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(Global) Quantum Quench

prepare an extended system (in thermodynamic limit) at
time t = 0 in a (translationally invariant) pure state |ψ0〉 –
e.g. the ground state of some hamiltonian H0

evolve unitarily with a hamiltonian H for which |ψ0〉 is not an
eigenstate and has extensive energy above the ground
state of H

how do correlation functions of local observables, and
quantum entanglement of subsystems, evolve as a
function of t?
for a compact subsystem do they become stationary?
if so, what is the stationary state?
is the reduced density matrix thermal?
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Quantum quench in a 1+1-dimensional CFT

P. Calabrese + JC [2006,2007] studied this problem in 1+1
dimensions when H = HCFT and |ψ0〉 is a state with
short-range correlations and entanglement
HCFT describes the universal low-energy, large-distance
properties of many gapless 1d systems
1+1-dimensional CFT is exactly solvable, so we can get
analytic results for interacting systems – however, these
turn out to depend only on general properties of any CFT
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Results

there is a parameter τ0 characterising |ψ0〉 such that:
one-point functions of local quantities in general decay
towards their ground state values:

〈Φ(x, t)〉 ∼ e−π∆Φt/2τ0 where ∆Φ is the scaling dimension of Φ

for times t > |x1 − x2|/2v, the correlation functions become
stationary and decay exponentially:

〈Φ(x1, t1)Φ(x2, t2)〉 ∼ e−π∆Φ|x1−x2|/2vτ0

for t1 = t2, and ∼ e−π∆Φ|t1−t2|/2τ0 for x1 = x2

the (conserved) energy density is πc/6(4τ0)2

the von Neumann entropy of a region of length ` saturates
for t > `/2v at

S ∼ (πc/3(4τ0))`
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all these results are precisely those expected for the same
CFT at temperature T = (4τ0)−1

an extreme example of thermalisation!
no time average necessary
it happens after a finite time t ∼ `/2v

results accord with a simple physical picture of entangled
pairs of quasiparticles emitted from correlated regions

t

r

this picture has more general applicability (Lieb-Robinson)
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Quantum quenches in integrable models

however studies of quenches in integrable models
[(Rigol,Dunjko,Yurovsky,Olshanii),...,(Calabrese,Essler,Fagotti)]
have led to the conclusion that the steady state should be
a ‘generalised Gibbs ensemble’ (GGE) with a separate
‘temperature’ conjugate to each local conserved quantity
1+1-dimensional CFT is super-integrable: e.g. all powers
T(z)j and T(z̄)j̄ of the stress tensor (and its derivatives)
correspond to local conserved currents, leading to
conserved charges
so why did CC find a simple Gibbs ensemble?
this can be traced to a simplifying assumption about the
form of the initial state
what is the effect of relaxing this assumption?
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Review of CC [2006,2007]

we want to compute

〈ψ0|eitHCFT O e−itHCFT |ψ0〉

we could get this from imaginary time by considering

〈ψ0|e−τ2HCFT O e−τ1HCFT |ψ0〉

and continuing τ1 → it, τ2 → −it

‘slab’ geometry with boundary condition ≡ ψ0, but
thickness τ1 + τ2 = 0 /
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Resolution, updated

in general we can write any translationally invariant state
with short-range correlations and entanglement in the form

|ψ0〉 ∝ e−
∑

j λj
∫
φ

(b)
j (x)dx |B〉

where |B〉 is an ‘ideal’ state (e.g. a product state) which
corresponds to a fixed point of the boundary RG, and φ(b)

j
are all possible (irrelevant) boundary operators
one of the most important is the stress tensor Tττ with RG
eigenvalue 1− 2 = −1: note that

∫
Tττ (x)dx = HCFT

CC’s assumption was equivalent to the assertion that this
is the only one:

|ψ0〉 ∝ e−τ0HCFT |B〉
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‘Moving the goalposts’

〈ψ0|O(τ)|ψ0〉 = 〈B| e−τ0H O(τ) e−τ0H |B〉

to compute 〈ψ0|O(τ)|ψ0〉 we therefore consider a slab
−τ0 < τ < τ0 with boundary conditions corresponding to
the ideal state |B〉 :

0τ2

B

O(  )τ

B

and continue the result to τ → it
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because |B〉 is conformally invariant, the correlations in the
slab are related to those in the upper half z-plane by
z = ieπw/2τ0

power-law behaviour in the z-plane⇒ exponential
behaviour in t and x
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in particular, x + i(τ → it) is mapped
to

z = i eπ(x−t)/2τ0 ; z̄ = −i eπ(x+t)/2τ0 (6= z∗!)

except for narrow regions O(τ0) near
the light cone, points are
exponentially ordered along
imaginary z-axis: correlators can be
computed by successive OPEs
for t� τ0 the z̄’s move off to −i∞
and the boundary effectively plays
no role
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This implies:
invariance under rotations in the z-plane, and since
z = ieπ(x+iτ)/2τ0 ,⇒ stationarity in τ and therefore t

periodicity of correlators under τ → τ + 4τ0 ⇒ the slab
effectively becomes a cylinder: finite temperature!

All the other conclusions of CC then follow straightforwardly.
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Relaxing CC’s assumption

more generally let us suppose

|ψ0〉 ∝ e−τ0HCFT e−
∑

j
′λj

∫
φ

(b)
j (x)dx|B〉

first consider the case where φ(b)
j (x) = T(x)j

(
= T(x)j

)
(or more generally combinations of derivatives and powers
of T)
since T = T on B, we can write∫

B
T(x)jdx = 1

2

∫
B

T(z)jdz + 1
2

∫
B

T(z̄)jdz̄
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since the operators are (anti-)holomorphic, we can distort
the contours away from the boundary:

2 0τ

B

O(  )τ

B
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in the half-plane
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on the cylinder

TrO e−βH−
∑

j
′λjHj

where Hj =
∫

[T(x)j + T(x)j]dx

Generalised Gibbs Ensemble (GGE)
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Observable consequences of GGE in CFT

Hj ∝
1

β2j−1

∑
n1+···+np=0

:Ln1Ln2 · · · Lnp : +c.c.

∝ Lj
0 + terms with np ≥ 1 + c.c.

so acting on a primary operator Hj ∝ ∆j
Φ

so in the stationary regime, a 2-point function decays as

〈Φ(x1, t)Φ(x2, t)〉 ∝ e−|x1−x2|/ξΦ

where ξ−1
Φ =

2π∆Φ

β

1 +
∑

j

λj

(
2π∆Φ

β2

)j−1


effective temperature, as determined by decay of
correlations, depends on the observable
similar consequences for entropy, etc

Quantum Quench in Conformal Field Theory



More general boundary perturbations

more general boundary perturbations φ(b)
j with scaling

dimensions ∆j 6= integer are consistent with a GGE only if
we posit the existence of bulk parafermionic holomorphic
currents φj(z) with dimension ∆j and include the
corresponding non-local conserved charges
Hj =

∫
φj(x, t)dx in the GGE

example: quench to the critical point in a transverse-field
Ising model from disordered state with a small longitudinal
field (∆ = 1

2 ) gives rise to a fermionic charge∫
[ψ(x) + ψ(x)]dx (??)
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Universality?

in general, by dimensional analysis,

ξ−1
Φ =

2π∆Φ

β

[
1 + O

(
λj

β∆j−1

)]

so if ∆j > 1 (irrelevant initial perturbation) the stationary
state is more Gibbsian if β large (shallow quench)
one can also add irrelevant terms to HCFT : e.g.

TT, corresponding to left-right scattering
T j + T j, corresponding to curvature of dispersion relation

these are irrelevant for a shallow quench
do they drive crossover to a different behaviour for a deep
quench?
if so, what? True thermalisation?
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Conclusions

a quantum quench in 1+1-dimensional CFT from a more
general state leads to results consistent with a GGE
the conserved quantities are in 1-1 correspondence with
possible boundary perturbations - some of these may be
non-local in the bulk
the effects of GGE include observable-dependent effective
temperatures
they should be less important for shallow quenches
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