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Many-Body Localization

Aleiner et al (2006,2010)

If the model has bounded spectrum, one can attempt 

to drive the transition at infinite temperature

Oganesyan and Huse (2007), Pal and Huse (2010)



Disordered Spin Chains

Poisson r=0.39

GOE r=0.53

= interacting fermions:

Ratio of adjacent energy gaps from 

exact diagonalization of 16 sites:
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Thermalization and dynamics of entanglement entropy

A B

Von-Neuman entropy generated in the dynamics:

= interacting fermions:

in disordered spin chains

Delocalized system localized system (?)
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Ssat ~ xloc

Ssat ~ Seq = LA ln2 



Entanglement dynamics: numerics

Entropy growth SA(t)

- Non interacting: Saturation 

- Interacting log(t) increase

Bardarson et. al. PRL (2012)

Earlier numerical studies: De Chiara et. al. (2006); Znidaric et. al. (2008)  

Saturation in finite system

- Non interacting: Ssat=const

- Interacting: Ssat= s0L 

extensive, but much smaller

then expected thermal entropy



Questions and goals for theory

• Explain the universal evolution of the entanglement 

entropy in this “localized” state as seen in numerics. 

• Does the system thermalize? Description of the long 

time steady state? 

• Nature of the transition to the delocalized state?



Outline

• Derivation of real space RG for quantum time evolution in 

strong disorder and application to model:

• Main Results:

1. Flow to infinite randomness fixed point

2. Delayed logarithmic growth of entanglement entropy:

Compare to noninteracting case: 

3. Emergent conserved quantities → no thermalization

“Interaction”



Real space RG for dynamics

Working model:

Neel initial state:

We want to compute:

drawn from uncorrelated broad distributions

Use the basic idea of real-space RG for strong disorder 

(Das gupta & Ma 79, D. S. Fisher 92) 

But instead of targeting ground state target the long time dynamics. 



Real space RG for the dynamics - application

1. Short times described by rapid oscillations (freq. W) performed by pairs      

of spins coupled by the strongest bonds.J=W. 

That is all we have at time scale 

all other spins are essentially frozen! H0HL HR

2. Compute effective dynamics at times t>>W -1

(eliminating frequencies of order W)

2nd order expansion of U in 

the interaction picture w.r.t  H0

Average over 

rapid oscillations

3. Iterate to obtain flow of the (distribution of) coupling constants 



Perturbation expansion of the 

evolution operator:

H0HL HR



Real space RG – non interacting case (D=0)

Effective spin-chain after many iterations:

Important outcome - a relation between length and time scales

L(W) = mean separation between spins (length of clusters) at scale W=1/t

L(W)



The RG decimation step for D>0

Need to keep track of  a new spin on the strong bond

The new spin initially points along x or –x therefore the evolution is a superposition of 

the dynamics given an up-spin on the bond and the dynamics with a down-spin:

This leads to entanglement between 

decimated bond and the nearby spins after a time 

But no effect on subsequent 

renormalization of coupling constants!

,



Flow of distributions

Scaling variables:

Flow equation for joint probability distribution:



Exact solution for two crucial properties

1. Individual distribution of J’s. Flow to infinite randomness

2. Conditional average value of interaction

(average b on a bond with given z )

with:L(W)

Immediate consequence: decay of AF order as

Analogous to the random singlet ground state

(Dasgupta&Ma 79, Fisher 94)



Entropy growth in the “non interacting” case (D=0)

Compute entanglement entropy by counting the number of decimated 

bonds that cut the interface.

Each decimated bond crossing the interface contributes ~log2. 
(As in the ground state of random singlet phase – Refael & Moore PRL 2004)

In the case D=0 : Only intra-pair entanglement 



Entropy growth in the interacting case (D>0)

A bond eliminated at t1 builds entanglement 

with neighbors only at a later time t=t1+tent.

The interaction generates entanglement only 

after a delay time from the start of time evolution

How much entanglement  is generated?



Entropy growth in the interacting case (D>0)

Remaining spins at t1 are separated by 

decimated clusters of length L(t1)
L(t1)

Entanglement measured at time t originates 

from pairs eliminated at earlier time t1

By the time t=t1+tent that these spins 

become entangled the decimated clusters 

between them must also be entangled

Relation between t1 and t :

Taking log of both sides and using 

solutions for typical value of z and 

conditional average of b



Evolution of the entanglement entropy (D>0)

- Golden ratio

Compare with numerical results from 

Bardarson et. al. PRL (2012)



Saturation of entanglement entropy in a finite system

Entropy saturates to an extensive value:   S(L) ~ L

L

Saturation time:

Saturation value is not the expected thermalized value S(L)= L ln2. Why?

In agreement with the 

numerical results:

Bardarson et. al. PRL (2012)



Emergent conservation laws

L

In every decimated pair of spins the states         and

are never populated therefore S(L)<(L/2)ln2 

More generally are approximate constants of motion

(asymptotically exact for long distance pairs) 

Many-body localization (non thermalization)  = emergent GGE
?



Evolution of particle number fluctuations

Since the        and        states of decimated pairs are not populated, 

only pairs that intersect the interface contribute to 

Much slower than entanglement growth 

and independent of interaction!

Saturates to a non-extensive value 

in a finite system:

Bardarson et. al. PRL 2012 

Localized



Range of validity of the RG scheme

?= Extent of the localized state

A criterion for initial conditions that lead to the 

localized fixed point can be found from the RG rule:

In order to flow to increasing randomness the typical 

J must decrease in the process. Therefore demand:

Disorder

Interaction



Rare distant resonances

The RG scheme dos not take such events into account

W+dW
Jeff

If Jeff>d then the two pairs can switch to 

Increasingly rare with increasing disorder therefore expected to be 

irrelevant at the infinite randomness fixed point !

Moreover: Anderson localization arguments in Fock space

(Basko et. al. 2006) imply they are irrelevant at some finite disorder).



Summary

• Formulated RG for dynamics of random spin chains

• Many-body localized state found for XXZ chain with initial Neel 

state. Identified as infinite randomness fixed point

• Entanglement growth:

• Particle number fluctuations:

• Non thermal steady state can be understood as Generalized Gibbs 

ensemble with the asymptotic conserved quantities:



Outlook / questions

• Nature of the steady state for generic initial conditions 

and generic disorder (allow local Zeeman fields)

• Critical point controlling the many-body localization 

transition?


