in a single-
band model [40]. (a) Energy band dispersion of the clean
system along high-symmetry lines of the Brillouin zone. The
dotted line indicates the Fermi level at ⌫ = 1/5. (b) hDsi,
hDs,convi and hDs,geomi as a function of W at ⌫ = 1/5.

the same results also when other parameters are varied,
such as the NNN hopping phase ' [see SM [41] and model
(iv) in Fig. 1].

It is instructive to compare the extended Kane-Mele
model with a nearest-neighbor tight-binding model on
the square lattice given by the Hamiltonian

H = �t

X

�,hi,ji

c
†
j�ci� � µ

X

�,i

c
†
i�ci�. (6)

The energy spectrum consists of only one band with the
dispersion relation E(kk, ky) = �2t(cos kx + cos ky) vi-
sualized in Fig. 3(a). The filling is set at ⌫ = 1/5. In
the clean limit, the Berry curvature, the Chern number,
and the geometric contribution are identically zero, and
Ds = Ds,conv ⇡ e

2
n/m

⇤ = 2e2⌫t/~2. However, with
the onset of disorder the geometric contribution is again
enhanced while the conventional contribution is linearly
suppressed [Fig. 3(b)]. In particular, Ds is entirely geo-
metric in the strong disorder regime, even though the
considered model in the clean limit has no geometric
structure.

A possible explanation for this counter-intuitive behav-
ior lies in the nature of the decomposition of the super-
fluid weight. By definition, the geometric part contains
only interband matrix elements (see SM [41]). Hence, it
is identically zero for a single-band model in the clean
limit. By adding disorder to the system, this band fans
out into several subbands in superlattice mini Brillouin
zone arising from the cluster periodicity. As a conse-
quence, states previously separated in momentum space
may now couple giving rise to nonzero interband matrix
elements. Moreover, avoided crossings in the superlat-
tice Brillouin zone can act as hot-spots of quantum met-
ric. In the thermodynamic limit (N ! 1), the super-
lattice Brillouin zone collapses to a single point allowing
all states of the single band to couple. Consequently, the
superfluid weight now originates entirely from interband
terms so that only the geometric contribution of the su-
perfluid weight remains non-zero.

Evidently, the meaning of the geometric and conven-
tional contributions is obscured in the case of dirty su-

perconductors. To understand this better it is important
to compare the disorder-induced suppression of the total
superfluid weight in the cases of the extended Kane-Mele
models (Fig. 2) and the single-band model (Fig. 3). As
shown in Fig. 1, the scaled superfluid weight hDsi/D0

as a function of the scaled disorder strength W/W0 be-
haves the same way in all models. This finding is inde-
pendent of the concrete decomposition of the superfluid
weight into conventional and geometric contributions. In
particular, it would still hold even if there existed a dif-
ferent decomposition for disordered systems. Thus, our
results imply that the microscopic mechanism underly-
ing the superfluid weight becomes unimportant in dirty
superconductors.

To summarize, we have demonstrated that the
disorder-induced suppression of the superfluid weight is
universal across a variety of theoretical models indepen-
dently of the quantum geometry and the flatness of the
dispersion. Thus, flat-band superconductors are as re-
silient to disorder as conventional superconductors. We
have mainly concentrated on the disorder-induced sup-
pression of the ensemble averages of the pairing poten-
tial and the superfluid weight. However, the universal-
ity across the models remains true also for the statisti-
cal fluctuations. Namely, we find that apart from the
transition regime W ⇡ W0, also the standard deviations
�(�̄)/�0 and �(Ds)/Ds,0 as a function of W/W0 behave
the same way in all models (see SM [41]). In our cal-
culation there is no critical value of W above which Ds

vanishes. This is due to the fact that in our approach rel-
ative phase fluctuations of � between di↵erent supercon-
ducting regions (islands) of the inhomogenous landscape
induced by the disorder are not taken into account [36–
38]. The interplay of such fluctuations and the quantum
metric is an interesting direction for future research.

Graphene-based heterostructures are an ideal platform
to experimentally study the universality of the disorder-
induced suppression of the superfluid weight. These sys-
tems are intrinsically very clean, disorder can be intro-
duced in a controlled way, and it is possible to tune the
dispersion and the di↵erent contributions of the super-
fluid weight through the twist angle, pressure, and elec-
tric field [5, 6, 10, 11, 28, 30]. Recent experiments in-
dicate that in some graphene-based systems it might be
possible to realize unconventional superconducting order
parameters [12–14]. Therefore, it is an interesting direc-
tion for future research to find out if the disorder-induced
suppression of superfluid weight remains independent of
the quantum geometry beyond the time-reversal invari-
ant s-wave superconductors considered in this work.
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FIG. 3. Disorder-induced suppression of hDsi in a single-
band model [40]. (a) Energy band dispersion of the clean
system along high-symmetry lines of the Brillouin zone. The
dotted line indicates the Fermi level at ⌫ = 1/5. (b) hDsi,
hDs,convi and hDs,geomi as a function of W at ⌫ = 1/5.

the same results also when other parameters are varied,
such as the NNN hopping phase ' [see SM [41] and model
(iv) in Fig. 1].
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FIG. 2. Disorder-induced suppression of the superfluid weight
in the extended Kane-Mele model [40]. (a) Evolution of the
energy gap and the bandwidth of the lower band as a function
of M . C is the Chern number of the lower spin-up band. (b)
Ds as a function of M for di↵erent values of W/W0 and ⌫ =
1/2. The vertical dotted black line indicates the topological
transition in the clean system. (c), (d) Energy bands of the
clean systems along high-symmetry lines of the Brillouin zone
for M values corresponding to topologically distinct cases.
The dotted black lines indicate the Fermi level corresponding
to ⌫ = 1/2. (e), (f) hDsi as a function of W/W0 for ⌫ = 1/2.
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respective clean systems on average. In particular, on
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Here, hi, jin denotes pairs of n-th neighbors, � = ±1 ⌘

", # is the spin index of the particles, M is a staggered on-
site potential, µ is the chemical potential, and 'ij = ±'

is a next-nearest-neighbor (NNN) hopping phase whose
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ping phase is chosen in such a way that the full non-
interacting Hamiltonian is time-reversal symmetric. We
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because in the limit t3 = t4 = 0 and ' = ⇡/2 it reduces
to the model introduced by Kane and Mele in Ref. 42.
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into geometric and conventional contributions [45]. The
superfluid weight associated with a flat band is almost
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By increasing M the previously flat band becomes

more dispersive and the bulk energy gap closes around
M = 1.75t, so that after the reopening of the bulk gap
both energy bands are trivial (C = 0) [Fig. 2(a)]. Thus,
as we increase the parameterM , the superfluid weight ac-
quires a finite conventional contribution due to the grow-
ing dispersion of the lower band. The fraction of the
geometric contribution decreases, so that deep inside the
trivial phase the geometric contribution practically van-
ishes and the superfluid weight becomes almost entirely
conventional in the absence of disorder. This picture
changes with increasing disorder, as we show in Fig. 2(f).
First, we observe that the conventional contribution is
linearly suppressed in the low-disorder regime, whereas
the suppression is quadratic for the full superfluid weight.
In contrast, the geometric contribution is enhanced for
small disorder until it reaches a turning point. At this
point the conventional contribution is nearly zero and
the superfluid weight becomes entirely geometric, even
though the underlying bands are topologically trivial.
Importantly, although the geometric and conventional

contributions are remarkably di↵erent depending on M ,
surprisingly the disorder induced suppression of the
scaled superfluid weight hDsi/D0 as a function of the
scaled disorder strength W/W0 is completely indepen-
dent of the value of M [see Fig. 2(b)]. We find essentially
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to ⌫ = 1/2. (e), (f) hDsi as a function of W/W0 for ⌫ = 1/2.
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We consider large primitive cell with disorder and calculate self-consistently disorder-averaged superconducting gap  and ⟨Δ⟩ ⟨Ds⟩



20

Universal Scaling of  Disorder Suppression of Superfluid Stiffness
We considered 8 different models

(i) Topological. M=0


(ii) Topological, dispersive.  
M=t,  rad.


(iii) Topological, dispersive.  
M=0,  rad


(iv) Close to topological transition. 
M=1.75, 


(v) Trivial, dispersive. 
M=3.2 t,  
 
 

(vi) t=2.0 Ds,0. U =13.4 Ds,0. Filling=1.


(vii) t=1.7 Ds,0. U =8.9 Ds,0. Filling=1.


(viii) t=3.3 Ds,0. U =13.4 Ds,0. Filling=1/5.


φ = φopt = 1.377

φ = 1.0

φ = φopt

φ = φopt

Extended Kane-Mele model

Square lattice 
With parameters tuned to have in the  
clean limit the same Ds,0 as K-M model

2

FIG. 1. Universality of the disorder-induced suppression
of the pairing amplitude and the superfluid weight across a
variety of lattice models [40]: (i)-(v) topological and triv-
ial extended Kane-Mele models, (vi)-(viii) trivial single-band
models (see text and SM [41] for details). The ensemble av-
erages of (a) the spatial average of the pairing amplitude �̄
and (b) the superfluid weight Ds are shown as a function of
the disorder strength W/W0.

the band gap, which all depend on the disorder strength.

In this Letter, we calculate the disorder-induced sup-
pression of the superfluid weight Ds for a generalization
of the Kane-Mele model [42], for which the low energy
bands’ topology and flatness can be easily tuned by vary-
ing the values of the model’s parameters, and for a simple
single band model. Our main results are shown in Fig. 1,
where the ensemble averages h�̄i/�0, hDsi/Ds,0 of the
spatially averaged pairing potential �̄ and the superfluid
weightDs are shown as a function of the disorder strength
W/W0. �0, Ds,0 are the pairing potential and the su-
perfluid weight, respectively, in the clean limit. W0 is
defined as the value of W for which h�̄i/�0 = 1/2. For
W ⇡ W0 the superconductor breaks up into supercon-
ducting islands. In all models the disorder dependence
of h�̄i and hDsi is the same after rescaling, pointing to
an unexpected universal behavior.

We consider a variety of tight-binding Hamiltonians
H0 with disorder potentials Vd supplemented by the
pairing interaction Hint, so that the full Hamiltonian
is H = H0 + Hint + Vd. We assume that H0 obeys
U(1) spin-rotation symmetry, Vd is represented by un-
correlated on-site energies uniformly distributed in the
interval [�W,W ], and Hint describes a local attraction
of strength U between the electrons that leads to a time-
reversal invariant singlet superconducting state described
by a real-valued pairing potential �(r). We neglect the
frequency dependence of U and the renormalization of
U due to the localization, because we are interested in
the comparison of the models instead of seeking for a
quantitative description of a particular system.

To model the disorder potential, we consider a large
cluster ofN sites repeated in spaceN times with periodic
boundary conditions. The full set of superconducting

mean-field equations for such a system is given by
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with ↵ = 1, . . . N , U > 0, and the filling per lattice site
⌫ 2 [0, 2] associated with both spin channels � =", #

[see Supplemental Material (SM) [41]]. The operators
c
†
i↵� (ci↵�) create (annihilate) an electron with spin �

at site r↵ in the i-th cluster. This is a large set of
N +1 equations, which we have to solve self-consistently
for the chemical potential µ and for the spatial profile
of the superconducting order parameter �↵ at a given
temperature T and interaction strength U . Therefore,
to reduce the computational cost of the calculation of
�(T, r↵), we assume that the spatial profile is approxi-
mately independent of temperature. With this assump-
tion, we obtain the (normalized) spatial profile �̂(r↵)
from the linearized self-consistency equations, which are
valid close to the critical temperature, and the overall
amplitude k�(T )k ⌘ [

P
↵ |�(T, r↵)|2]1/2 and ⌫ from the

nonlinear self-consistency equations (see SM [41]) to ob-
tain �(T, r↵)=k�(T )k�̂(r↵). We find that this approx-
imation leads to an underestimation of h�̄i that, being
very similar for all the models (see SM [41]), does not
a↵ect the relative comparison of the models.
Given a specific disorder realization, we compute the

corresponding superconducting order parameter �↵ and
the chemical potential self-consistently employing the re-
duced mean-field equations, and diagonalize the associ-
ated Bogoliubov-de Gennes Hamiltonian HBdG to deter-
mine its excitation energies Ei(k) and eigenstates  i(k),
where k is the superlattice momentum arising due to the
cluster periodicity and i is the band index. The full su-
perfluid weight Ds of the superconductor is given by

D
µ⌫
s =

e
2

~2
X

k,ij

n(Ej)� n(Ei)

Ei � Ej

⇣
h@µHBdGiij h@⌫HBdGiji

� h@µHBdG�
z
iij h�

z
@⌫HBdGiji

⌘
, (3)

where h·iij ⌘ h i| · | ji, n(Ei) is the Fermi function,
and �

z = �z ⌦ 1N⇥N with �z being a Pauli matrix in
particle-hole space (see SM [41]). We further decompose
the full superfluid weight into a conventional contribution
Ds,conv and a geometric contribution Ds,geom. The con-
ventional contribution involves only intraband matrix el-
ements containing derivatives of the normal-state Hamil-
tonian’s energies ✏km�,
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with coe�cients C
mm
pp given in the SM [41]. The geo-

metric contribution, Ds,geom, comprises interband matrix
elements with derivatives of the normal-state Hamilto-
nian’s Bloch states (see SM [41]) and can be obtained
as the di↵erence between Ds and Ds,conv. In the limits
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Conclusions
The real part of the Quantum Geometric Tensor  defines a metric   for the Bloch states. Such 
metric can affect the properties of correlated states especially when the bands are flat. In particular:


•  affects the superfluid weight (stiffness) D(s) of superconducting states, and more in general the 
stiffness of continuous order parameters


• It can explain the presence of superconductivity for multi-orbital systems even when the lowest 
energy band is completely flat


• For 2D superconducting states it affects TBKT 


• In superconducting TBLG the geometric contribution to D(s) dominates at the magic angle and is 
responsible for the unusual dependence of TBKT  on doping


• In double TBLG the geometric contribution to D(s) is essential to stabilize the exciton condensate


• The suppression with disorder of the superfluid stiffness appears to be “universal” and 
independent of the origin, conventional or geometric, of the stiffness

Qμν gμν

gμν
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FIG. S2. Disordered Kane-Mele model with optimized flatness: (a) Evolution of the band gap and the bandwidth of the
lower band as a function of disorder W . (b) Relation between full superfluid weight Ds and sample-averaged superconducting
order parameter �̄. (c) Disorder scale W0 as a function of the staggered on-site potential M for two di↵erent system sizes N .
The dotted black line indicates the topological transition in the clean system. (d) Evolution of the Chern number of the lower
spin-up band. (e) Evolution of the trace of the quantum metric of the lower spin-up band integrated over the Brillouin zone.
The dotted black line indicates the evolution of the lower bound on this integral given by the Chern number C. (f) Localization
length as a function of the disorder parameter W for the flat (M = 0) and for a trivial (M = 3.2t) Kane-Mele model for two
di↵erent system sizes N . The localization length is given in units of the sublattice separation a of the honeycomb lattice.

In Fig. S2(c), we show the disorder scale W0 as a function of the staggered on-site potential for the two system
sizes considered in this work, namely N = 50 (5⇥ 5 cluster) and N = 128 (8⇥ 8 cluster).

In the clean limit, the spin -up flat band of the considered model has Chern number C = �1. As expected, the
value of the Chern number is robust as long as the energy gap remains open, as we show in Fig. S2(d). Once the
disorder-averaged gap becomes close to zero, more and more realizations within the disorder ensemble undergo a
transition to a trivial phase. Hence, the absolute value of the disorder-averaged Chern number decreases until it
reaches hCi = 0. At this point, the gap is large enough such that all realizations have undergone the transition from
topological to trivial.

We have also computed the quantum metric of the model adopting the essence of a method for calculating the Berry
curvature in a discretized Brillouin zone [48] to e�ciently compute the quantum geometric tensor Bij . In Fig. S2(e),
we show the evolution of the trace of the disorder-averaged quantum metric gµ⌫ integrated over the Brillouin zone. In
the main text, we stated that this quantity is bounded from below by 2⇡|C| in the clean limit, where C is the Chern
number of the involved band. Here, we find that this bound also applies to the averages in the disordered model.

In Fig. S2(f), we relate the disorder strength W to the localization length Lloc of the system. For this purpose,
we compute the average two-terminal conductance G for a ribbon of fixed width as a function of its length L for
di↵erent disorder W using periodically repeating clusters of size 8⇥ 8. For disorder strengths W > 0.1t, we find that
the conductance shows a clear exponential suppression with a saturation G1:

G(L) = Ce
�L/Lloc +G1. (S54)

By fitting our numerical results to this expression, we extract the localization length Lloc(W ). In Fig. S2(f), we
present our results for the flat topological Kane-Mele model (M = 0) and for a trivial Kane-Mele model (M = 3.2t)
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Figure 5: Disordered Kane-Mele model with optimized flatness: (a) Evolution of the
band gap and the bandwidth of the lower band as a function of disorder W . (b)
Relation between full superfluid weight Ds and sample-averaged superconducting
order parameter �̄. (c) Disorder scale W0 as a function of the staggered on-site
potential M for two different system sizes N . The dotted black line indicates the
topological transition in the clean system. (d) Evolution of the Chern number of the
lower spin-up band. (e) Evolution of the trace of the quantum metric of the lower
spin-up band integrated over the Brillouin zone. The dotted black line indicates the
evolution of the lower bound on this integral given by the Chern number C . (f)
Localization length as a function of the disorder parameter W for the flat (M = 0)
and for a trivial (M = 3.2t) Kane-Mele model for two different system sizes N . The
localization length is given in units of the sublattice separation a of the honeycomb
lattice.

In Fig. 5(c), we show the disorder scale W0 as a function of the staggered on-site potential
for the two system sizes considered in this work, namely N = 50 (5⇥ 5 cluster) and N = 128
(8⇥ 8 cluster).

In the clean limit, the spin -up flat band of the considered model has Chern number C = �1.
As expected, the value of the Chern number is robust as long as the energy gap remains open,
as we show in Fig. 5(d). Once the disorder-averaged gap becomes close to zero, more and
more realizations within the disorder ensemble undergo a transition to a trivial phase. Hence,
the absolute value of the disorder-averaged Chern number decreases until it reaches hCi= 0.
At this point, the gap is large enough such that all realizations have undergone the transition
from topological to trivial.

We have also computed the quantum metric of the model adopting the essence of a method
for calculating the Berry curvature in a discretized Brillouin zone [45] to efficiently compute
the quantum geometric tensor Bi j . In Fig. 5(e), we show the evolution of the trace of the
disorder-averaged quantum metric gµ⌫ integrated over the Brillouin zone. In the main text,
we stated that this quantity is bounded from below by 2⇡|C | in the clean limit, where C is the
Chern number of the involved band. Here, we find that this bound also applies to the averages
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superfluid weight and its two contributions under disorder. Again, for numerical reasons we
present results for a smaller cluster of size 5⇥ 5. All other parameters are the same as in the
flat Kane-Mele model.

First of all, starting from the flat limit with M = 0, we note that a change of the NNN
hopping phase cannot push the clean system into the trivial phase. As we show in Fig. 7(a),
the energy gap closes close to ' = 0 and close to ' = ⇡. Under time reversal, we have that
'!�' and C !�C . Hence, tuning ' into the interval [�⇡, 0] the energy gap opens again
and the Chern number of the lower spin-up band changes from C = �1 to C = 1. The system
remains a topological insulator. As expected, the bandwidth increases away from the flat limit
with 'opt = 1.377.

Turning to the behavior of the superfluid weight, we make the similar observations as in
the case of varying the M parameter. Again, we study the system at filling ⌫̄= 1/2 with inter-
action parameter U = 3t. The full superfluid weight shows a universal behavior independent
of the value of the NNN hopping phase [see Fig. 7(b)]. On the contrary, the conventional
and geometric contributions show a clear parameter dependence in the small disorder regime
W ⌧ W0 [see Fig. 7(c) and (d)]. In particular, as the bandwidth of the underlying band be-
comes sizeable the conventional contribution is enhanced whereas the geometric contribution
is suppressed in this regime. For large disorder, the superfluid becomes entirely geometric
independent of the NNN hopping phase.

In contrast to what we observe for the variation of M , we find that the disorder scale W0
increases approximately linearly as we tune the system from the flat limit to the band closing
point close to ' = 0, see inset of Fig. 7(b).

D Standard deviations and formation of superconducting islands

Figure 8: Ensemble standard deviations � of (a) the pairing amplitude �̄ (spatial
average) and (b) the superfluid weight Ds as a function of W/W0 for the models
considered in Fig. 1 of the main text: (i)-(v) topological and trivial extended Kane-
Mele models, (vi)-(viii) trivial single-band models. (c) Spatial profile �↵ of the pair-
ing amplitude for single disorder realizations of the flat Kane-Mele model [model
(i)] at different disorder strengths W/W0. White corresponds to a vanishing pairing
amplitude, whereas darker colors signify a larger values. Around W = W0, the su-
perconductor breaks up into isolated superconducting islands accompanied by large
fluctuations of �̄ and Ds.

In the main text, we pinned down a universal suppression of the pairing amplitude �
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Figure 11: Comparison with analytical formulas for the clean systems in the zero-
temperature limit: (a) superfluid weight Ds and (b) superconducting order parame-
ter � of the flat Kane-Mele model for different coupling constants U as a function of
the filling ⌫̄. Solid lines represent the respective quantities as obtained directly from
numerics, dashed lines show the results computed using Eqs. (63) and (64), respec-
tively. (c) Superfluid weight of the single-band model for different U at small fillings
close to the band bottom. Solid lines are the numerical results while the dashed black
line represents the analytical result using Eq. (62) assuming a parabolic band.

with the electron density n and the effective mass m⇤. On the other hand, for a superconductor
originating from a metallic state given by a partially-filled and isolated flat band, the superfluid
weight is entirely geometric and is related to the quantum geometry of the electronic states as

[Ds]µ⌫ =
8e2

~h2 �
∆
⌫̄(1� ⌫̄)
Z

dd k
(2⇡)d

gµ⌫(k) , (63)

where � is the superconducting order parameter, ⌫̄ the band filling, d the dimensions, and
gµ⌫(k) is the quantum metric. The latter is obtained as the real part of the quantum geometric
tensor Bµ⌫(k) =

⌦
@µunk

�� �1� |unkihunk|
�
|@⌫unki, with |unki the Bloch functions of the flat band.

The superconducting order parameter further satisfies

� =
U
2

∆
⌫̄(1� ⌫̄) . (64)

Importantly, the flat-band formulas are expected to hold for coupling constants U much smaller
than the excitation energy to the other bands and much larger than the bandwidth of the flat
band. In the following, we apply the analytical formulas above to the models considered in
this paper in the clean limit.

We first look at the extended Kane-Mele model in the flat limit. The flat lower band has a
bandwidth of 0.02t and is separated from the upper band by an energy gap of 3.5t, where t is
the first-neighbor hopping defining the energy scale of the model. In Fig. 11(a) we show the
superfluid weight of the model (solid lines) as a function of the filling ⌫̄ for different coupling
constants U . We further compare this to the results of Eq. (63) (dashed lines). For the latter,
we have computed the quantum metric of the model numerically adopting the essence of a
method for calculating the Berry curvature in a discretized Brillouin zone [45] to efficiently
compute the quantum geometric tensor Bµ⌫. At larger coupling constants U , we observe that
the numerically obtained curve for the superfluid weight is skewed with respect to the analyti-
cal result. However, with decreasing U the agreement improves. Around U = t, the two curves
are nearly on top of each other. This is in agreement with the validity regime of Eq. (63).

We have also checked the superconducting order parameter of this model as a function of
U [see Fig. 11(b)]. Also here we observe deviations from the analytical formula in Eq. (64) at
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