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Many-body chaos
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Random Matrix Theory

E.Wigner (1955) : local statistical properties of spectra of 

complex quantum systems such as of heavy nuclei, are 

universal, and can be described by the RMT 

The commonly used quantity is the level spacing 

distribution 

Wigner surmise: 

E.Wigner (1957) : “The problem of the spacing of levels is 

neither a terribly important one nor have I solved it.” 
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M.V. Berry, “Quantizing a Classically Ergodic System: Sinai’s 
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Classical chaos
Quantum chaos: 

Deterministic quantum systems   

with strong chaos in the 

classical limit

Wave chaos
Properties:

(a) spectrum

(b) eigenstates

(c) dynamics

Deterministic quantum 

systems   without classical 

limit

Disordered quantum systems
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M.Shapiro and G.Goelman, “Onset of  Chaos in an 

Isolated Energy Eigenstate“, Phys. Rev. Lett. 53 

(1984) 1714. 

Chaotic eigenstates
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Chaotic eigenstates as the condition

for thermalization

Statistical Physics, Vol.5 (Pergamon, Oxford, 1969) 

M.Srednicki, “Chaos and quantum thermalization”, 

Phys. Rev. E 50 (1994) 888. 
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L.D.Landau and E.M.Lifshitz:
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Chaos and thermalization in nuclei and atoms 

M.Horoi, V.Zelevinsky, B.A.Brown, Phys. Rev. Lett. 

74 (1995) 5194; V.Zelevinsky, M.Horoi, B.A.Brown, 

Phys. Lett. B 350 (1995) 141; V.Zelevinsky, 

B.A.Brown, M.Horoi, N.Frazier, Phys. Rep. 276 

(1996) 85. 

V.V.Flambaum, A.A.Gribakina, G.F.Gribakin, 

M.G.Kozlov, “Structure of compound states in the 

chaotic spectrum of the Ce atom: Localization 

properties, matrix elements, and enhancement of 
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in particular, the reduced density matrix operator was analyzed  

numerically for individual eigenstates, and compared with analytical 
average over number of chaotic states 
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Chaotic eigenstates in a gold atom

G.F.Gribakin, A.A.Gribakina, V.V.Flambaum, 

arXiv:physics/9811010; Aust. J. Phys. 52 (1999) 443.
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Thermalization in an isolated gold atom

G.F.Gribakin, A.A.Gribakina, V.V.Flambaum, 

arXiv:physics/9811010; Aust. J. Phys. 52 (1999) 443.
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Universality of chaos

H-atom in magnetic 

field            Sinai billiard

Excited molecule    2
NO

Acoustic modes in 

quartz            

Spectra of vibrations  of  

a plate            Microwave billiard           
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V.V.Flambaum and F.M.I., “Statistical theory of finite Fermi systems 

based on the structure of chaotic eigenstates”, Phys. Rev. E 56 

(1997) 5144; V.V.Flambaum, F.M.I., G.Casati, Phys. Rev. E 54 

(1996) 2136.

“ A type of “microcanonical” partition function is introduced and 

expressed in terms of the average shape of eigenstates                 

where E is the total energy of the system. This partition function 

plays the same role as the canonical expression                         

for open systems in a thermal bath…”

The following problems have been considered:

(a) the distribution of occupation numbers and its relevance to the 

canonical and Fermi-Dirac distribution;

(b) criteria of equilibrium and thermalization;

(c) the thermodynamical equation of state and the meaning of 

temperature;

(d) the meaning of temperature, entropy and heat capacity;

(c) the increase of temperature due to the interaction….”
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Two-Body Interaction Model
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Many-body localization

D
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d

- density of all many-body 

states

- density of many-body states 

directly connected by the 
two-body interaction
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Transition to “chaos”: chaotic eigenstates
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Fermi-Dirac distribution

Circles: analytical description 

versus numerical data,

Diamonds: Fermi-Dirac with 
thermodynamical temperature 
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Shannon entropy of packets

     twtwtS
n

n

n
ln  

“Cascade model” (the flow of probability in the        - space)0
H

V.V.Flambaum and F.M.I. – Phys. Rev. E 64 (2001) 036220
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One-Dimensional Bose System
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âân̂


 kand

G.P.Berman, F.Borgonovi, F.M.I., A.Smerzi – PRL 92 (2004) 030404

It is known that                       corresponds to the mean-field 

regime  and                         is the Tonks-Girardeau regime
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Transition occurs at     1g/n
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- integrable system !



Transition from regular to irregular dynamics

At                all bosons occupy the level with         0t 0k

0g( ground state for                 )         

What  is going on after 

switching on the 

interaction

between bosons,                 

for              ?         

0g

0t

Experimental setup is 

proposed  to observe 

this transition

Numerical 

data

Mm 
   ln MttS 
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Chaos and relaxation dynamics in 1/2-spin models 

L.F.Santos, F.Borgonovi, F.M.I., Phys. Rev. Lett. 108  

(2012) 094102; Phys. Rev. E 85 (2012)  036209.

model  1

model  2

integrable

non-integrable
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- for transition from Poisson 

to Wigner-Dyson
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Emergence of chaotic states 
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Structure of eigenfunctions   
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Delocalization in energy shell 
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Strength function: from Breit-Wigner to Gauss 

BW is characterized by half-width: 
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Strength functions (LDOS) 
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Statistical  relaxation – increase of entropy 
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Statistical  relaxation – quench dynamics 

Santa Barbara, August 20, 2012

no difference between integrable and non-integrable models

smooth curves – analytical expressions



B.V.Chirikov, “Transient Chaos in Quantum and Classical 

Mechanics”, Foundation of Physics, Vol.16, No.1 (1986).

Abstract: “Bogolubov’s classical example of statistical relaxation 

in a many-dimensional linear oscillator is discussed. The 

relation of the discovered relaxation mechanism to quantum 

dynamics as well as to some new problems in classical 

mechanics is considered.”

N.N.Bogoliubov, “On Some Statistical Methods in Mathematical 

Physics”, Academy of Sciences USSR Publishers, Kiev, 1945, 

p.115 (Russian);  in: “Selected Papers” (Naukova Dumka, Kiev, 

1970, Vol.2, p.77 (Russian).

Chaos in integrable systems
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Two mechanisms of a statistical behavior (relaxation to 

a steady state distribution) in classical mechanics:

Thermodynamical limit                   ;

Exponential instability plus boundary in phase 

space  (            ) – “dynamical (deterministic) chaos”

What is common for both mechanisms? – Infinite 

number of statistically independent frequencies in

the time evolution of observables. 
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B.V.Chirikov, “Linear and nonlinear dynamical chaos”,

Open. Sys. & Informaion Dyn. 4 (1997) 241-280 .

Foundation of statistical mechanics
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in quantum mechanics – only second mechanism
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Infinite number of independent frequencies results in 

randomness !
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“Linear chaos” in thermodynamical limit

Let us consider the function 

where the numbers            are linearly independent:     
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Thank you for your attention!


