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Distance Between Vectors in Hilbert Space

Given a Hilbert space, #, using the inner product we can define a distance between two vectors in #Z .
We can use k to parametrize the vectors.

W(k)); [¥(k+ dk)) ds® = ((V(k + dk)| — (VU (k)|)(|¥(k + dk)) — [¥(k)))
We can write

W (k +dky)) ~ [U(k)) + O, |V (k))dk"

%/_/
Oul V)
Using the fact that the vectors are normalized, (¥|¥) = 1, we then find:

1
ds* = (0,90, V)dk"dk"; Symmetric part: V) = (M + M,,);

H/_/ 2
M . . _ (a) _ 1 |
pv Antisymmetric part: Vo = §(MW — M,,);

(0,910, %) = (2,]9,0)" 74 s purely real
ey v ¥ |0y }’p(fyl) is purely imaginary. Let y/%) - iB,,

4



Quantum Geometric Tensor
Recall:

Berry connection: 3, = «(V|0,¥) Berry curvature: Q,, = 3,6, — 9,8, = 2¢\%) = 2iB,,

Consider gauge transformation

B, is invariant;

}//,(;/) IS not: /yl(u/) ,7(8) + (6 _ iﬁ’uoz) (61/ L iay()é) o /8,&/61/

However, we can easily redefine MM In a way that is gauge invariant and so useful to define the distance

U (k)) — e (k))

between two physical quantum states (rays in the projective Hilbert space P):

My, = Qu = (8,9)9,0) — (9,T|0)(V|0,T); Quy = Ju + 1B,
. . . . ) 1 1)

and so, considering that BW is antisymmetric: Quantum maginary part

Geometric  Real Berr
Tensor Part Curvath/re
ds® = Q, dk*dk" = g, dk"dk" g, Fubini-Study Quantum Metric
8, is the unique Riemannian metric on Py, -, is positive . det g, > \BW|2
that is invariant under unitary transformations semidefinite

* Trgu > 2|Bu|

J.P. Provost, G. Vallee, Comm. Math. Phys. (1980)
. Rahul Roy PRB (2014)



Linear Current Response

Let’s consider a system described by the Hamiltonian H, and study the current response due to an external
vector field A (e=1):
Juk,w) =K, (k,w)A,(k,w)

K,,, has two contributions:
Ky (& w) = (Tyw) + (X (kW)

/ \

Diamagnetic part

dk o
Ly = Z/ (QW)dCLaauavH(k» 0)Cko X (K, w) = _i/o dtezw+t<[j£(k,t),jf(—k, 0)])

Paramagnetic part

. dk’ /
jﬁ(k) — Z/ (27T>dCI<’08MH(k -+ k/27 U)Ck’+k0'
For a multi-orbital system, for the expectation values of the current operator ()ﬂI—AI we have:
(Vo [(0,H) V) = 00€mOnm + (€m — en)<\\11n|(9u\11mj>

“Anomalous Contribution to the current”
Considering that K is a current-current correlator, this contribution, in
turn, gives an additional purely quantum contribution to p



Drude Weight and Superfluid Weight

We want to consider the long-wavelength static limit. There are two ways to take this limit:

Dy
Em K, (k,w) = S 0 = D,o(w) + OérngIar) (w)
550 T t
Drude weight
DY)
im K, (k,w)= ; ju= D) lim A,(k = 0,w =0) Meissner Effect
w=0 T k1 —0
%)=0, ¢
k1—0 Superfluid Weight
D # 0 D # 0 D=0
Metal Superconductor Insulator
D® =0 D) + () D® =0
For a single, isotropic, parabolic band, for 7T — 0, we have

D — . Dl — Y D.J. Scalapino, S.R. White, S.C. Zhang

] @ PRL (1992)

However, for a multiband system, we have a contribution to D and D®) from the quantum metric.
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Superfluid Weight in Multiband System

We start from BdG Hamiltonian (assume for TRS):

Hr A
Hpga = (A? —HB> Hgac|vi) = Ei|vi)

For D) we have:

D) _Z/ dk ”F ) 4 0, Hac 47 (510 Hsac [91) — (310 Hisac 7 ;) (03|70, Hisag 1)

’L

For the case of a well isolated band:

] i} 2
DW / (2m)¢ | OFE; E; ) E]2 OueiOveit 21 (27)¢ E; g“”
;ﬂf——/ H/_/
conventional contribution geometric contribution

The flatter the bands the more relevant is the geometric contribution. For a 2D, flat, isolated band:

A
D/SSV): QA\/V(l —V)/ (;711_{)2gu,/(k). det 9uv > ‘B,uu‘z — D/(j/) > —\/V(l —v)|C

T

8 P.Torma, S. Peotta, Nat. Comm. (2015). L. Liang et al. PRB (2017)



Superfluid Weight in TBLG

We assume simple s-wave pairing and fix A to agree with measured T¢

A —

Hrprox (K) A, . .
HBdG — ~ , : AS — ATO Zb Abelb r
i A H%BLGK’( k)
we find the coefficients A, solving the linearized gap equation. For our settings & = 1.05°

magic
With some algebra we can separate the conventional and geometric contribution to D®) (see Xu et al. PRL (2019)

——Conv Away from magic angle, 1.000 At magic angle, 1.050

| | —
,;; 0.4 | : ngln (b) 0.4 9 — 1.00° (a) : —— Conv
D) : . 04 i 0 _ 1.050 —— Geom
E : § j Total
\/m O 2 i <D :
- ' E 02
| ~ t>—<3
00— o
] 1.05 1.1 1.15 00102030405 0 0.1 02 0.3 0.4 05
9(0) See also: -p(meV) -pu(meV)

F. Xie et al. PRL (2020) P.Torma, S. Peotta, B.A. Bernevig, Nat. Rev. Phys.(2022)
X.Hu, T. Hyart, D.Pikulin, ER. PRL (2019) A. Julku et al PRB(2020)  ER arXiv:2108.11478 (2021)



Dependence of D) on number of bands included

Superconducting TBLG
0.2
: 0 = 1.05°
0.15 -
> i
D) i
é 0.1~
=N
0.05¢
j ——Conv *+Geom — -Total
O_ | | L ] | | N B T RN |
| 2 3 4 6 10 20 50 100 196

band number
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Berezinskii-Kosterlitz-Thouless Transition

In 2D, for a system whose ground state spontaneously breaks a U(1) symmetry, the thermodynamic
transition from “ordered” to disordered phase is Berezinskii-Kosterlitz-Thouless transition. At T=Tgkr the
thermal fluctuations are strong enough to unbind vortices -> the system stops being a superfluid.

kgTgxr = D’ [A(TKT)a TKT]

By calculating the temperature dependence of D™ we can obtain Takr. In 2D p(s) s difficult to measure

directly and so the measurement of Tgkris a way to probe the quantum metric properties of the system.
Notice that for the conventional case

D® grows with density/chemical potential => Tgkralso grows with density/chemical potential

An opposite trend is a strong signature of the importance of the geometric contribution to D
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Berezinskii-Kosterlitz-Thouless Temperature

o Away from magic angle, 1.00° At magic angle, 1.030
| i " 0.82 ¢
> 0.8}
— |
N~ .
2 0.78 |
= |
0.76 |
O
9( ) -p(meV)
Xiang Hu et al. PRL (2019)
L n=5x10"cm? 160mK =
dVy, ! dl = I :':s 0.5
= 1t . . . O
g 5 30 mK Extracting Tekt for different dopings -
3 " ~ 0.4
% / / P‘M 0.3
.= 110 mK |
0.1 L =10 0'275 0.0 125 150 175

Xiao Lu et al. Nature (2019) nn| (10 cm™?)



Exciton Condensate Superfluid

The connection between “stiffness” and quantum metric is general and can be applied to other ground states
that break continuous symmetries, like ferromagnetic states, “orbital ferromagnetic” states whose signatures
have been observed in TBLG.

A particularly interesting state is the exciton TBLG having almost flat bands seems a good candidate
condensate in bilayers. to realize an exciton condensate
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Double TBLG: phase diagram
p; = —puy = p = 0.3 meV

Hip = —Hy=H
Upper
4 —— p(meV)  (a) 4, A . 1
--0.20 S|V v v I
~ 3 ' ~~~ 2 R+
X o T
o, 040 g0 05
=050 | |
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X.Hu et al. PRB(L) (2022)



Double TBLG: Superfluid Stiffness

Conventional Geometric Total
oo O 90 g 90
> 0.04 2 0.2 =
\S/ 002 f T ; R é D Poct
P e ey L% PO oy
< -0.02 Negative' _, ™% 2 | e, T
-0.04 | | | 0 S —— 0 | | |
0.20.3040.50.6 0.20.3040.50.6 0.20.3040.50.6
u(meV) p(meV) u(meV)
u(meV) . .
- « Based on T TBLG is a great system to realize an
—-0.20 exciton condensate
—+-0.30  Conventional treatment of pslead to conclusion that in
0.40 TBLG the exciton condensate is not robust or very
= 0.50 unstable
|  The geometric contribution to psis essential for stability
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Berezinskii-Kosterlitz-Thouless Temperature
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Disorder Suppression of Superfluid Stiffness. |

In the presence
of disorder

—

A

In the presence
of disorder

S —

The disorder creates
localized bands

'

We would expect it
will impact more
the conventional

part of D)



Extended Kane-Mele Model

We considered an extended Kane-Mele model M=0 {C =+1;—-7<¢p<0

C=-1, O<op<n

T 3 (BTN SPIRES 1) Y RIS | COERIESRE
o (l,]>1

topol. (M =0) trivial (M =3.2t)

T == gap /
: band
width

By adding the additional hoppings ts, ta \ 0 T K M K T I’ K M K I’
can make the lowest energy band 0
extremely flat by tuning to, t3 t4, and @ to=0.349 t
t3=-0.264 t
And a very trivial, single band, quadratic, model t41=-0.026 t
@=1.377

o
_ 2 ‘ 2 - Z i =)
H=—t CioCic —M P Ci5Cic -
o,l

o <ij>




Disorder Suppression of Superfluid Stiffness. I

We consider large primitive cell with disorder and calculate self-consistently disorder-averaged superconducting gap (A) and (D,)

Extended Kane-Mele model. Extended Kane-Mele model. Trl\élslljasrz?a:zilzznd
M=0. Topological M=3.2 t. Trivial

I’ K M K’ [’ T X M T

m D,
B - Ds,conv

- Ds,geom

<Ds>/Ds,O




Universal Scaling of Disorder Suppression of Superfluid Stiffness

We considered 8 different models
Extended Kane-Mele model
() Topological. M=0
(i) Topological, dispersive. pairing amplitude o superfluid weight
M=t, ¢ = @y = 1.377 rad.

(i) Topological, dispersive.
M=0, @ = 1.0 rad

(iv) Close to topological transition.
M=1.75, @ = @y

;
i
i
;

—
.
.
(

(v) Trivial, dispersive.
M=3.21, ¢ = @

<
frd o
o
e o
N———

Square lattice
With parameters tuned to have in the W / WO
clean limit the same Dso as K-M model

(vi) t=2.0 Dso. U =13.4 Dsy. Filling=1.

W /W,

(vii) t=1.7 Ds,0. U =8.9 Ds . Filling=1. A. Lau et al. SciPost Physics (2022)
(viii) 1=3.3 Ds,0. U =13.4 Ds,0. Filling=1/5.
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Conclusions

The real part of the Quantum Geometric Tensor (), defines a metric g, for the Bloch states. Such
metric can affect the properties of correlated states especially when the bands are flat. In particular:

* 8 affects the superfluid weight (stiffness) D) of superconducting states, and more in general the
stiffness of continuous order parameters

* [t can explain the presence of superconductivity for multi-orbital systems even when the lowest
energy band is completely flat

* For 2D superconducting states it affects Tekr

* |n superconducting TBLG the geometric contribution to D dominates at the magic angle and is
responsible for the unusual dependence of Tekr on doping

* |n double TBLG the geometric contribution to D® is essential to stabilize the exciton condensate

 The suppression with disorder of the superfluid stiffness appears to be “universal” and
independent of the origin, conventional or geometric, of the stiffness
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(b) superfluid weight
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Additional Results for Kane-Mele Model with Optimized Flathess
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Standard Deviations and Superconducting Islands
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Dependence on Filling for Clean Case

(a) Kane-Mele model (b)

1.0
0.3 F= =3t -~ N
’ \
- U=2 \ 0.8
- U=t

_ 06

=
0.4
0.2
' 0

0 0.5 1

filling v

Kane-Mele model

(c)

= U =23t
L= U =2t
= U=t

0.2

filling v
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