Many-body localization as a Dynamical Renormalization Group Fixed Point

Ehud Altman - Weizmann Institute and UC Berkeley

With: Ronen Vosk - Weizmann Institute

arXiv:1205.0026

Many-Body Localization

If the model has bounded spectrum, one can attempt to drive the transition at infinite temperature Oganesyan and Huse (2007), Pal and Huse (2010)

Disordered Spin Chains

A. Pal and D. Huse, Physical Review B 82, 1 (2010)

$$H = \frac{1}{2} \sum_{ij} \left(S_i^+ S_j^- + \text{H.c.} \right) + \Delta \sum_{ij} S_i^z S_j^z + \sum_i h_i S_i^z \qquad h_i \in [-h, h]$$
 = interacting fermions:
$$H = \frac{1}{2} \sum_{ij} \left(a_i^\dagger a_j + \text{H.c.} \right) + \sum_i h_i n_i + \Delta \sum_{ij} n_i n_j$$

Ratio of adjacent energy gaps from exact diagonalization of 16 sites:

Thermalization and dynamics of entanglement entropy in disordered spin chains

$$e^{-iHt} | \Psi_0 \rangle$$
 $H = \frac{J}{2} \sum_i (S_i^+ S_{i+1}^- + \text{H.c.}) + J\Delta \sum_i S_i^z S_{i+1}^z + \sum_i h_i S_i^z$

= interacting fermions:
$$H = \frac{J}{2} \sum_{i} \left(a_i^{\dagger} a_{i+1} + \text{H.c.} \right) + \Delta J \sum_{i} n_i n_{i+1} + \sum_{i} h_i n_i$$
 $h_i \in [-h, h]$

 ho_A B ho_B

Von-Neuman entropy generated in the dynamics: $S_A(t) = -Tr\left[\rho_A(t)\ln\rho_A(t)\right]$

 $S_{sat} \sim S_{eq} = L_A \ln 2$

Entanglement dynamics: numerics

$$H = \frac{J}{2} \sum_{i} \left(S_{i}^{+} S_{i+1}^{-} + \text{H.c.} \right) + \underbrace{J\Delta}_{Jz} \sum_{i} S_{i}^{z} S_{i+1}^{z} + \sum_{i} h_{i} S_{i}^{z} \qquad h_{i} \in [-h, h]$$

Entropy growth $S_A(t)$

- Non interacting: Saturation
- Interacting log(t) increase

Bardarson et. al. PRL (2012)

Saturation in finite system

- Non interacting: S_{sat}=const
- Interacting: S_{sat}= s₀L
 extensive, but much smaller
 then expected thermal entropy

Earlier numerical studies: De Chiara et. al. (2006); Znidaric et. al. (2008)

Questions and goals for theory

- Explain the universal evolution of the entanglement entropy in this "localized" state as seen in numerics.
- Does the system thermalize? Description of the long time steady state?
- Nature of the transition to the delocalized state?

Outline

 Derivation of real space RG for quantum time evolution in strong disorder and application to model:

$$H = \frac{1}{2} \sum_{i} J_{i} \left(S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+} + 2\Delta_{i} S_{i}^{z} S_{i+1}^{z} \right)$$
"Interaction"

- Main Results:
 - 1. Flow to infinite randomness fixed point
 - 2. Delayed logarithmic growth of entanglement entropy:

$$S(t) \approx \eta_1 \ln(t/t_{delay}) \Theta(t - t_{delay}) + \left[\eta_2 \ln(t/t_{delay})\right]^{2/\phi} \Theta(t - t_*)$$

Compare to noninteracting case: $S(t) \sim \ln(\ln t)$

3. Emergent conserved quantities → no thermalization

Real space RG for dynamics

Working model:

$$H = \frac{1}{2} \sum_{i} J_i \left(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ + 2\Delta_i S_i^z S_{i+1}^z \right)$$

$$J_i \in [-\Omega,\Omega]$$
 $|\Delta_i| \ll 1$ drawn from uncorrelated broad distributions

We want to compute:
$$\rho(t) = e^{iHt}\rho(0)e^{-iHt} = ?$$

Use the basic idea of real-space RG for strong disorder (Das gupta & Ma 79, D. S. Fisher 92)

But instead of targeting ground state target the long time dynamics.

Real space RG for the dynamics - application

1. Short times described by rapid oscillations (freq. Ω) performed by pairs of spins coupled by the strongest bonds.J= Ω .

That is all we have at time scale $t \approx \Omega^{-1}$ all other spins are essentially frozen!

 $J_{L} \Omega J_{R}$ $H_{L} H_{0} H_{R}$

2. Compute effective dynamics at times t>> Ω^{-1} (eliminating frequencies of order Ω)

$$\rho(t) = \left[U_I^{\dagger} \rho_0 U_I \right]_{\Omega^{-1}} = e^{iH_{eff}t} \rho_0 e^{-iH_{eff}t}$$

 2^{nd} order expansion of U in the interaction picture w.r.t H_0

Average over H_0 rapid oscillations

3. Iterate to obtain flow of the (distribution of) coupling constants

Perturbation expansion of the evolution operator:

$$U_{I} = 1 - \frac{i}{\hbar} \int_{0}^{t} dt_{1} e^{\frac{i}{\hbar}H_{0}t_{1}} (H_{R} + H_{L}) e^{-\frac{i}{\hbar}H_{0}t_{1}}$$
$$- \frac{1}{\hbar^{2}} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} e^{\frac{i}{\hbar}H_{0}t_{1}} (H_{R} + H_{L}) e^{-\frac{i}{\hbar}H_{0}t_{1}} e^{\frac{i}{\hbar}H_{0}t_{2}} (H_{R} + H_{L}) e^{-\frac{i}{\hbar}H_{0}t_{2}}$$

Real space RG – non interacting case (Δ =0)

Effective spin-chain after many iterations:

Important outcome - a relation between length and time scales

 $L(\Omega)$ = mean separation between spins (length of clusters) at scale Ω =1/t

The RG decimation step for $\Delta > 0$

Need to keep track of a new spin on the strong bond

$$H_{eff} = \frac{J_L J_R}{2\Omega(1 - \Delta_S^2)} \left[(1 + \Delta_S S_n^z) (S_L^+ S_R^- + H.c.) - \Delta_L \Delta_R S_n^z (S_L^z S_R^z) \right]$$

$$\uparrow$$
, \downarrow = $|\pm\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle \pm |\downarrow\uparrow\rangle)$

The new spin initially points along x or -x therefore the evolution is a superposition of the dynamics given an up-spin on the bond and the dynamics with a down-spin:

$$|\psi(t)\rangle = \frac{1}{\sqrt{2}} \left(e^{iH_{eff}^{(+)}t} |\psi_0^{LR}\rangle |\uparrow_n\rangle + e^{iH_{eff}^{(-)}t} |\psi_0^{LR}\rangle |\downarrow_n\rangle \right)$$

This leads to entanglement between decimated bond and the nearby spins after a time

$$t_{\rm ent} = \frac{2\Omega}{J_L J_R \Delta_S}$$

But no effect on subsequent renormalization of coupling constants!

$$\tilde{J} \approx J_L J_R / \Omega$$

$$\tilde{J} \approx J_L J_R / \Omega$$
. $|\tilde{\Delta}| \approx |\Delta_L| |\Delta_R| / 4$.

Flow of distributions

$$\Gamma = \ln(\Omega_0/\Omega) = \ln(\Omega_0 t)$$

$$\zeta = \ln(\Omega/J)$$
 $\beta = -\ln|\Delta|$

Flow equation for joint probability distribution:

$$\frac{\partial P}{\partial \Gamma} = \frac{\partial P}{\partial \zeta} + \rho(0; \Gamma) \int_0^\infty d\beta_L d\beta_R d\zeta_L d\zeta_R \delta(\zeta - \zeta_L - \zeta_R) \delta(\beta - \beta_L - \beta_R - \ln 4) P(\zeta_L, \beta_L; \Gamma) P(\zeta_R, \beta_R; \Gamma)$$

Exact solution for two crucial properties

$$\Gamma = \ln(\Omega_0/\Omega) = \ln(\Omega_0 t)$$
 $\zeta = \ln(\Omega/J)$ $\beta = -\ln|\Delta|$

1. Individual distribution of J's. Flow to infinite randomness

Analogous to the random singlet ground state (Dasgupta&Ma 79, Fisher 94)

$$L(\Gamma) = (\alpha_0 \Gamma + 1)^2 \to [\alpha_0 \ln(\Omega_0 t)]^2$$

Immediate consequence: decay of AF order as

$$m_{AF} \sim \left(\frac{1}{\ln(\Omega_0 t)}\right)^2$$

2. Conditional average value of *interaction* (average β on a bond with given ζ)

$$\bar{\beta}(\zeta,\Gamma) \equiv \int_0^\infty d\beta \, \beta \, \frac{P(\zeta,\beta;\Gamma)}{\rho(\zeta;\Gamma)}$$

Entropy growth in the "non interacting" case (Δ =0)

In the case $\Delta=0$: Only intra-pair entanglement

Compute entanglement entropy by counting the number of decimated bonds that cut the interface.

Each decimated bond crossing the interface contributes ~log2. (As in the ground state of random singlet phase – Refael & Moore PRL 2004)

$$S_{ent} \sim \int_0^{\Gamma} \alpha(\Gamma') d\Gamma' = \ln(\Gamma + \alpha_0^{-1}) = \ln(\ln(\Omega_0 t) + \alpha_0^{-1})$$

Entropy growth in the interacting case (Δ >0)

A bond eliminated at t_1 builds entanglement with neighbors only at a later time $t=t_1+t_{ent}$.

$$t_{\rm ent} = \frac{2\Omega}{J_L J_R \Delta_S}$$

The interaction generates entanglement only after a delay time from the start of time evolution

$$t_{\rm delay} \approx \frac{2\Omega_0}{J_0^2 \Delta_0} = \left(\frac{2\Omega_0}{J_0}\right) \frac{1}{J_0^z}$$

How much entanglement is generated?

Entropy growth in the interacting case (Δ >0)

Entanglement measured at time t originates from pairs eliminated at earlier time t₁

Remaining spins at t₁ are separated by decimated clusters of length L(t₁)

By the time t=t₁+t_{ent} that these spins become entangled the decimated clusters between them must also be entangled

$$S(t) \approx L(t_1) = \left(\alpha_0 \ln(\Omega t_1) + 1\right)^2$$

Relation between
$$t_1$$
 and t : $t=t_1+t_{\rm ent}=t_1\left(1+\frac{2\Omega_1^2}{J_LJ_R\Delta_S}\right)\approx t_1\frac{2\Omega_1^2}{J_1^2\Delta_1}$

Taking log of both sides and using solutions for typical value of ζ and conditional average of β

$$\Gamma = 3\Gamma_1 + \frac{1}{h_0}(a_0\Gamma_1 + 1)^{\phi} + 2/a_0 + \ln 2$$

Evolution of the entanglement entropy (Δ >0)

$$S(t) \approx \eta_1 \ln(t/t_{delay}) \Theta(t-t_{delay}) + \left[\eta_2 \ln(t/t_{delay})\right]^{2/\phi} \Theta(t-t_*)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\eta_1 = \frac{1}{\ln(\Omega_0/J_0)} \qquad \qquad \eta_2 = -1/\ln(\Delta_0) \qquad \phi \text{ - Golden ratio}$$

$$t_{\rm delay} \approx \frac{2\Omega_0}{J_0^2 \Delta_0} = \left(\frac{2\Omega_0}{J_0}\right) \frac{1}{J_0^z}$$

Compare with numerical results from Bardarson et. al. PRL (2012)

Saturation of entanglement entropy in a finite system

Saturation time: $t(L) = \Omega_0^{-1} e^{\Gamma(L)} \approx \Omega_0^{-1} e^{\sqrt{L}/\alpha_0}$

Entropy saturates to an extensive value: $S(L) \sim L$

In agreement with the numerical results:

Saturation value is not the expected thermalized value $S(L) = L \ln 2$. Why?

Emergent conservation laws

In every decimated pair of spins the states $\uparrow \rightarrow \uparrow$ and $\downarrow \rightarrow \downarrow$ are never populated therefore S(L)<(L/2)ln2

More generally $I_p = (S_1^z S_2^z)_p$ are approximate constants of motion (asymptotically exact for long distance pairs)

Many-body localization (non thermalization) $\stackrel{?}{=}$ emergent GGE

Evolution of particle number fluctuations

Since the $\uparrow \uparrow \uparrow$ and $\downarrow \downarrow \downarrow \downarrow$ states of decimated pairs are not populated, only pairs that intersect the interface contribute to $\langle \delta N^2(t) \rangle$

$$\langle \delta N^2(t) \rangle = \ln \left(\ln(\Omega_0 t) + \alpha_0^{-1} \right)$$

Much slower than entanglement growth and independent of interaction!

Saturates to a non-extensive value in a finite system: $\langle \delta N^2(\infty) \rangle \sim \ln L$

Localized

Range of validity of the RG scheme ?= Extent of the localized state

A criterion for initial conditions that lead to the localized fixed point can be found from the RG rule:

$$\tilde{J} = \frac{J_L J_R}{\Omega (1 - \Delta_S^2)}$$

In order to flow to increasing randomness the typical J must decrease in the process. Therefore demand:

$$\frac{J_{typ}^2}{\Omega(1-\bar{\Delta}^2)} < J_{typ}$$

Rare distant resonances

The RG scheme dos not take such events into account

If $J_{eff} > \delta$ then the two pairs can switch to

Increasingly rare with increasing disorder therefore expected to be irrelevant at the infinite randomness fixed point!

Moreover: Anderson localization arguments in Fock space (Basko et. al. 2006) imply they are irrelevant at some finite disorder).

Summary

- Formulated RG for dynamics of random spin chains
- Many-body localized state found for XXZ chain with initial Neel state. Identified as infinite randomness fixed point
- Entanglement growth:

$$S(t) \approx \eta_1 \ln (t/t_{\rm delay})$$
 $t_{\rm delay} < t \ll t_*$
 $S(t) \approx \left[\eta_2 \ln (t/t_{\rm delay})\right]^{2/\phi}$ $t \gg t_*$

- Particle number fluctuations: $\langle \delta N^2(t) \rangle \sim \ln \ln(\Omega_0 t)$
- Non thermal steady state can be understood as Generalized Gibbs ensemble with the asymptotic conserved quantities:

$$(S_1^z S_2^z)_{\text{pair}}$$

Outlook / questions

 Nature of the steady state for generic initial conditions and generic disorder (allow local Zeeman fields)

 Critical point controlling the many-body localization transition?