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Many-body chaos

Fig. 35. Picture illustrating the compound nucleus idea, as presented by N. Bohr in
1936. In a neutron-nucleus collision the constituent nucleons are viewed as billiard balls
and the nuclear binding as a shallow basin (taken from [112]).
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Random Matrix Theory

E.Wigner (1955) : local statistical properties of spectra of
complex quantum systems such as of heavy nuclel, are
universal, and can be described by the RMT

The commonly used quantity is the level spacing
distribution

Wigner surmise: p(s) = As” exp (— Bs 2)

E.Wigner (1957) : “The problem of the spacing of levels is
neither a terribly important one nor have | solved it.”

Santa Barbara, August 20, 2012



“Quantum chaos” in deterministic systems

S.W. McDonald and A.N. Kaufman, “Spectrum and

Eigenfunctions for a Hamiltonian with Stochastic
Trajectories”, Phys. Rev. Lett. 42 (1979) 11809.

G.Casati, |.Guarneri, F.Valz-Gris, “On the connection between

guantization of nonintegrable systems and statistical theory
of spectra”, Lett. Nuovo Cimento 28 (1980) 279.

M.V. Berry, “Quantizing a Classically Ergodic System: Sinai’s

Billiard and the KKR Method”, Annals of Physics, 131 (1981)
163.

O.Bohigas, M.-J.Giannoni, C.Schmit, “Characterization of

Quantum Chaotic Spectra and Universality of Level

Fluctuation Laws”, Phys. Rev. Lett. 52 (1984) 1.
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Quantum chaos:

Classical chaos Deterministic quantum systems

with strong chaos in the
classical ligit

Wave chaos

Properties:
(a) spectrum

(b) eigenstates
(c) dynamics

Deterministic quantum
systems without classical
limit

Disordered guantum systems
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Chaotic eigenstates

Yolume 108A, number 2 PHYSICS LETTERS 18 March [985

AN EXAMPLE OF CHAOTIC EIGENSTATES IN A COMPLEX ATOM

Boris ¥V, CHIRIKOV
Institute of Nuclear Physics, 630090 Novasibirsk, USSR

Received 7 January 1985
Statistically processing a group of excited states with the wtal angular momentum and panty S =17 n the cerium atom

reveals that their cigenfunctions are random superpositions of some few basic states. A possible dynamical mechanism
responsible for the formation of those chaotic states is briefly discussed.

M.Shapiro and G.Goelman, “Onset of Chaos in an

Isolated Energy Eigenstate®, Phys. Rev. Lett. 53
(1984) 1714.
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Chaotic eigenstates as the condition
for thermalization

L.D.Landau and E.M.Lifshitz:

t It may again be mentioned that, according to the fundamental principles of statistical
physics, the result of the averaging is independent of whether it is done mechanically over
the exact wave function of the stationary state of the system or statistically by means of
the Gibbs distribution. The only difference is that in the former case the result is expressed
in terms r.lf the energy of the body, and in the latter case as a function of its temperature.

Statistical Physics, Vol.5 (Pergamon, Oxford, 1969)

J.M.Deutsch, “Quantum statistical mechanics in a
closed system, Phys. Rev. A 43 (1991) 2046.

M.Srednicki, “Chaos and quantum thermalization?,
Phys. Rev. E 50 (1994) 888.
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Chaos and thermalization in nuclel and atoms

M.Horoi, V.Zelevinsky, B.A.Brown, Phys. Rev. Lett.

74 (1995) 5194, V.Zelevinsky, M.Horoi, B.A.Brown,
Phys. Lett. B 350 (1995) 141; V.Zelevinsky,
B.A.Brown, M.Horol, N.Frazier, Phys. Rep. 276
(1996) 85.

V.V.Flambaum, A.A.Gribakina, G.F.Gribakin,

M.G.Kozlov, “Structure of compound states in the
chaotic spectrum of the Ce atom: Localization
properties, matrix elements, and enhancement of
weak perturbations, Phys. Rev. A 50 (1994) 267.

In particular, the reduced density matrix operator was analyzed

numerically for individual eigenstates, and compared with analytical
average over number of chaotic states
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Chaotic eigenstates in a gold atom

01 —
0.001 B
| _ e B
005 - | — vk -
- ! i 0.0008 |
: i, IIII'::II'-I l | :- | .! _.'::I : :
{ 0 _.'I _I ! l‘:I:H W‘}‘ klf:'l..'-. | 1 L_-Kf-.il:: ;.I, I\.';-“; 0.0006
i || | ] 0.0004 |-
005 — i
0.0002 |-
01 [ a
L ] ] ] ] 1 1 1 1 1 1 1 - 0
FIG. 3. Components of the 590th J™ = 127 gipenstate from a two-conficuration calculation
2

(top), and a fit of Fﬂ E) by the Breit-Wigner formula (6) (bottom).

G.F.Gribakin, A.A.Gribakina, V.V.Flambaum,
arXiv:physics/9811010; Aust. J. Phys. 52 (1999) 443.
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Thermalization in an isolated gold atom
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FIG. 7. Orbital occupation numbers in Au?** caleulated numerically from Eq. (7) at excitation
energies £ = 1, 4.5, 9.5, 17 and 27.5 a.u. (solid circles), and the Fermi-Dirac distributions (solid
line) with temperature T" and chemical potential i chosen to give best fits of the numerical data.

G.F.Gribakin, A.A.Gribakina, V.V.Flambaum,
arXiv:physics/9811010; Aust. J. Phys. 52 (1999) 443.
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Universality of chaos

p(s)
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V.V.Flambaum and F.M.I., “Statistical theory of finite Fermi systems

based on the structure of chaotic eigenstates ”, Phys. Rev. E 56
(1997) 5144; V.V.Flambaum, F.M.l., G.Casati, Phys. Rev. E 54
(1996) 2136.

“A type of “microcanonical” partition function is introduced and
expressed in terms of the average shape of eigenstates F (E ,E)
where E is the total energy of the system. This partition function
plays the same role as the canonical expression exp (_ E® /T)
for open systems in a thermal bath...”

The following problems have been considered.:

(a) the distribution of occupation numbers and its relevance to the
canonical and Fermi-Dirac distribution;

(b) criteria of equilibrium and thermalization;

(c) the thermodynamical equation of state and the meaning of
temperature;

(d) the meaning of temperature, entropy and heat capacity;

(c) the increase of temperature due to the interaction....”
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Two-Body Interaction Model

1

m
+
H =Zekakak+2
k

+ _ +
> Vi aagaa,
kqpr

k).la),|p).|r) single-particle states

V two-body matrix elements (random or dynamical)

apr
m  number of single-particle states
n  number of particles (“quaisi-particles”)
e, energy of single-particle states
. . . : M
H |SI;:§Sni§|<c:)Ifered In the many-particle H, = Zk: c.a’a,
H, determines the basis in which the dynamics occurs
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Many-body localization
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FIG. 1. Sparsity of the Hamiltonian matrix H,, ., for n = 4 particles, m = 11 orbitals. Black points are non-zero matrix
elements.
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Transition to “chaos”: chaotic eigenstates
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Circles: analytical description
versus numerical data,

Diamonds: Fermi-Dirac with
thermodynamical temperature
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FIG. 1. Analytical description of the occupation numbers. Data
are given for the two-body random interaction model (1) of n=4
Fermi particles distributed over m=11 orbitals with V=0.20 and
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Shannon entropy of packets

ZW )i w, (t) w, (t)=c, ()

“‘Cascade model” (the flow of probability in the H, - space)

V.V.Flambaum and F.M.l. — Phys. Rev. E 64 (2001) 036220

Result: S(t)~TtihM (for infinite number of states)

for strong interaction t,<t<t

C

M is the number of directly coupled states

I is the width of the strength function
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One-Dimensional Bose System O

Zen+ d,4,4 d,6(k+q-p-r)
k==M 2L
. N
where L --lengthofaring; n=-— -- density of bosons
L
N -- number of bosons 5. o
) w | | | 4 K
n =a, a and ‘k>--smg|e-part|cleIevels with &, = 2

G.P.Berman, F.Borgonovi, F.M.l., A.Smerzi — PRL 92 (2004) 030404

It is knownthat n/ g > o corresponds to the mean-field
regime and n/ g—> 0 isthe Tonks-Girardeau regime

- integrable system !
Transition occursat n/ g =1
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Transition from regular to irregular dynamics

At t =0 all bosons occupy the level with k =0
(ground statefor g=0 )

What is going on after

switching on the
Interaction g #0

between bosons,

for t>0 2

"Numerical '
——datad ~——""

— n/g=64 =
— n/g=1.28
n/g=0.256
—— n/g=0.0512 —
n/g=0.01204
-—--- I'ln(m)

Experimental setup is
proposed to observe
this transition

S(t)~TtihM st
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Chaos and relaxation dynamics in 1/2-spin models

model 1 integrable
model 2 non-integrable

H» = Hy + A Vs,

Hy = Hy+ pVy,
= Jr 5 SI -|— 5 SI = o
Z " ) 2T EJ[{SFTSET-J +87S,5) + nS S
L1 '

- 35S,

A, = 0.5

- for transition from Poisson
to Wigner-Dyson

|'+.r_ '

L.F.Santos, F.Borgonovi, FM.l., Phys. Rev. Lett. 108
(2012) 094102; Phys. Rev. E 85 (2012) 036209.
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Emergence of chaotic states
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FIG. 2 (color online). Typical localized (top) and extended
(bottom) eigenstates for model 1 (left) and model 2 (right).

‘a> - basisof H ‘n> - basis of H,
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FIG. 8. Matrix of squared components of the eigenstates
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Delocalization in energy shell
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FIG. 4 (color online). Structure of eigenstates in the energy

shells for model 1 (left) and model 2 (right) obtained by

averaging over 5 states in the middle of the energy band. Solid

curves correspond to the Gaussian form of the energy shell.
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Strength function: from Breit-Wigner to Gauss

P, (E)=lcz[ p(E)

BW is characterized by half-width: I' = 272"H

. . . . 2
Gauss is characterized by its variance: o, = Z ‘H "

Transition to chaos occurs when

I ~o 4y




Strength functions (LDOS)

FIG. 3 (color online). Strength functions for model 1 (left) and
model 2 (right) obtained by averaging over 5 close states in the
middle of the spectrum. Middle panels: circles give a Breit-
Wigner fit. Lower panels: circles stand for a Gaussian fit. In all
panels, solid curves correspond to the Gaussian form of the

energy shells.
Santa Barbara, August 20, 2012



Statistical relaxation —increase of entropy

ZW )i w, (t) w, (t)=c, ()

according to statistical theory:

S(t)=-w, (t)hw,_ (t)_[l_wn0 t)]ln 1_|:/|Vn0 (t)

pc

Here W,,ﬂ{r] 15 the probability for the system to stay in the
initial state |n,) and NFC 15 the average number of directly
coupled states. We obtain N, numerically according to
N, = (&), where the average () is performed over a long
time after the saturation of the entropy.
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Statistical relaxation — quench dynamics
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FIG. 5 (color online). Shannon entropy vs rescaled time for
model 1 (left) and model 2 (right) for strong perturbation. Circles
stand for numencal data, solid curves correspond to Eq. (3), and
dashed lines show the linear dependence (4).

no difference between integrable and non-integrable models

smooth curves — analytical expressions
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Chaos in integrable systems

B.V.Chirikov, “Transient Chaos in Quantum and Classical
Mechanics”, Foundation of Physics, Vol.16, No.1 (1986).

Abstract: “Bogolubov’s classical example of statistical relaxation
In @ many-dimensional linear oscillator is discussed. The
relation of the discovered relaxation mechanism to quantum
dynamics as well as to some new problems in classical
mechanics is considered.”

N.N.Bogoliubov, “On Some Statistical Methods in Mathematical
Physics”, Academy of Sciences USSR Publishers, Kiev, 1945,
p.115 (Russian); in: “Selected Papers” (Naukova Dumka, Kiev,
1970, Vol.2, p.77 (Russian).

Santa Barbara, August 20, 2012




Foundation of statistical mechanics

Two mechanisms of a statistical behavior (relaxation to
a steady state distribution) in classical mechanics:

® Thermodynamical limit N — o
@ Exponential instability plus boundary in phase
space (A > 0 ) - “dynamical (deterministic) chaos”

What is common for both mechanisms? — Infinite
number of statistically independent frequencies in
the time evolution of observables.

In quantum mechanics — only second mechanism

B.V.Chirikov, “Linear and nonlinear dynamical chaos”,
Open. Sys. & Informaion Dyn. 4 (1997) 241-280 .
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“Linear chaos” in thermodynamical limit

2 N
Let us consider the function f (t) = ‘/ﬁz cos( o t)
n=1

where the numbers @ _ are linearly independent:

K,o, + K, o, + K,w, +---=0 only if all integer numbers
k1:k2=k =---=0
f2 y°

Then, the relative time for f, < f(t) < f, Is

Infinite number of independent frequencies results in
randomness !
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Thank you for your attention!




